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1 GPCA-Voting
Noise issue
GPCA-Voting
Comparison

2 Robust GPCA
Outlier Issue
Robustify GPCA via MVT and Influence
Comparison

3 Applications
Affine Motion Detection
Vanishing-Point Detection
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Usual Suspects in Statistics

K-Means for segmenting K Gaussian clusters:

K-Subspaces for subspace arrangements [Ho et al., 2003]:

1 Initialization: Set initial values of orthogonal matrices Û
(0)
i ∈ RD×di for i = 1, . . . ,N. Let m = 0.

2 Segmentation: For each sample zk , assign it to group X̂
(m)
i if

i = arg min
l
‖zk − Û

(m)
l (Û

(m)
l )T zk‖2

.

3 Estimation: Apply PCA to each subset X̂
(m)
i and obtain new estimates for the subspace bases

Û
(m+1)
i .

4 Let m ← m + 1, and repeat step 2 and 3 until the segmentation does not change.

⇒
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Generalized Principal Component Analysis (PDA)

x ∈ V1 ∪ V2 ⇒ (x3 = 0)or(x1 = x2 = 0)
⇒ {x1x3 = 0, x2x3 = 0}.

L2
.
= [ν2(x1), . . . , ν2(xN )] ∈ RM

[3]
2
×N

=


··· (x1)2 ···
··· (x1x2) ···
··· (x1x3) ···
··· (x2)2 ···
··· (x2x3) ···
··· (x3)2 ···



V1

V2

R3x3

x1

x2

The null space of L2 is
c1 = [0, 0, 1, 0, 0, 0]
c2 = [0, 0, 0, 0, 1, 0]

⇒ p1 = c1ν2(x) = x1x3

p2 = c2ν2(x) = x2x3

P(x)
.
= [p1(x) p2(x)] = [x1x3, x2x3], then

∇xP = [∇xp1 ∇xp2 ] =

[
x3 0
0 x3
x1 x2

]
.

∇xP at one sample per subspace gives normal vectors that span V⊥1 and V⊥2 .

Diagram of GPCA

V1

V2 RD

=⇒
νn(x) Null(Ln)

p(x) = cTx

=⇒ =⇒
∇x

Rank(Ln) = M
[D]
n − hI (n)

V1

V2RM
[D]
n RM

[D]
n RD
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GPCA-Voting: A Stable Implementation

PDA on noisy data

V1

V2 RD

=⇒
νn(x) Null(Ln)

=⇒ =⇒
∇x

V1

V2RM
[D]
n RM

[D]
n

p(x) = cTx RD

The noise affects the algebraic PDA process:

1 The data matrix LK (V ) is always full-rank.
Question: How many linearly independent vanishing polynomials from Null(L)?

2 How to choose (more than) one point per subspace for derivative evaluation?
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Number of Linearly Independent Polynomials

1 Given a mixture of K subspaces, how many linearly independent K th degree vanishing
polynomials?

Trivial: linear products of 1-forms p1 = x1x3, p2 = x2x3 uniquely determine V1 ∪ V2.
Not trivial: given V1 ∪ V2, p1 = x1x3, p2 = x2x3 are a max set of linearly independent vanishing
polynomials.

2 Under a general position condition, the number is combinatorial invariant [Jessica Sidman
2002 & Harm Derksen 2005]

h(K) =
∑
S

(−1)|S|
(

K+D−1−cS
D−1−cS

)
,

where S ⊆ {1, · · · , K} is an index set.
3 Example: linearly independent 3rd degree vanishing polynomials for 3 mixture subspaces.

Figure: Four possible configurations in R3.

d1 d2 d3 h(3)

2 2 2 1
2 2 1 2
2 1 1 4
1 1 1 7

Polynomial Estimation from Noisy Data

Given d1, · · · , dK , use SVD to recover h(K) vanishing polynomials from the smallest eigenspace
of L.
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A Voting Scheme

Goal:

1 Averaging ∇xP at more samples of a subspace.
2 Recover correct rank of ∇xP.

Difficulty: Do not know which samples belong to the same subspace, yet.

GPCA-Voting (a simple example)

1 Assume subspaces (2, 1, 1) in R3.

2 hI (3) = 4 vanishing polynomials ⇒ ∇xP ∈ R3×4.

3 Vote on rank-1 & rank-2 codimensions with a tolerance threshold τ

4 Average normal vectors associated with highest votes.

5 (optional) Iteratively refine the segmentation via EM or K-Subspaces.
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Simulation Results

1 Illustrations

(a) 8% (b) 12% (c) 16%

Figure: (2, 1, 1) ∈ R3.

(a) 8% (b) 12% (c) 16%

Figure: (2, 2, 1) ∈ R3.

2 Segmentation simulations

Table: Segmentation errors. 4% Gaussian noise is added.

Subspace Dimensions K-Subspaces PDA Voting Voting+K-Subspaces

(2, 2, 1) in R3 27% 13.2% 6.4% 5.4%

(4, 2, 2, 1) in R5 57% 39.8% 5.7% 5.7%

(4, 4, 4, 4) in R5 25% 25.3% 17% 11%
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Outlier Issue

GPCA process:

V1

V2 RD

=⇒
νn(x) Null(Ln)

p(x) = cTx

=⇒ =⇒
∇x

Rank(Ln) = M
[D]
n − hI (n)

V1

V2RM
[D]
n RM

[D]
n RD

Breakdown of GPCA is 0%: a large outlier can arbitrarily perturb Null(Ln)

V1

V2 RD

=⇒
νn(x) Null(Ln)

=⇒

RM
[D]
n

p(x) = cTx

RM
[D]
n

⇒

Because breakdown of PCA is 0% ⇒ Seek a robust PCA to estimate Null(Ln), where
Ln = [νn(x1), · · · , νn(xN )].
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Three approaches to tackle outliers:

1 Probability-based: small-probability samples.

Probability plots: [Healy 1968, Cox 1968]
PCs: [Rao 1964, Ganadesikan & Kettenring 1972]
M-estimators: [Huber 1981, Campbell 1980]
multivariate trimming (MVT): [Ganadesikan & Kettenring 1972]

2 Influence-based: large influence on model parameters.

Parameter difference with and without a sample: [Hampel et al.
1986, Critchley 1985]

3 Consensus-based: not consistent with models of high consensus.

Hough: [Ballard 1981, Lowe 1999]
RANSAC: [Fischler & Bolles 1981, Torr 1997]
Least Median Estimate (LME): [Rousseeuw 1984, Steward 1999]

V1

V2

R3x3

x1

x2
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Robust GPCA

STEP 1: Given the outlier percentage α%, robustify PCA:

Multivariate-trimming (MVT):
Assuming a Gaussian distribution, samples with large Mahalanobis distance more likely to be outliers.

1 Compute a robust mean ū. vi = ui − ū. ui , vi ∈ RM
[D]
n

2 Initialize Σ0 = I
M

[D]
n ×M

[D]
n

.

3 In kth iteration, sort v1, . . . , vN by the Mahalanobis distance:

di = vT
i Σ−1

k−1vi .

4 Update Σk from (100− α)% samples with smallest distances.
5 Iteration stops when ‖Σk−1 − Σk‖ is small.

Influence function:

1 Compute null space C = {c1, c2, . . . , cm} for Ln = [νn(x1) · · · νn(xN )].
2 For xi , compute C (i) for L(i)

n = [νn(x1) · · · î · · · νn(xN )].

3 I (xi )
.
= 〈C ,C (i)〉.

4 Reject top α% samples with highest influence.
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STEP 2: Estimating the outlier percentage α%: Do we need the exact percentage for estimation?

(a) 16% outliers (b) 7% rejected (c) 38% rejected (d) Maximal sample residuals.

1 With noise and outliers present, unnecessary to distinguish outliers close to subspaces.

2 Robust PCA is moderately stable when the outlier percentage is over-estimated.

Outlier Percentage Test based on the Influence Function Principle

Further rejection only results in small changes in the
model parameters and sample residuals (w.r.t. boundary
threshold σ), i.e., the arrangement model stabilizes.

Influence
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Simulations on Robust GPCA

RGPCA-Influence

(a) 12% (b) 32% (c) 48% (d) 12% (e) 32% (f) 48%

RGPCA-MVT

(a) 12% (b) 32% (c) 48% (d) 12% (e) 32% (f) 48%
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Comparison with RANSAC

Accuracy on simulated data

(a) (2, 2, 1) in R3 (b) (4, 2, 2, 1) in R5 (c) (5, 5, 5) in R6

Speed

Table: Average time of RANSAC and RGPCA with 24% outliers.

Arrangement (2,2,1) in R3 (4,2,2,1) in R5 (5,5,5) in R6

RANSAC 44s 5.1m 3.4m
MVT 46s 23m 8m

Influence 3m 58m 146m

Allen Y. Yang <yang@eecs.berkeley.edu> Segmentation of Subspace Arrangements – Robust GPCA

<yang@eecs.berkeley.edu>


Outline GPCA-Voting Robust GPCA Applications

Limitations of RGPCA

1 Hardware limits for high subspace dimension (> 10) or subspace number (> 6) in MATLAB.

2 Need to know the number of subspaces and dimensions.

3 Overfitting when percentage is overestimated, especially for MVT.

Animation

=⇒
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Motion Segmentation under 3-D Affine Projection

Problem formulation:

1 Object features p1, . . . , pN ∈ R3 are tracked
in F frames.

parking-lot movie

2 Denote mij ∈ R2 as the image under 3-D
affine projection:

mij = Ajpi +bj ∈ R2
, i = 1, . . . ,N; j = 1, . . . , F .

3 For each pi ,

xi =


mi1

.

.

.
miF

 ∈ R2F
, i = 1, . . . ,N.

4 Segment x1, . . . , xN that belong to different
motions.
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Suppose p1, . . . , pN ∈ R3 are from a single object:

Stack corresponding images in F frames: xi =


mi1
mi2

.

.

.
miF

 ∈ R2F , i = 1, · · · ,N:

W
.
= [x1 · · · xN ]2F×N =

 A1 b1

.

.

.
.
.
.

AF bF


2F×4

[ p1 ··· pN
1 ··· 1

]
4×N

.

⇒ xi ∈ R2F lives in a subspace of dimension 4.

When all pi ’s are coplanar, there exists a world coordinate system such that pi =
[ xi

yi
0

]
.

W
.
= [x1 · · · xN ]2F×N =

 A1 b1

.

.

.
.
.
.

AF bF


2F×4

[
x1 ··· xN
y1 ··· yN
0 ··· 0
1 ··· 1

]
4×N

.

⇒ xi ∈ R2F lives in a subspace of dimension 3.

Multiple rigid bodies under affine projection

Segmenting multiple rigid bodies under affine camera projection is equivalent to segmenting multiple subspaces
of dimension 3 or 4.
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Sequences: parking-lot segway toys man segway3

RANSAC:

MVT:

Influence:
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Vanishing-Point Detection

1 Perspective projection of 2 parallel lines in space intersect at
vanishing point in image plane.

2 Geometry of a family of parallel lines:

The co-image of a line L1 is l1 = x1 × x2.

Given images of two parallel lines (x1, x2) and (x3, x4), (0, v) is
on the intersection of P1 and P2.

⇒ Any co-image li of a line parallel to L1 satisfies: li ⊥ v.

L2

x1
x2

x3

x4

0

l1

l2

P2v

P1

L1

3 Multiple vanishing points:

Multiple families of parallel lines correspond to multiple
vanishing points v1, . . . , vn.

Any co-image of a line in the families must satisfy

(lT v1)(lT v2) · · · (lT vn) = 0.

⇒ Segmenting parallel line families is equivalent to segmenting 2-D
subspaces in R3.
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RGPCA-Influence

Images:

Segments:

Influence:
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RGPCA-MVT

Images:

Segments:

MVT:
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RANSAC-on-Subspaces

Images:

Segments:

RANSAC:
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