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© GPCA-Voting
o Noise issue
o GPCA-Voting
o Comparison

© Robust GPCA
@ Outlier Issue
@ Robustify GPCA via MVT and Influence
o Comparison

© Applications
o Affine Motion Detection
@ Vanishing-Point Detection
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GPCA-Voting
[ ele}

Usual Suspects in Statistics

@ K-Means for segmenting K Gaussian clusters:
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GPCA-Voting
[ ele}

s in Statistics

@ K-Subspaces for subspace arrangements [Ho et al., 2003]:

@ |Initialization: Set initial values of orthogonal matrices U,.(O) € RPXi for i = 1,...,N. Let m=0.

@ Segmentation: For each sample z,, assign it to group )A(i(m) if

i = arg m,in ||z — U,(m)(lAJ,(m))TzkH2.
© Estimation: Apply PCA to each subset )A(,.(m) and obtain new estimates for the subspace bases

U(m+1)
Lét m «<— m+ 1, and repeat step 2 and 3 until the segmentation does not change.
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GPCA-Voting
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Generalized Principal Component Analysis (PDA)

@ x€ ViUV, = (x3 =0)or(xy = x2 =0)
= {x1x3 = 0,xx3 = 0}.

3

Ly = [va(x1),...,v2(xn)] € ]RMé Ixn
- ()

() -

. (X1X3)

C)?

©(ex3)

. (><3)2

Cilp (X) = X1X3

¢ =10,0,1,0,0,0] =
0] = Cora(X) = xox3

@ The null space of L, is ¢ =1[0,0,0,01,

N P1
P2
@ P(x) = [p1(x) p2(x)] = [x1x3, x2x3], then
x3 0
VP = [Vxp1 Vxm] = | 6 x5 |.
x1 %

@ VP at one sample per subspace gives normal vectors that span VlJ‘ and VZL.
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Generalized Principal Component Analysis (PDA)

@ x€ ViUV, = (x3 =0)or(xy = x2 =0)
= {x1x3 = 0,xx3 = 0}.

3
Ly = [va(x1),...,v2(xn)] € ]RMé]XN
© (x)?
) e
. (X1X3)
C)?
©(ex3)
. (><3)2

Cilp (X) = X1X3

¢ =10,0,1,0,0,0] =
0] = Cora(X) = xox3

@ The null space of L, is ¢ =1[0,0,0,01,

N P1
P2
@ P(x) = [p1(x) p2(x)] = [x1x3, x2x3], then
x3 0
VP =[x Vxp2] = | 6 x3
x1 %

@ VP at one sample per subspace gives normal vectors that span VlJ‘ and VZL.

Diagram of GPCA
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GPCA-Voting
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GPCA-Voting: A Stable Implementation

PDA on noisy data
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GPCA-Voting
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GPCA-Voting: A Stable Implementation

PDA on noisy data

o
The noise affects the algebraic PDA process:

@ The data matrix Lg(V) is always full-rank.
Question: How many linearly independent vanishing polynomials from Null(L)?
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GPCA-Voting: A Stable Implementation

PDA on noisy data

o
The noise affects the algebraic PDA process:

@ The data matrix Lg(V) is always full-rank.
Question: How many linearly independent vanishing polynomials from Null(L)?

@ How to choose (more than) one point per subspace for derivative evaluation?
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GPCA-Voting
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Number of Linearly Independent Polynomials

@ Given a mixture of K subspaces, how many linearly independent Kth degree vanishing
polynomials?
o Trivial: linear products of 1-forms p; = x1x3, p2 = x2x3 uniquely determine V; U V5.
o Not trivial: given V4 U Va2, p1 = x1x3, p2 = x2x3 are a max set of linearly independent vanishing
polynomials.
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GPCA-Voting
[ le]

Number of Linearly Independent Polynomials

@ Given a mixture of K subspaces, how many linearly independent Kth degree vanishing
polynomials?
o Trivial: linear products of 1-forms p; = x1x3, p2 = x2x3 uniquely determine V; U V5.
o Not trivial: given V4 U Va2, p1 = x1x3, p2 = x2x3 are a max set of linearly independent vanishing
polynomials.
@ Under a general position condition, the number is combinatorial invariant [Jessica Sidman
2002 & Harm Derksen 2005]

h(K) =3 (-1 (]P0 ),
S

where S C {1,---, K} is an index set.
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GPCA-Voting
[ le]

Number of Linearly Independent Polynomials

@ Given a mixture of K subspaces, how many linearly independent Kth degree vanishing
polynomials?
o Trivial: linear products of 1-forms p; = x1x3, p2 = x2x3 uniquely determine V; U V5.
o Not trivial: given V4 U Va2, p1 = x1x3, p2 = x2x3 are a max set of linearly independent vanishing
polynomials.

@ Under a general position condition, the number is combinatorial invariant [Jessica Sidman
2002 & Harm Derksen 2005]

h(K) =3 (-1 (]P0 ),
S

where S C {1,---, K} is an index set.
© Example: linearly independent 3rd degree vanishing polynomials for 3 mixture subspaces.

[ d ds [ h(3) |

NN N
RN
== =N
N[ BN

Figure: Four possible configurations in R3.
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GPCA-Voting
[ le]

Number of Linearly Independent Polynomials

@ Given a mixture of K subspaces, how many linearly independent Kth degree vanishing
polynomials?
o Trivial: linear products of 1-forms p; = x1x3, p2 = x2x3 uniquely determine V; U V5.
o Not trivial: given V4 U Va2, p1 = x1x3, p2 = x2x3 are a max set of linearly independent vanishing
polynomials.

@ Under a general position condition, the number is combinatorial invariant [Jessica Sidman
2002 & Harm Derksen 2005]

h(K) =3 (-1 (]P0 ),
S

where S C {1,---, K} is an index set.
© Example: linearly independent 3rd degree vanishing polynomials for 3 mixture subspaces.

[ d ds [ h(3) |

== =N
N[ BN

Figure: Four possible configurations in R3.

Polynomial Estimation from Noisy Data

Given dp, - - -, dk, use SVD to recover h(K) vanishing polynomials from the smallest eigenspace
of L.
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GPCA-Voting

A Voting Scheme
@ Goal:

© Averaging VP at more samples of a subspace.
@ Recover correct rank of V,P.
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A Voting Scheme
@ Goal:

© Averaging VP at more samples of a subspace.
@ Recover correct rank of V,P.

@ Difficulty: Do not know which samples belong to the same subspace, yet.
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GPCA-Voting
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A Voting Scheme
@ Goal:

© Averaging VP at more samples of a subspace.
@ Recover correct rank of V,P.

@ Difficulty: Do not know which samples belong to the same subspace, yet.

PCA-Votin

simple exampl

@ Assume subspaces (2,1,1) in R3.
@ hi(3) = 4 vanishing polynomials = VP € R3%4,
© Vote on rank-1 & rank-2 codimensions with a tolerance threshold 7

“Table: Plot of normal veetors
Rank 1| Rynk 2

pl[——

Pick 2 rank-2 bases with highest votes
Pick 1 rank-1 hasis with highest votes

L
T
b
ik
L

@ Average normal vectors associated with highest votes.

© (optional) Iteratively refine the segmentation via EM or K-Subspaces.
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GPCA-Voting
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Simulation Results

© lllustrations

(b) 12% (c) 16% (a) 8% (b) 12% (c) 16%

Figure: (2,1,1) € R3. Figure: (2,2,1) € R3.
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GPCA-Voting
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Simulation Results

© lllustrations

(b) 12% (© 16% (a) 8% (b) 12% (c) 16%

Figure: (2,1,1) € R3. Figure: (2,2,1) € R3.
@ Segmentation simulations

Table: Segmentation errors. 4% Gaussian noise is added.

[ Subspace Dimensions [[ K-Subspaces | PDA [ Voting [ Voting+K-Subspaces

(2,2,1) in R3 27% 13.2% 6.4% 5.4%
(4,2,2,1) in R° 57% 39.8% 5.7% 5.7%
(4,4,4,4) in R® 25% 25.3% 17% 11%
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Robust GPCA
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Outlier Issue

@ GPCA process:

VzA RO RM R Vs A/ RD
| PO >

L]
Null(L,),
—

@ Breakdown of GPCA is 0%: a large outlier can arbitrarily perturb Null(L,)
i
L]
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Robust GPCA
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Outlier Issue

@ GPCA process:

V2 A RO RMP R

wbe

Null(L,), |
—

M

@ Because breakdown of PCA is 0% = Seek a robust PCA to estimate Null(L,), where
L, = [Vn(xl)y co ;Vn(XN)]-
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Robust GPCA
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Three approaches to tackle outliers:
© Probability-based: small-probability samples.

Probability plots: [Healy 1968, Cox 1968]

PCs: [Rao 1964, Ganadesikan & Kettenring 1972]
M-estimators: [Huber 1981, Campbell 1980]

multivariate trimming (MVT): [Ganadesikan & Kettenring 1972]
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Robust GPCA
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Three approaches to tackle outliers:
© Probability-based: small-probability samples.

Probability plots: [Healy 1968, Cox 1968]

PCs: [Rao 1964, Ganadesikan & Kettenring 1972]
M-estimators: [Huber 1981, Campbell 1980]

multivariate trimming (MVT): [Ganadesikan & Kettenring 1972]

@ Influence-based: large influence on model parameters.

Parameter difference with and without a sample: [Hampel et al.
1986, Critchley 1985]
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Robust GPCA
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Three approaches to tackle outliers:
© Probability-based: small-probability samples.

Probability plots: [Healy 1968, Cox 1968]

PCs: [Rao 1964, Ganadesikan & Kettenring 1972]
M-estimators: [Huber 1981, Campbell 1980]

multivariate trimming (MVT): [Ganadesikan & Kettenring 1972]

@ Influence-based: large influence on model parameters.

Parameter difference with and without a sample: [Hampel et al.
1986, Critchley 1985]

© Consensus-based: not consistent with models of high consensus.

Hough: [Ballard 1981, Lowe 1999]
RANSAC: [Fischler & Bolles 1981, Torr 1997]
Least Median Estimate (LME): [Rousseeuw 1984, Steward 1999]

Allen Y. Yang <yangQeecs.berkeley.edu> Segmentation of Subspace Arrangements — Robust GPCA


<yang@eecs.berkeley.edu>

Robust GPCA
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Robust GPCA

STEP 1: Given the outlier percentage a%, robustify PCA:
@ Multivariate-trimming (MVT):
Assuming a Gaussian distribution, samples with large Mahalanobis distance more likely to be outliers.
_ _ mtPl
@ Compute a robust mean . v; = u; — 0. u;,v; € R"n
Initialize X9 =/ .
e nitialize 2o M,[,D]XM,[P]

© In kth iteration, sort vy, ..., vy by the Mahalanobis distance:
Te—1
d,' =V; Zkflv;.

@ Update X from (100 — )% samples with smallest distances.
@ lteration stops when [|X_1 — X|| is small.
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Robust GPCA
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Robust GPCA

STEP 1: Given the outlier percentage a%, robustify PCA:

@ Multivariate-trimming (MVT):
Assuming a Gaussian distribution, samples with large Mahalanobis distance more likely to be outliers.

[D]
@ Compute a robust mean 4. v; = u; — 0. u;,v; € RMn
Initialize o = / .
e nitialize 2o M,[,D]XM,[P]
© In kth iteration, sort vy, ..., vy by the Mahalanobis distance:
Te—1
d,' =V; Zkflv;.
@ Update X from (100 — )% samples with smallest distances.
@ lteration stops when [|X_1 — X|| is small.
@ Influence function:
@ Compute null space C = {c1,€p,...,€m} for Ly = [vp(x1) - - - vn(xn)].
@ For x;, compute CY for LY = [, (xq) -+ -7+ - va(xn)]-
9 I(x) = (C,CY).

Q@ Reject top a% samples with highest influence.
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Robust GPCA

STEP 2: Estimating the outlier percentage a%: Do we need the exact percentage for estimation?

[rr—

¢ o ]
N S;‘:sz‘?“ m«‘gw:\;s ERr
(a) 16% outliers (b) 7% rejected (c) 38% rejected (d) Maximal sample residuals.
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Robust GPCA

STEP 2: Estimating the outlier percentage a%: Do we need the exact percentage for estimation?

Somple ejcton il 15

(a) 16% outliers (b) 7% rejected (c) 38% rejected (d) Maximal sample residuals.

@ With noise and outliers present, unnecessary to distinguish outliers close to subspaces.

@ Robust PCA is moderately stable when the outlier percentage is over-estimated.
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Robust GPCA

STEP 2: Estimating the outlier percentage a%: Do we need the exact percentage for estimation?

e
_ )

Somple ejcton il 15

(a) 16% outliers (b) 7% rejected (c) 38% rejected (d) Maximal sample residuals.

@ With noise and outliers present, unnecessary to distinguish outliers close to subspaces.

@ Robust PCA is moderately stable when the outlier percentage is over-estimated.

Further rejection only results in small changes in the
model parameters and sample residuals (w.r.t. boundary
threshold o), i.e., the arrangement model stabilizes.

Influence
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Robust GPCA
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Simulations on Robust GPCA

@ RGPCA-Influence

(e) 32% (f) 48%

(b) 32%
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Robust GPCA
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Comparison with RANSAC

@ Accuracy on simulated data

80
= = o2
5 & ~1E
E =X e
S £ &
@ Tl e @ ke = @

[ 20 30 40 50
Outlier Percentage [%] Outlier Percentage [%] Ouier Percentage [%]

(a) (2,2,1) in R3 (b) (4,2,2,1) in R® (c) (5,5,5) in R®
@ Speed

Table: Average time of RANSAC and RGPCA with 24% outliers.

Arrangement “ (2,2,1) in R’ [ (4,2,2,1) in R® [ (5,5,5) in R® ]

RANSAC 44s 5.1m 3.4m
MVT 46s 23m 8m
Influence 3m 58m 146m
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Robust GPCA
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Limitations of RGPCA

@ Hardware limits for high subspace dimension (> 10) or subspace number (> 6) in MATLAB.
@ Need to know the number of subspaces and dimensions.

© Overfitting when percentage is overestimated, especially for MVT.

Animation
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Applications
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Motion Segmentation under 3-D Affine Projection

@ Problem formulation:

@ Object features py,...,py € R? are tracked
in F frames.

parking-lot movie

@ Denote mj; € R? as the image under 3-D
affine projection:

m; = Ajp;+b; € R, i=1,...,N;j=1,...,F.
© For each p;, i
o
mj; : ol 8
xi=| eR”, i=1,...,N. %I‘T‘P"“ ool g'gg/%:c\{
mie o R o::iﬂo g
@ Segment xy, ..., xy that belong to different e,
motions. )
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Applications
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Suppose py,-...,py € R3 are from a single object:
mjy
mjo
@ Stack corresponding images in F frames: x; = . eR¥* i=1,---,N:
mie
A1 by
W = [x1: - xnloFrxn = [pf: plN]4><N‘

AF bEd oF s

= x; € R*f lives in a subspace of dimension 4.
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Applications
[e]

Suppose py,-...,py € R3 are from a single object:
mjy
mjo
@ Stack corresponding images in F frames: x; = . eR¥* i=1,---,N:
mie
A1 by
W =[x xularxn = [ " e

AF bEd oF s
= x; € R*f lives in a subspace of dimension 4.

X
@ When all p;'s are coplanar, there exists a world coordinate system such that p; = [Y:} .
0

A1 by X e xy

- I ey

W = [x1- - xnlorxn = | 0 N
1 laxn

AF bEd opxa

= x; € R?F lives in a subspace of dimension 3.

Segmentation of Subspace Arrangements — Robust GPCA
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Suppose py,-...,py € R3 are from a single object:

miy
mip
@ Stack corresponding images in F frames: x; = . erRF =1, N
mi
Ar by
. _ PL - P
W =[x - - xylorxn = [ 1N]4><N‘

AF bEd oF s
= x; € R*f lives in a subspace of dimension 4.

X
@ When all p;’s are coplanar, there exists a world coordinate system such that p; = [y:} .
0

A1 by X e xy
- I oy
W = [x1- - xnlorxn = | 0 N
s 1 .0 1

AR bEd oFya axn

= x; € R?F lives in a subspace of dimension 3.

Multiple rigid bodies under affine projection

Segmenting multiple rigid bodies under affine camera projection is equivalent to segmenting multiple subspaces
of dimension 3 or 4.
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segway3

Sequences: parking-lot segway
T Ty = =
PR et ¥ 4 ) e
°:,°° ) <) T y;
sod gyt le SN A 1
oo 2. - 2
RANSAC: =
Srgooicse o sun 13008 P [ !
Poos Bog o008 ¢ G290 o
oy, SoiR8h 0 & 5.8  £3 ¥
B, S E .
Al ol NG
- o 0%

MVT:

R sdheeiasig s Gk E

o Fogiiey Sl sitee - A

o B Y YA %Y. B

{3 3 Gy 308 00S 59000 84 S g

®e . v & %% s oot oS08 2]

o 8o ot e 858
Influence: 23
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Applications
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Vanishing-Point Detection

@ Perspective projection of 2 parallel lines in space intersect at
vanishing point in image plane.
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Applications
[ leJe]e]

Vanishing-Point Detection

@ Perspective projection of 2 parallel lines in space intersect at
vanishing point in image plane.

@ Geometry of a family of parallel lines:
o The co-image of a line L; is l; = x; X x2.

o Given images of two parallel lines (x1,x2) and (x3, x4), (0,v) is
on the intersection of P; and P5.

= Any co-image |; of a line parallel to L; satisfies: I; L v.

© Multiple vanishing points:

o Multiple families of parallel lines correspond to multiple
vanishing points vi, ..., v,.

o Any co-image of a line in the families must satisfy

(Mv))(1"va) - (1Tv,) = 0.

= Segmenting parallel line families is equivalent to segmenting 2-D
subspaces in R”.
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RGPCA-Influence

Segments:

Influence:

Allen Y. Yang <yangQeecs.berkeley.edu> Segmentation of Subspace Arrangements — Robust GPCA


<yang@eecs.berkeley.edu>

Applications
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RGPCA-MVT

Images:
Segments:
0 3 0]
o ) 1= 200 - 100 i 50| £
100 e & a0 i 200 : 10
w - o 4 ~ <z 11
o0
=] a0 * 600 b 4 300 5 200f =42
AR -
o 1000, 3 soof e, - 250, W, Vish:
- 5 By -
MVT: T S 200 465 600 4 109 1280 TR T T T ]
) 20
20 2om
w0 s 20
ol 600 - 1000] o °
P 00, = 500 2000 500,
w0 i
1000 1200 so0) * 1000
T R

TS0 Tat 1500 2000
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Applications
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RANSAC-on-Subspaces

Images:

Segments:

200 400 600 €00 1000 1200

-
RANSAC: R e o

2000 - *
2000)
1000 . L W= o 4 L
1000 w000 o s
200 L
o0 e s 2 4 ]
s a5 s oo S it

du> Segmentation of Subspace Arrangements — Robust GPCA
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