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Outline

1 Hands-on experience how to formulate sparse representation

2 How to implement fast and effective `1-min programs in MATLAB

3 Problems
1 Image Super-Resolution
2 Wearable Action Recognition via Body Motion Sensors
3 Distributed Object Recognition via Camera Sensor Networks
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Problem Definition: Example-based Super-resolution

Problem: Given a low-resolution input, reconstruct a higher-resolution version of the image.

The problem is an inverse problem and ill-posed.
1 Subpixel alignment
2 Markov random field [Freeman 2000, Tipping 2003]
3 Neighbor embedding [Chang 2004]

Assumption: A high-resolution image library is provided (example-based).
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Our Approach: Sparse Linear Representation

1 Randomly sample patches of the image database as an overcomplete dictionary

Dh = [v1, v2, · · · , vn] ∈ RD×n.

2 A high-resolution source patch y has a sparse linear representation [Perrett & Oram 1993,
Olshausen & Field 1997]

y = Dh · x0 with ‖x0‖0 � n.

3 Downsampling/blurring is a linear transformation H

Dl
.

= H · Dh ∈ Rd×n.

4 Input patch z ∈ Rd inherits the same sparse representation

z
.

= Hy = HDhx0 = Dl x0.
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Local Patch Model from Sparse Representation

Known: Dh, H, Dl
.
= HDh, low-res image Il and patches z.

Unknown: x0 and high-res patches y = Dhx0.
Output: High-res image Ih visually coherent as the collection (y1, · · · , yn).

`1-Minimization:
x∗ = arg min ‖x‖1 subj to ‖z− Dl x‖2 ≤ ε1

y∗ = Dhx∗

Enforcing boundary compatibility

1 Define w as high-res patch that contains overlapping pixels

2 Define P as a mask that extracts pixels from previously
reconstructed area

x∗ = arg min ‖x‖1 subj to ‖Pw − PDhx‖2 ≤ ε2
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Enforcing Global Constraints

Combine the two `1-min in a single system:

x∗ = arg min ‖x‖1 subj to ‖ [ z
w̃ ]−

h
Dl

PDh

i
x‖2 ≤ ε

Selecting high-frequency feature vectors: High-frequency components are more important to
predict the target high-resolution image.

Fz = FDl x where f1 = [−1, 0, 1], f2 = [1, 0,−2, 0, 1], ...

Enforcing global constraint: Collect solutions (y1, · · · , yn)⇒ I0.

I∗h = arg min
I
‖I − I0‖2 subj to HI = Il .

Back-projection methods: [Irani 1993, Capel 2001]
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Visualization
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Comparison: Root Mean Square Error

Reference:

J. Yang, et al., Image Super-Resolution as Sparse Represetation of Raw Image Patches, CVPR, 2008.
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Sensing and Perception in Resource-Constrained Distributed Networks

Centralized Perception

Up: powerful processors
Up: unlimited memory
Up: unlimited bandwidth

Down: single modality

Distributed Perception

Down: mobile processors
Down: limited onboard memory
Down: band-limited communications

Up: distributed, multi-modality

If the total network is greater than the sum of its parts?

Question I: Recognize and track multiple human faces in a crowded camera network?
Question II: Multiple-view super-resolution using low-bandwidth camera sensors?
Question III: Use distributed physiological sensors to persistently monitor patients?
Question IV: Use mobile sensors to control the formation of air/ground vehicles?
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Distributed Sensing and Perception (DSP)
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DexterNet: A Wearable Body Sensor Platform
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Wearable Action Recognition

Goals
Persistently monitor patient activities

Alert dangerous actions

Important social information for preventive healthcare in larger scale

Architecture

8 sensors distributed on human body.

Location of the sensors are given and fixed.

Each sensor carries triaxial accelerometer and biaxial gyroscope.

Interested Actions: Walking, Running, Jumping, Turning, Going upstars/downstairs, ...

Figure: 8 x-axis accelerometers and x-axis gyroscopes for a stand-kneel-stand action sequence.
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Distributed Action Recognition

1 Training samples are segmented manually with correct labels.

On each sensor node i , normalize the vector form (via stacking)

vi = [x(1), · · · , x(h), y(1), · · · , y(h), z(1), · · · , z(h), θ(1), · · · , θ(h), ρ(1), · · · , ρ(h)]T ∈ R5h

2 Full body motion

Training sample: v =

 v1

...
v8

!
Test sample: y =

0@ y1

...
y8

1A ∈ R8·5h

3 Sparse representation classifier

y =

0@ y1

...
y8

1A =

0@ v1

...
v8

!
1

, · · · ,
 v1

...
v8

!
n

1A x = Ax.
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Local/Global Classifiers

Distributed Sparse Representation0@ y1

...
y8

1A =

0@ v1

...
v8

!
1

, · · · ,
 v1

...
v8

!
n

1A x⇔

8><>:
y1=(v1,1,··· ,v1,n)x

...
y8=(v8,1,··· ,v8,n)x

On each sensor node i : Choose random projection Ri ∈ Rd×5h:

ỹi = Ri yi = RiAi x = Ãi x ∈ Rd

Adaptive classification for a subset of active sensors (Suppose 1, . . . , L at time t and hi )

Define global feature matrix R′ =

0@ R1 ··· 0 ··· 0

...
. . .

...
...

0 ··· RL ··· 0

1A:0@ ỹ1

...
ỹL

1A = R′

0@ y1

...
y8

1A = R′

0@ A1

...
A8

1A x = R′Ax
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Experiment

Visualization

(a) Bend (b) Jump

(c) Going downstairs (d) Turning left/right

Precision vs Recall

Sensors 2 7 2,7 1,2,7 1- 3, 7,8 1- 8

Prec [%] 89.8 94.6 94.4 92.8 94.6 98.8
Rec [%] 65 61.5 82.5 80.6 89.5 94.2
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Wearable Action Recognition Database (WARD)

Free for noncommercial users.

5 motion sensors, each carries an accelerometer and gyroscope sampled at 30 Hz.

20 test subjects (13 male & 7 female) ages 19-75.

Data processed in Matlab. Visualization tool is included.

References:
Yang, et al., DexterNet: An open platform for heterogeneous body sensor networks and its applications, BSN 2009.

Yang, et al., Distributed Recognition of Human Actions Using Wearable Motion Sensor Networks, JAISE 2009.
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Distributed Object Recognition
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Motivation: Object Recognition

Affine invariant features, SIFT.

SIFT Feature Matching [Lowe 1999, van Gool 2004]

(a) Autostitch (b) Recognition

Bag of Words [Nister 2006]
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Object Recognition in Band-Limited Sensor Networks

1 Compress scalable SIFT tree [Girod et al. 2009]

Observation: SIFT histogram is largely sparse (up to 106-dim)

R : Sequence of consecutive zero bins.
S : Sequence of nonzero bin values.

2 Multiple-view SIFT feature selection [Darrell et al. 2008]
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Problem Statement

1 L camera sensors observe a single object in 3-D.

2 The mutual information between cameras are unknown, cross-sensor communication is
prohibited.

3 On each camera, seek an encoding function for a nonnegative, sparse histogram xi

f : xi ∈ RD 7→ yi ∈ Rd

4 On the base station, upon receiving y1, y2, · · · , yL, simultaneously recover

x1, x2, · · · , xL,

and classify the object class in space.
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Key Observations

(a) Histogram 1 (b) Histogram 2

All histograms are nonnegative and sparse.

Multiple-view histograms share joint sparse patterns.

Classification is based on the similarity measure in `2-norm (linear kernel) or `1-norm
(intersection kernel).
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Random Projection as Encoding Function

y = Ax

Coefficients of A ∈ Rd×D are drawn from zero-mean Gaussian distribution.

Johnson-Lindenstrauss Lemma [Frankl 1988, Li 2007, Hedge 2007]

For n number of point cloud in RD , given distortion threshold ε, for any

d > O(ε2 log n),

a Gaussian random projection f (x) = Ax ∈ Rd preserves pairwise `2-distance

(1− ε)‖xi − xj‖2
2 ≤ ‖f (xi )− f (xj )‖2

2 ≤ (1 + ε)‖xi − xj‖2
2.
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Classification in Random Projection Space

Projection only applies to leaf-node histogram x4

(a) Level 1–3 (b) Level 4 (leaf nodes)

xT = [x(1) ∈ R, x(2) ∈ R10, x(3) ∈ R100, x(4) ∈ R1000].

Direct classification can be applied using projected leaf histogram (NN or SVM)

y = Ax(4).

Advantages about Random Projection
1 Easy to generate and update.
2 Does not need training prior (universal dimensionality reduction).
3 faster recognition speed.
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From J-L Lemma to Compressive Sensing

(a) J-L lemma (b) Compressive sensing

1 Problem I: J-L lemma does not provide means to reconstruct histogram hierarchy.

2 Problem II: Gaussian projection does not preserve `1-distance (for intersection kernels).

3 Problem III: Previous codec’s impose explicit mutual information between fixed camera
locations.

Compressive sensing provides principled solutions to the above problems.
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Compressive Sensing

Noise-free case: Assume x0 is sufficiently k-sparse. Given triplet (D, d , k) and mild
condition for A,

(P1) : min ‖x‖1 subject to y = Ax

recovers the exact solution.

Noisy case: Assume x0 is sufficiently k-sparse and bounded noise ‖e‖2 ≤ ε:

y = Ax0 + e.

A quadratic program recovers a bounded near solution: ‖x∗ − x0‖2 < Cε:

(P′1) : min ‖x‖1 subject to ‖y − Ax‖2 ≤ ε

What are the mild conditions for A?
1 (In)coherence [Gribvonel & Nielsen 2003, Donoho & Elad 2003].
2 Restricted Isometry Property [Candes & Tao 2005].
3 k-Neighborliness [Donoho 2006].
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k-Neighborliness

Define cross polytope C and quotient polytope P such that P = AC .

x is k-sparse ⇔ x lie in a unique (k − 1)-face of C .

Necessary and Sufficient:
1 If all (k − 1)-faces of C map to the faces of P on the boundary, `1/`0 holds for all k-sparse x.
2 If the (k − 1)-face where x lies maps to a face of P, then `1/`0 holds for this specific x.

http://www.eecs.berkeley.edu/~yang Distributed Sensor Perception via Sparse Representation

http://www.eecs.berkeley.edu/~yang


Outline Super-Resolution Wearable Action Recognition Distributed Object Recognition Conclusion

k-Neighborliness

Define cross polytope C and quotient polytope P such that P = AC .

x is k-sparse ⇔ x lie in a unique (k − 1)-face of C .

Necessary and Sufficient:
1 If all (k − 1)-faces of C map to the faces of P on the boundary, `1/`0 holds for all k-sparse x.
2 If the (k − 1)-face where x lies maps to a face of P, then `1/`0 holds for this specific x.

http://www.eecs.berkeley.edu/~yang Distributed Sensor Perception via Sparse Representation

http://www.eecs.berkeley.edu/~yang


Outline Super-Resolution Wearable Action Recognition Distributed Object Recognition Conclusion

Matching Pursuit

1 Initialization:

y = [A;−A]x̃, where x̃ ≥ 0

k ← 0; x̃← 0; r0 ← y; Sparse support
I = ∅

y

a1

a2

a3

−a1
−a2

−a3

2 k ← k + 1:

i = arg maxj 6∈I{aT
j rk−1}

Update: I = I ∪ {i}; xi = aT
i rk−1;

rk = rk−1 − xi ai

−a3

y

a1

x1a1

r1

a2

a3

−a1
−a2

3 If: ‖rk‖2 > ε, go to STEP 2;
Else: output x̃

Fail to search sparse solution on the
boundary of the quotient polytope.

x3a3

y

a1

x1a1

r1

a2

a3

−a1
−a2

−a3
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Polytope Faces Pursuit

Dual linear program [Chen et al. 1998, Plumbley 2006]

min
y=Ãx̃

1T x̃⇐⇒ max
ÃT c≤1

yT c

c−,.,+

y

a1

−a3

a2

a3

−a1
−a2

a+
1

a+
2

a+
3

c−,−,.

c+,.,−

Definition:
a+
i
.

=
ai

‖ai‖2
2

A vertex of the polar polytope at the intersection of hyperplanes −a+
1 and −a+

2 :

c−,−,.
.

= [−a1,−a2]†
T

1
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Simulation

max
ÃT c≤1

yT c

1 Initialization

c0

a1

a2

a3

r0

2 Find face: AI = {a1}.

r1

a2

a3

c1

x1a1

3 Pursuit on the hyperplane

r1

a2

a3

c1

x1a1

4 Find face: AI = {a1, a2}.

x2a2

a2

a3

c2
x1a1
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PFP: Algorithm

1 Convert y = Ax to
y = [A;−A]x̃, where x̃ ≥ 0.

2 Initialization:
k ← 0; x̃← 0; r0 ← y; Sparse support I = ∅
c0 = 0

3 k ← k + 1:
i = arg min

j 6∈I
{α|aT

j (ck−1 + αrk−1) = 1}

I = I ∪ {i}.
4 Update:

x̃I = (ÃI)†y; rk = y − Ãx̃

ck = ((AI)†)T 1

5 If: x̃I contains negative coefficients, remove indexes from I, go to STEP 4.

6 If: ‖rk‖2 > ε, go to STEP 3;
Else: output x̃
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Other Nonlinear `1 Solvers

`p-min via reweighting [Candes-Wakin-Boyd 2004]

min
X

log(|xi |+ ε) subj to y = Ax

Linearization!

x(l+1) = arg min g(x(l)) +∇g(x(l)) · (x− x(l)) + h.o.t. subj to y = Ax
≈ arg min∇g(x(l)) · x subj to y = Ax

Reweighted `1-min

1 Set a reweighting matrix W (0) = I, l = 0.
2 Apply any `1-min solution

x(l+1) = arg min ‖W (l)x‖1 subj to y = Ax.

3 Update the weight: w
(l+1)
ii = 1

|x(l+1)
i

|+ε
.

4 Terminate on convergence.
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Another Reweighting Function: atan

Another example: g(x) =
P

i atan(|xi |)

wii = 1
1+x2

i

Simulation [Candes 2004]: 256-D signal randomly projected onto 100-D
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Distributed Object Recognition in Smart Camera Networks

Outlines:

1 How to enforce nonnegativity in SIFT histograms?

2 How to enforce joint sparsity across multiple camera views?

http://www.eecs.berkeley.edu/~yang Distributed Sensor Perception via Sparse Representation

http://www.eecs.berkeley.edu/~yang


Outline Super-Resolution Wearable Action Recognition Distributed Object Recognition Conclusion

Distributed Object Recognition in Smart Camera Networks

Outlines:

1 How to enforce nonnegativity in SIFT histograms?

2 How to enforce joint sparsity across multiple camera views?

http://www.eecs.berkeley.edu/~yang Distributed Sensor Perception via Sparse Representation

http://www.eecs.berkeley.edu/~yang


Outline Super-Resolution Wearable Action Recognition Distributed Object Recognition Conclusion

Enforcing Nonnegativity

One advantage of PFP is that enforcing nonnegativity is trivial:
1 Algebraically: Do not add antipodal vertexes

y = [A; -A ]x̃

2 Geometrically: Pursuit on positive faces

x2a2

a2

a3

c2
x1a1
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Sparse Innovation Model

Definition (SIM):

x1 = x̃ + z1,
...

xL = x̃ + zL.

x̃ is called the joint sparse component, and zi is called an innovation.

Joint recovery of SIM 24 y1

...
yL

35 =

24 A1 A1 0 ··· 0

...
. . .

. . .
AL 0 ··· 0 AL

35
264

x̃
z1

...
zL

375
⇔ y′ = A′x′ ∈ RdL.

1 New histogram vector is nonnegative and sparse.

2 Joint sparsity x̃ is automatically determined by `1-min: No prior training, no assumption about fixing
cameras.
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x̃ is called the joint sparse component, and zi is called an innovation.

Joint recovery of SIM 24 y1

...
yL

35 =

24 A1 A1 0 ··· 0

...
. . .

. . .
AL 0 ··· 0 AL

35
264

x̃
z1

...
zL

375
⇔ y′ = A′x′ ∈ RdL.

1 New histogram vector is nonnegative and sparse.

2 Joint sparsity x̃ is automatically determined by `1-min: No prior training, no assumption about fixing
cameras.
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CITRIC: Wireless Smart Camera Platform

CITRIC platform Available library functions

1 Full support Intel IPP Library and OpenCV.

2 JPEG compression: 10 fps.

3 Edge detector: 3 fps.

4 Background Subtraction: 5 fps.

5 SIFT detector: 10 sec per frame.

Academic users:
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Demo: Topological Recovery of a Camera Network
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Experiment I: Simulation

Comparison between orthogonal matching pursuit, polytope faces pursuit, and sparse
innovation model:

Table: Simulation of solving 1000-D sparse histograms with d = 200, k = 60, and L = 3.

Sparsity (60,0) (40,20) (30,30)

`0
OMP 56.14 56.14 56.14
`2
OMP 1.76 1.76 1.76

`0
PFP 3.48 3.48 3.48
`2
MMV 1.84 3.10 3.67

`0
SIM 1.85 1.65 1.95
`2
SIM 0.02 0.02 0.02
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Experiment II: COIL-100 object database

Database: 100 objects, each provides 72 images captured with 5 degree difference.

Setup:
Dense sampling of overlapping 8× 8 grids. Standard SIFT descriptor.
4-level hierarchical k-means (k = 10): Leaf-node histogram is 1000-D.
For each object class, randomly select 10 image for training. Classifier via linear SVM.
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Figure: Per-view recognition accuracy on the COIL-100 database via linear SVMs.
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Distributed Object Recognition in Band-Limited Smart Camera Networks

1 To harness the smart camera capacity, the system is separated in two components:
distributed feature extraction and centralized recognition.

2 Gaussian random projection as universal dimensionality reduction function: J-L lemma.
3 Polytope faces pursuit exploits two properties of general SIFT histograms:

Sparsity.
Nonnegativity.

4 Sparse innovation model exploits joint sparsity of multiple-view object histograms.

5 Complete system implemented on Berkeley CITRIC sensors.

References

Distributed Compression and Fusion of Nonnegative Sparse Signals for Multiple-View Object Recognition. Information
Fusion, 2009.

Multiple-View Object Recognition in Band-Limited Distributed Camera Networks. ICDSC, 2009.
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Conclusion

Pattern Analysis

Signal Processing Sensor Networks

(Multi-Model Estimation)

(Lossy Coding,
L-1 Minimization)

(Sensors,
Communications,
Systems)

DSP

Take-Home Message

1 Compressive sensing converts curse of dimensionality to blessing of dimensionality.

2 Particularly suitable to distributed sensing and perception rich in HD data from distributed,
resource-constrained sources.

3 Potential impact spans beyond computer vision in health care, security, and consumer
electronics.
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