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Outline

Outline

@ Hands-on experience how to formulate sparse representation

@ How to implement fast and effective £1-min programs in MATLAB

© Problems
@ Image Super-Resolution
@ Wearable Action Recognition via Body Motion Sensors
@ Distributed Object Recognition via Camera Sensor Networks
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Super-Resolution

Problem Definition: Example-based Super-resolution

o Problem: Given a low-resolution input, reconstruct a higher-resolution version of the image.

Downsampling § Superresolution
—_— —_—
Degradation

Input

High Resolution Source
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Super-Resolution

Problem Definition: Example-based Super-resolution

o Problem: Given a low-resolution input, reconstruct a higher-resolution version of the image.

Downsampling § Superresolution
—_— —_—
Degradation

Input

High Resolution Source

@ The problem is an inverse problem and ill-posed.
© Subpixel alignment
@ Markov random field [Freeman 2000, Tipping 2003]
© Neighbor embedding [Chang 2004]
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Super-Resolution

Problem Definition: Example-based Super-resolution

o Problem: Given a low-resolution input, reconstruct a higher-resolution version of the image.

Downsampling 1 Superresolution

Degradation &

Input

High Resolution Source

@ The problem is an inverse problem and ill-posed.

© Subpixel alignment
@ Markov random field [Freeman 2000, Tipping 2003]
© Neighbor embedding [Chang 2004]

o Assumption: A high-resolution image library is provided (example-based).
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Super-Resolution

Our Approach: Sparse Linear Representation

@ Randomly sample patches of the image database as an overcomplete dictionary

1 | Stack
2 /X 7N\
| A

~

Ixi

Dp = [v1,v2, - ,vp] € RP*".
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Super-Resolution

Our Approach: Sparse Linear Representation

@ Randomly sample patches of the image database as an overcomplete dictionary

1 | Stgck
L A s
| A
p=s

Ixi

Dy, = [V1,V2,--- ,Vn] S RD*n,

@ A high-resolution source patch y has a sparse linear representation [Perrett & Oram 1993,
Olshausen & Field 1997]

y = Dh -Xp with ||X0||0 < n. ‘
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Super-Resolution

Our Approach: Sparse Linear Representation

@ Randomly sample patches of the image database as an overcomplete dictionary

1 | Stgck
L A s
| A
p=s

Ixi

Dy, = [V1,V2,--- ,Vn] S RD*n,

@ A high-resolution source patch y has a sparse linear representation [Perrett & Oram 1993,
Olshausen & Field 1997]

y = Dh -Xp with ||X0||0 < n. ‘

© Downsampling/blurring is a linear transformation H

D; = H- Dy € RI*",
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Super-Resolution

Our Approach: Sparse Linear Representation

@ Randomly sample patches of the image database as an overcomplete dictionary

Dy, = [V1,V2,--- ,Vn] S RD*n,

@ A high-resolution source patch y has a sparse linear representation [Perrett & Oram 1993,
Olshausen & Field 1997]

y = Dh -Xp with ||X0||0 < n. ‘

© Downsampling/blurring is a linear transformation H

D; = H- Dy € RI*",

O Input patch z € RY inherits the same sparse representation

2= Hy = HDyxo = Dxo. Berkeley
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Super-Resolution

Local Patch Model from Sparse Representation

@ Known: Dy, H, D; = HDy, low-res image /; and patches z.
Unknown: x¢ and high-res patches y = Dpxo.
Output: High-res image /j visually coherent as the collection (y,,--- ,¥,).
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Super-Resolution

Local Patch Model from Sparse Representation

@ Known: Dy, H, D; = HDy, low-res image /; and patches z.
Unknown: x¢ and high-res patches y = Dpxo.
Output: High-res image /j visually coherent as the collection (y,,--- ,¥,).
@ ('-Minimization:
x* = argmin||x||1 subjto ||z— Dix|2 < e
y* = Dyx*

Berkeley
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Super-Resolution

Local Patch Model from Sparse Representation

@ Known: Dy, H, D; = HDy, low-res image /; and patches z.
Unknown: x¢ and high-res patches y = Dpxo.
Output: High-res image /j visually coherent as the collection (y,,--- ,¥,).

@ ('-Minimization:
x* = argmin||x||1 subjto ||z— Dix|2 < e
y* = Dypx*
@ Enforcing boundary compatibility
@ Define w as high-res patch that contains overlapping pixels

@ Define P as a mask that extracts pixels from previously
reconstructed area

x* = argmin||x||1 subjto |[Pw — PDpx|> < e

Mask P
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Super-Resolution

Enforcing Global Constraints

o Combine the two £!-min in a single system:

x* =argmin||x|l1 subjto |[[Z]— [PDL;h] x|2 <e
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Super-Resolution

Enforcing Global Constraints

o Combine the two £!-min in a single system:
x* =argmin||x|l1 subjto |[[Z]— [PDL;h] x[l2 <e

o Selecting high-frequency feature vectors: High-frequency components are more important to
predict the target high-resolution image.

Fz = FDix where f =[-1,0,1],, =[1,0,-2,0,1],...
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Super-Resolution

Enforcing Global Constraints

o Combine the two £!-min in a single system:
x* =argmin||x|l1 subjto |[[Z]— [PDL;h] x[l2 <e

o Selecting high-frequency feature vectors: High-frequency components are more important to
predict the target high-resolution image.

Fz = FDix where f =[-1,0,1],, =[1,0,-2,0,1],...

e Enforcing global constraint: Collect solutions (y;,- - ,y,) = h.

Iy =arg mlin [l = Ibl]2 subjto HI=1,.

Back-projection methods: [Irani 1993, Capel 2001] Berkeley
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Super-Resolution

Visualization

Orignial

Input

Neighbor Embedding Sparse Representation
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Distributed Sensor Perception via Sparse Representation


http://www.eecs.berkeley.edu/~yang

Super-Resolution
Visualization

Orignial
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Super-Resolution
Comparison: Root Mean Square Error

Image Bicubic Neighborhood  Our method
embedding
Flower 3.51 4.20 3.23
Girl 5.90 6.66 5.61
Parthenon 12.74 13.56 12.25
Raccoon 9.74 9.85 9.19

Reference:
J. Yang, et al., Image Super-Resolution as Sparse Represetation of Raw Image Patches, CVPR, 2008.
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Wearable Action Recognition

Sensing and Perception in Resource-Constrained Distributed Networks

Centralized Perception Distributed Perception
’f‘ /

S p

)

“~ v

Y Sy %

L)

Up:  powerful processors Down:  mobile processors

Up: unlimited memory Down: limited onboard memory

Up: unlimited bandwidth Down:  band-limited communications
Down: single modality Up:  distributed, multi-modality
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Wearable Action Recognition

Sensing and Perception in Resource-Constrained Distributed Networks

entralized Perception Distributed Perception
’f‘ /

S p

)

“~ v

Y Sy %

L)

Up:  powerful processors Down:  mobile processors

Up: unlimited memory Down: limited onboard memory

Up: unlimited bandwidth Down:  band-limited communications
Down: single modality Up:  distributed, multi-modality

If the total network is greater than the sum of its parts?

Question |: Recognize and track multiple human faces in a crowded camera network?
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Wearable Action Recognition

Sensing and Perception in Resource-Constrained Distributed Networks

entralized Perception Distributed Perception
’f‘ /

S p

)
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Y Sy %

L)

Up:  powerful processors Down:  mobile processors

Up: unlimited memory Down: limited onboard memory

Up: unlimited bandwidth Down:  band-limited communications
Down: single modality Up:  distributed, multi-modality

If the total network is greater than the sum of its parts?

Question |: Recognize and track multiple human faces in a crowded camera network?
Question |l: Multiple-view super-resolution using low-bandwidth camera sensors?
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Wearable Action Recognition

Sensing and Perception in Resource-Constrained Distributed Networks

Distributed Perception

Up:  powerful processors Down:  mobile processors

Up: unlimited memory Down: limited onboard memory

Up: unlimited bandwidth Down:  band-limited communications
Down: single modality Up:  distributed, multi-modality

If the total network is greater than the sum of its parts?

Question |: Recognize and track multiple human faces in a crowded camera network?
Question |l: Multiple-view super-resolution using low-bandwidth camera sensors?
Question Ill: Use distributed physiological sensors to persistently monitor patients?
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Wearable Action Recognition

Sensing and Perception in Resource-Constrained Distributed Networks

Distributed Perception

Up:  powerful processors

Up: unlimited memory

Up:  unlimited bandwidth

Down: single modality

Down:  mobile processors

Down: limited onboard memory

Down:  band-limited communications
Up:  distributed, multi-modality

If the total network is greater than the sum of its parts?

Question |: Recognize and track multiple human faces in a crowded camera network?
Question |l: Multiple-view super-resolution using low-bandwidth camera sensors?
Question Ill: Use distributed physiological sensors to persistently monitor patients?
Question 1V: Use mobile sensors to control the formation of air/ground vehicles?
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Wearable Action Recognition

Distributed Sensing and Perception (DSP)

edu/~yang ibuted Sensor Perception via Sparse Representation


http://www.eecs.berkeley.edu/~yang

Wearable Action Recognition

DexterNet: A Wearable Body Sensor Platform
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Wearable Action Recognition

Wearable Action Recognition

Goals
o Persistently monitor patient activities

o Alert dangerous actions

o Important social information for preventive healthcare in larger scale
Architecture

@ 8 sensors distributed on human body.

o Location of the sensors are given and fixed.

o Each sensor carries triaxial accelerometer and biaxial gyroscope.
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Wearable Action Recognition

Goals
o Persistently monitor patient activities

o Alert dangerous actions

o Important social information for preventive healthcare in larger scale
Architecture

@ 8 sensors distributed on human body.

o Location of the sensors are given and fixed.

o Each sensor carries triaxial accelerometer and biaxial gyroscope.
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Figure: 8 x-axis accelerometers and x-axis gyroscopes for a stand-kneel-stand action sequel]gee.r
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Wearable Action Recognition

Distributed Action Recognition

@ Training samples are segmented manually with correct labels.

1500

000

On each sensor node i, normalize the vector form (via stacking)

Vi = [X(l): e ,X(h),y(l), e 7y(h)72(1)7 e ’Z(h)» 9(1)7 e ,G(h),p(l), e 7p(h)]T € RSh

Berkeley
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Wearable Action Recognition

Distributed Action Recognition

@ Training samples are segmented manually with correct labels.

AT

1500

000 1200

On each sensor node i, normalize the vector form (via stacking)

Vi = [X(l): e ,X(h),y(l), e 7y(h)72(1)7 e ’Z(h)» 9(1)7 e ,e(h),p(l), e 7p(h)]T € RSh

@ Full body motion

V1 Y1
) Test sample: y = | € R85

Training sample: v = < :
Y8

ve

© Sparse representation classifier

Y1 Vi Vi
y= . = () 7'",<:> x = AX.
y.s V.8 1 ".8 n

Berkeley
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Wearable Action Recognition

Local/Global Classifiers

Distributed Sparse Representation

Y1 Vi vy yl:(V1,1,--- aV1,n)X

¥8 vg/ 1 vg/ va=(v8,1,+- Vg, n)x
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Wearable Action Recognition

Local/Global Classifiers

Distributed Sparse Representation

Y1 vy vy yl:(V1,1,--- aV1,n)X
: = < . > sty < . > X < .
vg vg/ 1 vg ’

" YS:(VS,h"' ,Vs,n)x

@ On each sensor node i: Choose random projection R; € R*5h:

¥y = Riy; = RiAix = /~4,'X e R?

i
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Wearable Action Recognition

Local/Global Classifiers

Distributed Sparse Representation

Y1 vy vy yl:(V1,1,--- aV1,n)X
= ()() . ;
vg vg/ 1 vg ’

" YS:(VS,h"' ,Vs,n)x

@ On each sensor node i: Choose random projection R; € R*5h:

¥y = Riy; = RiAix = /~4,'X e R

i

o Adaptive classification for a subset of active sensors (Suppose 1,..., L at time t and h;)
R - 0 -~ 0
Define global feature matrix R’ = | : : :
0 R0
1 Y1 Ar
Sl =R =R x = R'Ax
y‘L y.8 Ag
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Experiment

o Visualization

ET
(b) Jump
2000
1000 -
o L soor A {, ) o o
8 ¥ - - o il ke g gl e
-500
e = fr- W —WOOOWWMWWW~W~MWWJW&
60 fm L R R o @0 w0 @0 w0 6w w00
(c) Going downstairs (d) Turning left/right

Berkeley

d Sensor Perception via Sparse Representation


http://www.eecs.berkeley.edu/~yang

Wearable Action Recogt

Experiment

o Visualization

<1000 AL o s
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(a) Bend
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(b) Jump

1000
500
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-500
1000 ,WWWW ARG S

(c) Going downstairs

@ Precision vs Recall

M " s
At e L {and it Ll Uil

(d) Turning left/right

[ Semsors [ 2 [ 7 [27 [127][1-378]1-8]
Prec [%] [ 89.8 [ 94.6 [ 94.4 [ 92.8 946 [ 9838
Rec [%] | 65 | 615 | 82.5 | 80.6 805 | 942

Berkeley
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Wearable Action Recogt

Wearable Action Recognition Database

=lz]x]
. i S T =
e e W
o o il 500 800 700 800
J J = Lo 1000 i dovi)
e A A A ! !
CHEHAHAE
nwmwmmw

o Free for noncommercial users.

@ 5 motion sensors, each carries an accelerometer and gyroscope sampled at 30 Hz.
o 20 test subjects (13 male & 7 female) ages 19-75.

o Data processed in Matlab. Visualization tool is included.

References:
Yang, et al., DexterNet: An open platform for heterogeneous body sensor networks and its applications, BSN 2009.

Yang, et al., Distributed Recognition of Human Actions Using Wearable Motion Sensor Networks, JAISE 2009.
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Distributed Object Recognition

Distributed Object Recognition
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Distributed Object Recognition

Motivation: Object Recognition

o Affine invariant features, SIFT.

* ¥
X |3 S|
* [ ¥k

¥ KK [

uted Sensor Perception via Sparse Representation
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Distributed Object Recognition

Motivation: Object Recognition

o Affine invariant features, SIFT.

(a) Autostitch (b) Recognition
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Motivation: Object Recognition

o Affine invariant features, SIFT.

Distributed Object Recognition

E
HAD)
4
A

Image gradients

o SIFT Feature Matching [Lowe 1999, van Gool 2004]
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Distributed Object Recognition

Object Recognition in Band-Limited Sensor Networks

O Compress scalable SIFT tree [Girod et al. 2009]

Mobile Device [0 Server
B - - L~
Classify Compress | ,.| Decompress | 7
_{ Features _{ W Histogram Score [+ Identity

Histogram
Observation: SIFT histogram is largely sparse (up to 106-dim)

Image . Extract
Q | Features

R :  Sequence of consecutive zero bins.
S . Sequence of nonzero bin values.

Berkeley
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Distributed Object Recognition

ject Recognition in Band-Limited Sensor Networks

O Compress scalable SIFT tree [Girod et al. 2009]

Mobile Device

s LA
|| Classify
Features.

Server Database
T Decom)
| press | :
Network Histogram Score - Identity

Observation: SIFT histogram is largely sparse (up to 106-dim)

Image . Extract
Q | Features

Cﬁmpresé
Histogram

R :  Sequence of consecutive zero bins.
S . Sequence of nonzero bin values.

@ Multiple-view SIFT feature selection [Darrell et al. 2008]

Feature Histogram

Redundant Words

View 1
oA [a ©
° froxx °
*| % X
+ | aof +
View 2 A0 % X o +

Bins (Vocabulary Words)
Berkeley
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Distributed Object Recognition

Problem Statement

Transmitter

g O
Camera 1 @ A \%/
N @a

&
amera2 g )N S
m {@ R \
Object % - s Object Recognition
> A System

Camera V

@ L camera sensors observe a single object in 3-D.

@ The mutual information between cameras are unknown, cross-sensor communication is
prohibited.

© On each camera, seek an encoding function for a nonnegative, sparse histogram x;
f:X,'ERDl—)yI-ERd
@ On the base station, upon receiving y;,Y¥s, - ,Y;, simultaneously recover
X1, X2, X[,

and classify the object class in space.

Berkeley
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Distributed Object Recognition

Key Observations

2 1
o "
\‘ 08
1
{ 04
% 200 a0 500 500 000 K 20 a0 500 e 000
(a) Histogram 1 (b) Histogram 2

o All histograms are nonnegative and sparse.

Berkeley
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Distributed Object Recognition

Key Observations

1.

" " 0 L
200 00 600 800 1000 200 400 600 El 1000

(a) Histogram 1 (b) Histogram 2

o All histograms are nonnegative and sparse.

o Multiple-view histograms share joint sparse patterns.

Berkeley
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Distributed Object Recognition

Key Observations

04
05 02
K 200 a0 a0 300 000 K 20 a0 500 e 000
(a) Histogram 1 (b) Histogram 2

o All histograms are nonnegative and sparse.
o Multiple-view histograms share joint sparse patterns.

o Classification is based on the similarity measure in £2-norm (linear kernel) or £}-norm
(intersection kernel).

Berkeley
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Distributed Object Recognition

Random Projection as Encoding Function

y = Ax

Coefficients of A € RY*D are drawn from zero-mean Gaussian distribution.

Berkeley
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Distributed Object Recognition

Random Projection as Encoding Function

y = Ax

Coefficients of A € RY*D are drawn from zero-mean Gaussian distribution.

Johnson-Lindenstrauss Lemma [Frankl 1988, Li 2007, Hedge 2007]

For n number of point cloud in RP, given distortion threshold ¢, for any
d > O(e?log n),
a Gaussian random projection f(x) = Ax € R? preserves pairwise ¢2-distance

(1= 9llxi = xl13 < NI (xi) = FEIZ < (1 + €)llxi — x1l13.
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Distributed Object Recognition

Classification in Random Projection Space

o Projection only applies to leaf-node histogram x4

1000

40
800 20
600
20
400
, Mo lin LU Dk bt i Ll L
0 20 40 60 80 100 0 200 400 600 800 1000

(a) Level 1-3 (b) Level 4 (leaf nodes)

<7 = [x(l) € R, x® e R x3) ¢ R0 x(&) ¢ R1000],

Berkeley
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Distributed Object Recognition

Classification in Random Projection Space

o Projection only applies to leaf-node histogram x4

1000 40

800 w

600

20

400

: Ldbdd L]
, ctin 2o ko wlboth bl L,
0 20 40 60 80 100 0 200 400 600 800 1000

(a) Level 1-3 (b) Level 4 (leaf nodes)

xT = [x(l) € R,x?@ e R x3) ¢ RI 44 ¢ R1000],
o Direct classification can be applied using projected leaf histogram (NN or SVM)

y = Ax).

Berkeley
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Distributed Object Recognition

Classification in Random Projection Space

o Projection only applies to leaf-node histogram x4

1000 40

800

600

S

400

3

200

0 o Ll “M \.L\ Im
0 200 400

0 20 40 60 80 100

I\. L]x.llm L Ll
0 800 1000

(a) Level 1-3 (b) Level 4 (leaf nodes)

I

uil
&0

xT = [x(l) € R,x?@ e R x3) ¢ RI 44 ¢ R1000],
o Direct classification can be applied using projected leaf histogram (NN or SVM)

y = Ax).

o Advantages about Random Projection
@ Easy to generate and update.
@ Does not need training prior (universal dimensionality reduction).
© faster recognition speed.
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Distributed Object Recognition

From J-L Lemma to Compressive Sensing

(a) J-L lemma (b) Compressive sensing

@ Problem I: J-L lemma does not provide means to reconstruct histogram hierarchy.

Berkeley
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Distributed Object Recognition

From J-L Lemma to Compressive Sensing

(a) J-L lemma (b) Compressive sensing

@ Problem I: J-L lemma does not provide means to reconstruct histogram hierarchy.

@ Problem I1: Gaussian projection does not preserve ¢!-distance (for intersection kernels).

Berkeley
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Distributed Object Recognition

From J-L Lemma to Compressive Sensing

(a) J-L lemma (b) Compressive sensing

@ Problem I: J-L lemma does not provide means to reconstruct histogram hierarchy.
@ Problem I1: Gaussian projection does not preserve ¢!-distance (for intersection kernels).

© Problem Ill: Previous codec’s impose explicit mutual information between fixed camera
locations.

Berkeley
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Distributed Object Recognition

From J-L Lemma to Compressive Sensing

(a) J-L lemma (b) Compressive sensing

@ Problem I: J-L lemma does not provide means to reconstruct histogram hierarchy.
@ Problem I1: Gaussian projection does not preserve ¢!-distance (for intersection kernels).

© Problem Ill: Previous codec’s impose explicit mutual information between fixed camera
locations.

Compressive sensing provides principled solutions to the above problems. )
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Compressive Sensing

o Noise-free case: Assume xg is sufficiently k-sparse. Given triplet (D, d, k) and mild
condition for A,
(P1) :  min]||x||1 subject to y = Ax

recovers the exact solution.

Berkeley

http://wuw.eecs.berkeley.edu/~ ted Sensor Perception via Sparse Representation


http://www.eecs.berkeley.edu/~yang

Distributed Object Recognition

Compressive Sensing

o Noise-free case: Assume xg is sufficiently k-sparse. Given triplet (D, d, k) and mild
condition for A,
(P1) :  min]||x||1 subject to y = Ax

recovers the exact solution.

o Noisy case: Assume xg is sufficiently k-sparse and bounded noise ||e|]2 < e:
y = Axg + e.
A quadratic program recovers a bounded near solution: ||x* — xg||l2 < Ce:

(P]): min||x||1 subject to |ly — Ax|]z < e
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Compressive Sensing

o Noise-free case: Assume xg is sufficiently k-sparse. Given triplet (D, d, k) and mild
condition for A,
(P1) :  min]||x||1 subject to y = Ax

recovers the exact solution.
o Noisy case: Assume xg is sufficiently k-sparse and bounded noise ||e|]2 < e:
y = Axg + e.

A quadratic program recovers a bounded near solution: ||x* — xg||l2 < Ce:

(P]): min||x||1 subject to |ly — Ax|]z < e

@ What are the mild conditions for A?
@ (In)coherence [Gribvonel & Nielsen 2003, Donoho & Elad 2003].
@ Restricted Isometry Property [Candes & Tao 2005].
© k-Neighborliness [Donoho 2006].
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k-Neighborliness

o Define cross polytope C and quotient polytope P such that P = AC.

@ x is k-sparse < x lie in a unique (k — 1)-face of C.
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k-Neighborliness

o Define cross polytope C and quotient polytope P such that P = AC.
@ x is k-sparse < x lie in a unique (k — 1)-face of C.
o Necessary and Sufficient:

@ If all (k — 1)-faces of C map to the faces of P on the boundary, ¢! /£° holds for all k-sparse x.
@ If the (k — 1)-face where x lies maps to a face of P, then ¢! /£° holds for this specific x.

Berkeley

http://www.eecs.berkeley.edu/~yang Distributed Sensor Perception via Sparse Representation


http://www.eecs.berkeley.edu/~yang

Distributed Object Recognition

Matching Pursuit
O Initialization:
o y=[A; —A]X, where X >0

o k « 0; % — 0; r° — y; Sparse support
=0
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Matching Pursuit
O Initialization:
o y=[A; —A]X, where X >0

o k « 0; % — 0; r° — y; Sparse support
=0

Q k—k+1:

e i=arg maxj-gz{ajTrkfl}

o Update: Z =T U {i}; x; = a] v}

=7 xa;
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Matching Pursuit

Q Initialization:
o y=[A; —A]X, where X >0

o k « 0; % — 0; r° — y; Sparse support

=0
Q k—k+1:
e i=arg maxj-gz{ajTrkfl}

o Update: Z =T U {i}; x; = a] v}
r=k = xia;

Q If: ||r¥|2 > ¢, go to STEP 2;
Else: output X

Fail to search sparse solution on the
boundary of the quotient polytope. J
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Polytope Faces Pursuit

@ Dual linear program [Chen et al. 1998, Plumbley 2006]

min 17% <= max y'c
y=A% ATe<1

o Definition:
+ . a;
a’ = 5
llaill3

I

A vertex of the polar polytope at the intersection of hyperplanes 7a;r and fa;:

e = [a, -l Berkeley
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Simulation

max y'c
ATc<1

@ Initialization

Berkeley
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Simulation

max y'c
ATc<1

@ Initialization @ Find face: AT = {a1}.
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Simulation

max y'c
ATc<1

@ Initialization @ Find face: AT = {a1}.

: Berkeley
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Simulation

max y'c
ATc<1

@ Initialization @ Find face: AT = {a1}.
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PFP: Algorithm

© Convert y = Ax to
y = [A; —A]X, where X > 0.
@ Initialization:
o k« 0; % — 0; r° — y; Sparse support Z =
oc?=0
QO k—k+1:
P . T(~k—1 k—1y _
i= arg;r;zlg{ahj (" Har") =1}

I=TZU{i}.
Q Update:
o 57 = (AD)ty; v =y — Ax
o k= ((AI)T)TI
@ If: ¥L contains negative coefficients, remove indexes from Z, go to STEP 4.

Q If: ||r¥|2 > ¢, go to STEP 3;
Else: output X

Berkeley

http://wuw.eecs.berkeley.edu/~yang ibuted Sensor Perception via Sparse Representation


http://www.eecs.berkeley.edu/~yang

Distributed Object Recognition

Other Nonlinear ¢! Solvers

@ (P-min via reweighting [Candes-Wakin-Boyd 2004]

min Z log(|xi| + €) subj to y = Ax
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Other Nonlinear ¢! Solvers

@ (P-min via reweighting [Candes-Wakin-Boyd 2004]

min Z log(|xi| + €) subj to y = Ax

@ Linearization!

<(+1)

argmin g(x0) + Vg(xN) - (x = xN) + h.o.t. subj toy = Ax
argmin Vg(x() - x subj to y = Ax

Q
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Other Nonlinear ¢! Solvers

@ (P-min via reweighting [Candes-Wakin-Boyd 2004]

min Z log(|xi| + €) subj to y = Ax

@ Linearization!

<(+1)

argmin g(x0) + Vg(xN) - (x = xN) + h.o.t. subj toy = Ax
argmin Vg(x() - x subj to y = Ax

Q

o Reweighted ¢!-min

© Set a reweighting matrix wo =1 j=o.
@ Apply any £'-min solution

U — arg min HW(I)X||1 subj to y = Ax.
P (2% N S
© Update the weight: w;; = ‘X(/+l)‘+5'

@ Terminate on convergence.
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Another Reweighting Function: atan

o Another example: g(x) = 3, atan(|x;|)

2

1l =
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Another Reweighting Function: atan

o Another example: g(x) = 3, atan(|x;|)

2

1l =
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er Reweighting Function: atan

o Another example: g(x) = 3, atan(|x;|)

2

1l

wij =

_1
1+)<’-2

o Simulation [Candes 2004]: 256-D signal randomly projected onto 100-D

4 Reweighting Iterations

Reweighting, ¢ = 0.1
1 1
0.8] 0.8]
2 = >
§ 0.6/ Unw- L1 Sos
8 8 ==Unw. L1
Lo. 3 g 1 iterations
o 5 a 2 iterations
%, 4 iterations 5y
s =++8 iterations NN
50 60 (1\0 20 30 40 50 60
Sparsity k Sparsity k
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Distributed Object Recognition in Smart Camera Networks

QOutlines:

@ How to enforce nonnegativity in SIFT histograms?
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Distributed Object Recognition in Smart Camera Networks

QOutlines:

@ How to enforce nonnegativity in SIFT histograms?

@ How to enforce joint sparsity across multiple camera views?
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Enforcing Nonnegativity

@ One advantage of PFP is that enforcing nonnegativity is trivial:
@ Algebraically: Do not add antipodal vertexes

y= [A:i

@ Geometrically: Pursuit on positive faces
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Sparse Innovation Model

o Definition (SIM):

X1 = X-+z,

X, = X4z

X is called the joint sparse component, and z; is called an innovation.
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Sparse Innovation Model

o Definition (SIM):

X1 = X-+z,

X, = X4z

X is called the joint sparse component, and z; is called an innovation.

e Joint recovery of SIM

X
y1 ALAL O - 0 2
v Apo oAl |,
& = AX eRI
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Sparse Innovation Model

o Definition (SIM):

X1 = X-+z,

X, = X4z

X is called the joint sparse component, and z; is called an innovation.

e Joint recovery of SIM

X
y1 ALAL O - 0 2
v Apo oAl |,
& = AX eRI

© New histogram vector is nonnegative and sparse.
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Sparse Innovation Model

o Definition (SIM):
X1 = X-+z,
X, = X4z

X is called the joint sparse component, and z; is called an innovation.

e Joint recovery of SIM

y1 ALAL O - 0 2
v Apo oAl |,
& y = AX eR4,

© New histogram vector is nonnegative and sparse.
@ Joint sparsity % is automatically determined by £*-min: No prior training, no assumption about fixing

cameras.
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CITRIC: Wireless Smart Camera Platform

o CITRIC platform

1.3 MegaPixel

Camera

13-624 MHz
Intel PXA270
Microprocessor

64 MB
Mobile S8
SDRAM N

16 MB NOR Flash  Power Management IC

http://www.eec

o Available library functions
© Full support Intel IPP Library and OpenCV.
@ JPEG compression: 10 fps.
© Edge detector: 3 fps.
© Background Subtraction: 5 fps.
@ SIFT detector: 10 sec per frame.
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CITRIC: Wireless Smart Camera Platform

o CITRIC platform o Available library functions

© Full support Intel IPP Library and OpenCV.
@ JPEG compression: 10 fps.

© Edge detector: 3 fps.

1.3 MegaPixel

Camera © Background Subtraction: 5 fps.
@ SIFT detector: 10 sec per frame.

13-624 MHz
Intel PXA270
Microprocessor

64 MB
Mobile 8
SDRAM N

16 MB NOR Flash  Power Management IC

o Academic users:

NS HOPKINS. (RIS GNNm)G o I I I

: TUNIVERSGIT Y-
VANDERBILT N
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Demo: Topological Recovery of a Camera Network
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Experiment |: Simulation

o Comparison between orthogonal matching pursuit, polytope faces pursuit, and sparse
innovation model:

Table: Simulation of solving 1000-D sparse histograms with d = 200, kK = 60, and L = 3.

Sparsity | (60,0) (40,20)  (30,30)
egOMP 56.14  56.14 56.14
e 1.76 1.76 1.76
zz?JFP 3.48 3.48 3.48
Gy 1.84 3.10 3.67
zgw 1.85 1.65 1.95
I 0.02 0.02 0.02
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Experiment Il: COIL-100 object database

o Database: 100 objects, each provides 72 images captured with 5 degree difference.

8|~|®

=
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Experiment Il: COIL-100 object database

o Database: 100 objects, each provides 72 images captured with 5 degree difference.

o Dense sampling of overlapping 8 x 8 grids. Standard SIFT descriptor.
o 4-level hierarchical k-means (k = 10): Leaf-node histogram is 1000-D.
o For each object class, randomly select 10 image for training. Classifier via linear SVM.

o Setup:
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COIL 100 Multiview Dataset { ntrain=10)
100 T T T T

a5

accuracy ()

—o—raw data = 1102 dim
—#—randam projection
sparse recovery (c=1)
—#—sparse recavery (c=2) H
—S——sgparse recovery (c=3)
I I

45 i 1 1 T
100 200 300 400 a00 BO0

0
number of projection dimensions

Berkeley

Figure: Per-view recognition accuracy on the COIL-100 database via linear SVMs.
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Distributed Object Recognition in Band-Limited Smart Camera Networks

@ To harness the smart camera capacity, the system is separated in two components:
distributed feature extraction and centralized recognition.
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Distributed Object Recognition in Band-Limited Smart Camera Networks

@ To harness the smart camera capacity, the system is separated in two components:
distributed feature extraction and centralized recognition.

@ Gaussian random projection as universal dimensionality reduction function: J-L lemma.
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Distributed Object Recognition in Band-Limited Smart Camera Networks

@ To harness the smart camera capacity, the system is separated in two components:
distributed feature extraction and centralized recognition.

@ Gaussian random projection as universal dimensionality reduction function: J-L lemma.

© Polytope faces pursuit exploits two properties of general SIFT histograms:
o Sparsity.
o Nonnegativity.
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Distributed Object Recognition in Band-Limited Smart Camera Networks

@ To harness the smart camera capacity, the system is separated in two components:
distributed feature extraction and centralized recognition.
@ Gaussian random projection as universal dimensionality reduction function: J-L lemma.

© Polytope faces pursuit exploits two properties of general SIFT histograms:
o Sparsity.
o Nonnegativity.

@ Sparse innovation model exploits joint sparsity of multiple-view object histograms.
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Distributed Object Recognition in Band-Limited Smart Camera Networks

@ To harness the smart camera capacity, the system is separated in two components:
distributed feature extraction and centralized recognition.

@ Gaussian random projection as universal dimensionality reduction function: J-L lemma.

© Polytope faces pursuit exploits two properties of general SIFT histograms:
o Sparsity.
o Nonnegativity.

@ Sparse innovation model exploits joint sparsity of multiple-view object histograms.

@ Complete system implemented on Berkeley CITRIC sensors.
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Conclusion

Take-Home Message

@ Compressive sensing converts curse of dimensionality to blessing of dimensionality.
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Conclusion

Take-Home Message

@ Compressive sensing converts curse of dimensionality to blessing of dimensionality.

@ Particularly suitable to distributed sensing and perception rich in HD data from distributed,
resource-constrained sources.
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Conclusion

Conclusion

Take-Home Message

@ Compressive sensing converts curse of dimensionality to blessing of dimensionality.

@ Particularly suitable to distributed sensing and perception rich in HD data from distributed,
resource-constrained sources.

© Potential impact spans beyond computer vision in health care, security, and consumer
electronics.
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