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Introduction Single View 3-D Reconstruction Segmentation Multiple View

Notation

1 Perspective projection in single views: Loss of depth information

λ1x1 = X ∈ R3, where x1 = [x , y , 1]T .

2 3-D reconstruction from two views

xT
2 T̂Rx1 = 0.
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Multiple-View Geometry

Epipolar constraint is the epitome of multiple-view geometry/structure-from-motion:

xT
2 T̂Rx1 = 0.

Rigid-object structure: for X.
Camera calibration: for (x1, x2).
Camera motion: for (R,T ).

Image courtesy of Jana Kosecka.
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Multiple Views Are Not Always Necessary

Figure: Perception of depth in single view.

3-D Reconstruction based on Symmetry

Human vision can perceive depth information from single view images

Because of symmetric (planar) structures that are abundant in urban environments.
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Symmetry Induces Visual Illusion

(a) Ames’ Room (b) Escher’s Waterfall

Illusions in Art

When symmetry is wrongfully (and skillfully) applied, human vision leads to ambiguous 3-D
reconstruction even contradicting the common sense learned in the brain.
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Outlines

1 Three symmetric transformations: Reflection, rotation, and translation.

2 Theory of symmetry group to describe the transformation between symmetric structures.

3 Extend multiple-view geometry to recovering pose/structure of symmetric objects.

4 Demonstrate applications.

References:

On symmetry and multiple view geometry. IJCV, 2004.

Symmetry-based 3-D reconstruction from perspective images. CVIU, 2005.

Large-baseline matching and reconstruction from symmetry cells. ICRA, 2004.

Reconstruction of 3-D curves from perspective images without discrete features. ECCV, 2004.

Lecture notes available at: www.eecs.berkeley.edu/~yang
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Homography: A Review

1 Two views of a planar structure satisfies a homography relation

λ2x2 = λ1Hx1 where H = (R +
1

d
TNT ) ∈ R3×3.

2 Convert bilinear relation in (x1, x2) to linear in H

x̂2Hx1 = 0⇒ (x1 ⊗ x̂2)T Hs = 0,

where Hs = [H11,H21,H31, · · · ,H33]T ∈ R9 and x1 ⊗ x̂2 ∈ R9×3.
3 Given N corresponding pair of points, estimate Hs from a null space[

x
(1)
1 ⊗x̂2

(1),··· ,x(N)
1 ⊗x̂2

(N)
]T

Hs = 0.

4 Four-point algorithm decomposes H to recover (R,T ) up to two solutions.

Please run MATLAB script: fourpoint.m
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Equivalent Views of Symmetric Structures

Reflection
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Equivalent Views of Symmetric Structures

Rotation
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Equivalent Views of Symmetric Structures

Translation
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Symmetry Group

1 Three types of isometric symmetries in Euclidean space: Rotation, Reflection, and
Translation [Fedorov 1885, Weyl 1952]

2 Definition: Symmetric structure and its group action
A set of geometric primitives S ⊂ R3 is called a symmetric structure if there exists a
nontrivial group action G of rigid-body motions and reflections under which S is invariant

g ∈ G : g(S) = S .

Example (Symmetry group of a square)

Let S =

{
p1

.
=

[ 1
1
0
1

]
, p2

.
=

[
−1

1
0
1

]
, p3

.
=

[
−1
−1

0
1

]
, p4

.
=

[ 1
−1

0
1

]}
in homogeneous coordinates.

Consider all possible symmetry actions g =
[

R T
0 1

]
∈ R4×4:

1 Rotation: e = I4×4, a1 =

[
0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

]
, a2 = a2

1, a3 = a3
1 such that

e(pi ) = pi ; a1(p1) = p2, a1(p2) = p3, a1(p3) = p4, · · ·

2 Reflection: e, b =

[
−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

]
such that

b(p1) = p2, b(p2) = p1, b(p3) = p4, b(p4) = p3.

G is a group, called dihedral group D4.
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Example (Symmetry group of a rectangle)

Let S =

{
p1

.
=

[ 2
1
0
1

]
, p2

.
=

[
−2

1
0
1

]
, p3

.
=

[
−2
−1

0
1

]
, p4

.
=

[ 2
−1

0
1

]}
in homogeneous coordinates.

Consider all elements g ∈ G :

1 Group actions: e = I4×4, gx =

[
−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

]
, gy =

[ 1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

]
, gz =

[
−1 0 0 0

0 −1 0 0
0 0 1 0
0 0 0 1

]
.

2 G is a group: G = {e, gx , gy , gz}

g2
x = g2

y = g2
z = e, gxgy = gz , gygz = gx , gzgx = gy .

Note that these group actions above directly apply to symmetric structures in 3-D. Next, we
explain symmetric group in image induced by perspective projection.
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Induced Symmetry Group under Perspective Projection

1 Perspective projection: Denote homography H0 that projects X0 to the image X

λx = X = H0X0, where H0 = [R0(1),R0(2),T0] ∈ R3×3.

2 Action g in space induces hidden perspective view X′ and homography H′

H0(g(X0)) = H0gH−1
0 (H0X0)

.
= H′X.

3 Homography group: Let G = {e, g1, · · · , gn}, define

G ′
.

= H0GH−1
0 = {e,H0g1H

−1
0 , · · · ,H0gnH

−1
0 }.
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Homography Group

1 G ′ is a group induced by projection H0.

Example (Homography group for a rectangle)

Recall for rectangle, G = {e, gx , gy , gz}. Hence

G ′ = {I , H0gxH
−1
0 , H0gyH

−1
0 , H0gzH

−1
0 }

.
= {I , H′x , H′y , H′z}.

Check that G ′ indeed is a group

(H′x )2 = (H′y )2 = (H′z )2 = I ; H′xH
′
y = H′z ; H′yH

′
z = H′y ; H′zH

′
x = H′y .

2 Homography between first camera and “hidden” camera

x̂′H′x = 0.

3 Using four-point algorithm, decompose H′ into

H′ → {R′,
1

d
T ′,N}.

4 Goal: Recover R0, T0, and the symmetric structure S up to a scale factor.
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(H′x )2 = (H′y )2 = (H′z )2 = I ; H′xH
′
y = H′z ; H′yH

′
z = H′y ; H′zH

′
x = H′y .

2 Homography between first camera and “hidden” camera

x̂′H′x = 0.

3 Using four-point algorithm, decompose H′ into

H′ → {R′,
1

d
T ′,N}.

4 Goal: Recover R0, T0, and the symmetric structure S up to a scale factor.
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Symmetry-based 3-D Reconstruction

1 Decomposition of g ′ = g0gg−1
0 [

R′ T ′
0 1

]
=
[

R0 T0
0 1

] [
R T
0 1

] [
R0 T0
0 1

]−1

⇒
{

R′=R0RRT
0 ,

T ′=(I−R0RRT
0 )T0+R0T .

2 Solution
Assume symmetric structure (S, g) in space! (Next section we discuss how to verify)
Create hidden view g ′ from real camera view and recover R′ and T ′.
Imposing positive depth and symmetry constraints, four-point algorithm gives unique solution!
Solve for R0 and T0 based on symmetry assumption.
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Reflective Symmetry

1 Create hidden view

2 Decomposition of H′ → {R′,T ′,N}
Denote t = T ′/‖T ′‖, then R′ = I − 2ttT

Epipolar : (x′)T T̂ ′x = 0.

3 Pose
Denote v1 to be the eigenvector of R′ corresponding to λ1 = −1. Then

R0 =
[
±v1,±N̂v1,N

]
.
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Rotational Symmetry

1 Create hidden view

2 Decomposition of H′ → {R′,T ′,N}
Let ω ∈ R3 be the rotational axis of R′ = eω̂θ. Then ω ⊥ T ′: orbital motion.

3 Pose
The eigenvalues of R′ are 1, e jθ, and e−jθ, corresponding to eigenvectors v1, v2, and v3.
Then

R0 = [−Im(v2) cos(α)− Re(v2) sin(α),Re(v2) cos(α)− Im(v2) sin(α),±v1]

where α ∈ R is an arbitrary angle.
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Translational Symmetry

1 Create hidden view

2 Decomposition of H′ → {R′,T ′,N}

R′ = R0IR
T
0 = I ,T ′ = R0T .

3 Pose
If we choose plane normal as z-axis, and symmetry translation T ′ as x-axis, then

R0 =
[
T ′, N̂T ′,N

]
.
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Simulation: 3-D reconstruction of a regular pentagon

1 Let X1 = [0, 1, 0]T , X2 = Rxy ( 2π
5 )X1,

X3 = R2
xy ( 2π

5 )X1,

X4 = R3
xy ( 2π

5 )X1,

X5 = R4
xy ( 2π

5 )X1.

2 Let R0 =

[
cos( π

10
) 0 − sin( π

10
)

0 1 0
sin( π

10
) 0 cos( π

10
)

]
, T0 =

[
2
3
1

]
.

g = Rxy ( 2π
5 ).

3 From four-point algorithm: H′ =

[
−3.4913 −0.9045 11.6960

0.9323 0.3090 0.2083
−1.4593 −0.2939 4.8003

]
.

Only one decomposition satisfies both positive depth and symmetry constraints:

R′ =

[
0.3750 −0.9045 −0.2031
0.9045 0.3090 0.2939
−0.2031 −0.2939 0.9340

]
, t′ =

[ 0.9510
−0.0068

0.3090

]
, N =

[−0.3090
0.0000
0.9511

]
.

4 Estimated pose of the pentagon

R0 =

[
0.9511 0.0000 −0.3090

0 1.0000 0.0000
0.3090 −0.0000 0.9511

]
, t0 =

[
0.4046
0.6069
0.2023

]
.

Please run MATLAB script: rotational_symmetry.m
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Introduction Single View 3-D Reconstruction Segmentation Multiple View

Symmetry-based Image Segmentation

1 Symmetry-based reconstruction only useful when symmetric structures are present.

2 This section discusses detection of symmetry cells from natural images.

3 Yet we will show the geometry in turn helps to validate the existence of symmetry cells.
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Introduction Single View 3-D Reconstruction Segmentation Multiple View

Low-Level Symmetry Cell Extraction

1 Homogeneous color patterns: Color-based mean shift algorithm with conservative
segmentation parameters.

2 Polygon extraction: [Wuescher & Boyer 1991]
The contour of a polygon is defined as piecewise line segments with zero constant curvature
and corners with local curvature peaks.

3 Local symmetry test

To verify if a polygon region can be interpreted as the image of an 3-D object with a symmetry
group G , we verify whether all elements in G lead to a consistent structure and pose in space.

Figure: Rectangle symmetry cells are verified against gx , gy , and gz .
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Introduction Single View 3-D Reconstruction Segmentation Multiple View

Mid-Level Symmetry Hierarchy

Global symmetry test

Symmetry cells that are consistent with other adjacent cells more likely correspond to symmetric
structures in space:
Cells that pass the local test are clustered by their orientation (normal vectors) and distance.

Coplanarity

For cells in one cluster with same reflective and rotational symmetries, coplanarity is verified by
estimation of translational symmetry.

Symmetry Bundle Adjustment

Coplanar symmetry cells shall have a common normal N and distance d from the camera center.

=⇒
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Geometric Segmentation

Figure: A hierarchical segmentation of an image by the geometry of symmetry.
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Experiments
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Introduction Single View 3-D Reconstruction Segmentation Multiple View

Geometry from Multiple Images

This section discusses building the correct geometry between multiple symmetry cells

1 Alignment of two cells in a single image.

2 Alignment of one cell in two images.

3 Alignment of multiple cells in multiple images.
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Two Cells in Single Image

d2 = αd1

1 Two cells are recovered up to
unknown distances d1, d2.

2 Pick a common point at the
intersection of two planes x:

λ(x) =
d

NT x
.

3 Since x is at intersection, λ1 ≡ λ2:

α =
d2

d1
=

NT
2 x

NT
1 x

.
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NT x
.

3 Since x is at intersection, λ1 ≡ λ2:

α =
d2

d1
=

NT
2 x

NT
1 x

.
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Example: Photo-Editing
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One Cell in Two Images

[
R21 T21

0 1

]
=
[

R2 T2
0 1

] [
R1 T1
0 1

]−1 ∈ R4×4,

where T1 = t1 and T2 = αt2.

1 The cell is recovered independently with
unknown distances d1, d2.

2 Solution to scale α: Reconstruction of S with
(R1, t1) and (R2, t2) only differ up to the
scale factor α.
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Example: Semi-automatic 3-D reconstruction
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Multiple Cells in Multiple Images

1 One ambiguity for multiple-view of a rectangle
[

R21 T21
0 1

]
=
[

R2 T2
0 1

] [−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

] [
R1 T1
0 1

]−1

This ambiguity cannot be eliminated if a single cell is present.

2 Complex-to-complex matching: Ambiguity is eliminated using multiple cells in two views

Introduce mismatches across multiple cells S1, S2!

3 Pictorial matching: Eliminate mismatch using shape similarity and interior texture
information.
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Extension: Symmetric Curves and Surfaces

Reference: Wei Hong et al.. Reconstruction of 3-D curves from perspective images without discrete features. ECCV, 2004.
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Thank you!

Allen Y. Yang, <yang@eecs.berkeley.edu>
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