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Abstract—While /;-minimization (¢;-min) has recently been
studied extensively in optimization, the high computational cost
associated with the traditional algorithms has largely hindered
their application to high-dimensional, large-scale problems. This
paper discusses accelerated ¢;-min techniques using augmented
Lagrangian methods and its parallelization leveraging the par-
allelism available in modern GPU and CPU hardware. The per-
formance of the new algorithms is demonstrated in a robust face
recognition application. Through extensive simulation and real-
world experiments, we provide useful guidelines about applying
fast /;-min on large-scale data for practitioners.

I. INTRODUCTION

In the past few years, there has been a lot of interest in
finding numerical solutions to a set of sparsity minimization
problems. In particular, in compressive sensing (CS) theory,
it has been shown that a linear program known as /;-
minimization (¢1-min) can recover sparse solutions to certain
underdetermined systems of linear equations [4], [7]. The ¢;-
min problem refers to finding the minimum ¢;-norm solution
to an underdetermined linear system b = Ax:
b= Ax. (1)

min ||z|;  subj. to

Under certain conditions [3], the minimum ¢;-norm solution
is also the sparsest solution to the system (1).

Among the various applications of sparse representation and
¢1-min, face recognition has been formulated using a sparsity-
based classification framework (SBC) in [15]. If we stack the
pixels of the training images of K subject classes into the
columns of matrices (A; € R¥*™ ... Ay € R¥X"K), com-
bine the matrices into a larger matrix A = [A;, -+, Ak] €
R?*" and arrange the pixels of a new query image into
a vector b € R? of the same dimension, SBC solves the
following minimization problem:

min x|l + |lefl: subj.t. b= Ax+e, (2)
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Fig. 1.  Robust face recognition via sparse representation. The method
represents a test image (left), which may be partially occluded or corrupted,
as a sparse linear combination of all the normal training images (middle)
plus sparse errors (right). The largest nonzero coefficients in red correspond
to training images of the correct individual. The nonzero coefficients in the
error recover the locations and ground-truth values of the corrupted pixels in
the input image.

where e provides a means to compensate for pixels that are
corrupted due to occlusion on some part of the query image,
and x is the sparse representation of b under the training
dictionary A.

Once the sparse signals « and e are recovered, tasks such as
recognition and validation can be performed in a very natural
way. For a corrupted face image b, subtracting e from the
measurements recovers an estimate of the appearance of the
face image: by = b — e. One can further show that in fact the
objective function (2) can handle noise correction even when
e is quite dense provided its signs and support are random
[14], as two examples shown in Figure 1.

For sparse representation a, one can simply define the

concentration of a vector = [z 21 ... xL]T on Class i
as

a; = [|zi|1 /|1 3)

Then the label of the query image b is assigned to the class that
maximizes «;. The algorithm may also reject b as not relevant
to any subject class in the training database (i.e., an outlier) if
the maximum value of «y; is smaller than a predetermined
threshold, which corresponds to a dense representation in



x. Alternatively, one can also classify b by minimizing the
residual of the reconstruction error:

In face recognition, the accuracy of the classification also
depends on the condition that the query image is aligned with
the training images (in vector form). In the case misalignment
may occur, SBC has been extended in [13] to be able to align a
query image to each subject class individually. The alignment
algorithm solves the following problem:

7= argfgr} lleli subj.to bor,=Axz+e, (5)

where 7, € T is in a finite-dimensional group 7' of trans-
formations (e.g., affine or homography) acting on the image
domain. The sequence 7; converges to a transformation that
aligns the test image b with the training images from the i-th
class A;. The alignment algorithm works reasonably well with
poses up to +45°, which easily exceeds the pose requirement
for real-world access-control applications [13].

In pursuit of a practical face recognition system, one con-
cern is the availability of efficient algorithms to minimize ¢;-
min and its variations for face alignment (5) and face recog-
nition (2) in real time. Although ¢;-min can be formulated
as a linear program, conventional algorithms such as interior-
point methods [5], [12] scale poorly in high-dimensional
space. Due to the increasing attention on sparse representation
and compressive sensing, a number of accelerated ¢;-min
algorithms have been recently proposed, which explicitly take
advantage of the special structure of the ¢1-min problems:

1) Gradient projection methods [11] follow closely the
idea of interior-point methods, but reformulate ¢;-min
as a quadratic programming problem. As a result, the
computation of the Newton update can be accelerated
by conjugate gradient methods.

2) Homotopy methods [9], [8] utilizes a warm-start strategy
to minimize a series of noisy versions of /;-min, and the
nondifferentiable £1-min objective can be approximated
by its subgradients on the sparse support.

3) Iterative soft-thresholding methods [6], [1] belong to a
category of first-order methods, which refer to those
algorithms that have at most linear local error, typically
based on local linear approximation. In the iterative
update rule, an efficient soft-thresholding function is
applied element-wise to update the value of the unknown
variables.

In [17], a new solution based on augmented Lagrangian
methods (ALM) was proposed, which we will discuss in
Section II. ALM is also a first-order method, and it has been
shown to perform much faster than the other existing methods
in a systematic comparison [17]. However, due to the high
dimensionality of the face recognition problem, the system
still fails to achieve real-time performance using a naive
implementation of the algorithm on a typical workstation. In
Sections III and IV, we discuss how to properly parallelize
ALM /1-min on multi-core CPU/GPU architectures.

II. AUGMENTED LAGRANGIAN METHODS

In this section, we present the ALM approach for ¢;-min
(1) [17] and analyze its complexity. Lagrange multipliers have
been frequently used in convex programming to eliminate
equality constraints via adding a penalty term to the cost
function for infeasible points. ALM methods differ from
other penalty-based approaches by simultaneously estimating
the optimal solution and Lagrange multipliers in an iterative
fashion. By introducing a quadratic penalty term, the ALM
algorithm converges at a faster rate than iterative thresholding
algorithms. For standard ¢;-min problem (1), the augmented
Lagrange function is defined as:

Ly(@.y) = | +y" (b - Az) + Lo - Az|3. (6)

where 1[b— Az||3 is the augmented Lagrangian term, y > 0
is a constant that penalizes infeasibility, and y is a vector of
Lagrange multipliers

In Lagrange Multiplier Theory [2], if there exists a La-
grangian y* that satisfies the second-order sufficiency condi-
tions for optimality, then for a sufficiently large u, the optimal
£1-min solution also minimizes

x* =argmin L, (x,y"). @)

In practice, the optimal values for the triplet (x*, y*, ) are
all unknown. Furthermore, it has been observed that solving
(7) with a large initial value of p tends to lead to slower
convergence speed [16], [17]. In [2], [18], an alternating
procedure has been shown to iteratively update « and y:

{ LTr+1 =
Yir1 =
where i — oo increases monotonically. The iteration termi-
nates when the estimates (xzy,y,) converge.

Note that in the iterative procedure (8), the second step
only involves vector algebra and matrix-vector multiplication.
Therefore, the procedure is computationally efficient if it is
easier to minimize the augmented Lagrangian L, (x,y,)
compared to solving the original problem (1) directly. In fact,
this problem can be solved element-wise iteratively by a soft-
thresholding algorithm [16], [1], whose time complexity is
bounded by O(n?) and can be easily parallelized. Algorithm
1 summarizes the generic ALM ¢;-min algorithm. !

argming Ly, (¢, y;)

8
Yy + (b — Azpy) ®

III. PARALLELISM IN FACE ALIGNMENT

In order to speed up ¢;-min for specific applications such
as face recognition, one should take advantage of the problem
parallelism to carefully map and implement the problems
on state-of-the-art parallel computing architectures, such as
multi-core CPUs and general-purpose GPUs. As a first-order
method, ALM mainly uses vector-vector and matrix-vector
multiplications, which make it ideal for use in parallel comput-
ing environments using standard LAPACK and BLAS numer-
ical libraries. In this section, we describe the parallelization of
the the ALM algorithm for the face alignment problem.

!For conciseness, we only present the ALM algorithm in the primal domain.
There also exist implementations in the dual domain [18], [17].



Algorithm 1 Augmented Lagrangian Method (ALM)
INPUT: b €¢ R™, A = [Ay, -+ ,Ag] € R™" 7
maxeig(AT A), and constant p > 1.

while not converged (k = 1,2,...) do
t1 < 1, z1 «— xp, Uy — T}
while not converged (I =1,2,...) do
w41 < shrink(z; — LAT(Az —b— ,%kyk),

1:
2
3
4:
5: tipr — 214+ /1 +4¢82)
6:
7
8
9

1
)

Zigp1 ¢ Ul + ttll;l (w1 — )
end while
Lh41 < U1
C Y1 Yp k(b — Axpg)
10: pgg1 < P pk
11: end while
OUTPUT: =* «— x.

Face alignment (5) estimates an image transformation 7 that
rectifies the query image b with possible pose variation w.r.t.
each training class A;, which leads to the minimal sparsity in
error e after the alignment. Note that directly solving (5) is
inefficient since it is a non-convex problem and may exhibit
local minima. However, given a good initial guess of the
transformation 7 (e.g., provided by a good face detector), the
optimal solution for 7 can be sought iteratively by linearization
at each jth step:

min |le|; subj.t bor;+JATr=Axz+e, (9
x,e,AT;
where J; = V. (bo ;) is the Jacobian, and A7 is a step
update to 7. Denote b; = bo 7;, B; = [A;, —J;], and w?l =
[T, A7T], then the update A7 can be computed by solving
the following linear program:

min |le||; subj. t. b; = Bjw+e. (10)
w,e

A. CPU Implementation

The face alignment algorithm was implemented on an Linux
workstation with two quad-core Intel Nehalem E5530 proces-
sors clocked at 2.4 GHz. Each processor has its own memory
interface and is interfaced to half of the RAM installed,
totaling 16GBs. Each core has 32 KiB L1 cache and 256 KiB
L2 cache. Each processor has 8 MiB of L3 cache shared by
the four cores.

For alignment, each core is able to store 16 64x64 grayscale
face images. We implemented two versions of the paral-
lel algorithm, one using the standard Basic Linear Algebra
Subprograms (BLAS) libraries without any optimization and
a manually optimized version. In the manually optimized
version, to make efficient use of 8 cores, we manually map
eight instances of (10) to run in parallel, one problem on
each core. The advantage of this implementation over the
standard BLAS implementation is that no synchronization
is necessary between the cores. Both implementations are
compiled using the Intel Make Kernel Library (MKL) and Intel
Integrated Performance Primitives (IPP), which are optimized
for Intel multi-core CPUs. Operations that are not provided by

Intel libraries are written and parallelized with the Intel C++
compiler.

B. GPU Implementation

The GPU implementation is similar in spirit to our second
CPU implementation where each streaming multi-processor
solves a set of problems independently from the other pro-
cessors. We use a Nvidia Fermi GPU with 14 streaming
multiprocessors (MP) with 64 cores per MP. Each MP has
its 64 KiB of L1 cache and all MPs share a common 768 KiB
L2 cache. The small amount of cache on the GPU is balanced
by a significantly higher bandwidth between the processor and
off-chip memory (DRAM) on the GPU. We have empirically
determined that performance is highest with 5-7 subject classes
aligned simultaneously on each MP.

IV. PARALLELISM IN FACE RECOGNITION

In this section, we describe the parallelization of the ALM
algorithm for the face recognition problem.

In our implementation of the face recognition system,
when the face alignment stage is complete, only the top 20
subject classes with lowest alignment error e are selected for
recognition, as large alignment error indicates the query image
does not align well with the appearance of the subject class in
question. This heuristic reduces the computational complexity
of the recognition stage when the database contains a large
number of subjects and was empirically found to contain the
correct subject 95% of the time. Clearly, this heuristic can be
relaxed if higher recognition rate is required at the cost of
slower speed.

After b and A; are re-sampled to a common alignment
using 7;, and A; are concatenated into a new matrix A, a
sparse representation of b w.r.t A is then recovered by solving
a single ¢;-min problem. The coefficients « are then used
to compute error residuals that are used for classification in
(4). In this stage of the algorithm, there is no problem-level
parallelism to exploit, instead we will discuss how to exploit
pixel-level parallelism on both CPU and GPU hardware. Then
in Section V, we will benchmark the performance of the two
architectures and further demonstrate the speed gain achieved
by our proposed implementations over previously published
implementations.

On the CPU, most of the operations map well onto MKL
BLAS calls, and operations that do not can be easily paral-
lelized using OpenMP and auto-vectorization.

On the GPU, most of the operations map well onto similar
calls in NVIDIA’s GPU BLAS library (CUBLAS) which,
like MKL, can take advantage of both levels of concurrency
available in the hardware architecture. Operations that do not
map well onto the CUBLAS API are implemented directly in
CUDA code. Additionally, some operations that could have
been implemented via multiple BLAS calls, performance im-
provements are achieved by combining multiple vector-vector
operations into a single kernel, due to reduced bandwidth and
kernel call overhead.

In order to avoid expensive data transfer across the PCI ex-
press bus connecting the GPU card and the CPU motherboard,
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Fig. 2. Comparison of ¢;-min runtime vs. dimensions of A on random data.

all of the data is transferred to GPU DRAM once, and all non-
trivial tasks are performed on the GPU on data stored in GPU
DRAM.

V. EXPERIMENTS

In this section, we first benchmark the performance of our
parallel implementations of ALM-based ¢;-min on CPU and
GPU platforms using simulated data. We then demonstrate
the speed and accuracy of our implementation applied to
the alignment and recognition stages of the face recognition
system.

A. Simulation on Random Data

The first experiment compares the performance of our
proposed CPU and GPU implementation of the general ¢;-
min solver. The d x n measurement matrix A is a random
Gaussian matrix, with each entry generated from the standard
normal distribution and normalized to unit column norm. The
ratio of d/n is fixed at 1/2 (without loss of generality for the
simulation purpose) with n varying from 1000 to 8000. The
ground truth signal xy has a sparsity rate of 10% of d with
the values of the nonzero elements sampled from a normal
distribution and normalized to unit column norm. Because
the ground truth signal x( is known, the algorithm terminates
when ||z — zo|| < € with ¢ = 1073. The measurement vector
is generated by b = Axg.

The results of this benchmark can be found in Figure 2.
The x-axis represents the size of the A matrix, and the y-axis
represents the average runtime to complete a single problem
instance. The GPU implementation tends to be faster than
the CPU implementation at solving a single large problem,
whereas the CPU implementation is faster at solving a single
small problem. The change in the slope of the CPU curve
represents a transition for the CPU speed to be bounded from
cache bandwidth to memory bandwidth. Since there are other
data structures besides A, the transition occurs slightly before
the size of A reaches 2000 x 1000 x 4 = 8M B, i.e., the size
of the CPU L3 cache.

B. Face Recognition Pipeline Benchmark

First, in order to measure the impact of solving many ¢
problems-per concurrently on the GPU, we benchmark three

TABLE I
BENCHMARK OF THREE DIFFERENT PARALLELIZATION APPROACHES FOR
ALIGNMENT #1-MIN ON THE GTX480 GPU.

Sequential solver using CUBLAS 302 ms
One problem per SMP using CUDA streams | 70ms
Four problems per SMP using single kernel 36 ms

implementations of the alignment ¢;-min solver with A of size
5120 x 32, and a fixed 50 inner loop iterations for each of
50 outer loop iterations. The runtime on the GTX480 GPU
is averaged over a large number of trials, which are run
sequentially or concurrently depending on the implementation.
The results are shown in Table I. Our proposed parallelization
of the ¢;-min used in the alignment stage is eight times faster
than the implementation solving a single problem at a time
using the stock BLAS libraries.?

Using an implementation motivated by the previous result,
we now benchmark our iterative alignment implementation on
real face data. For experiments on face data we use subsets of
the CMU Multi-PIE Face Database [10]. For gallery images
we use frontal images from session 1, which contains 20
images per subject taken under different illuminations. For test
images we use images from session 2. The training images
are prepared as follows: The iterative alignment stage seeks
a similarity transformation between the coordinate frame of
the full-resolution test image and a “canonical” coordinate
frame in which images are compared. The training images
are aligned by applying a similarity transormation that maps
two manually clicked outer eye corners to fixed locations in
the canonical frame. A 64 x 64 pixel window in the canonical
frame is used for resampling.

Figure 3 shows the average runtime of the CPU and GPU
implementations to align a query image against all the subject
classes separately. We vary the total number of subject classes
to show how the algorithms scale. The plateaus seen in the
GPU curve result from the GPU hardware scheduling the com-
putation of alignment problems in concurrent batches, but the
overall trend is linear as expected. The manually threaded CPU
implementation slightly outperforms the GPU implementation,
and it beats the naive library threaded implementation by a
wide margin. The new implementation can align the query
image in ~ 40 ms per subject, while the fastest previously
published result [13] required ~ 600 ms per subject in a
similar setting.

The next experiment compares the speed of the GPU
and CPU implementation of the recognition stage. It was
determined that keeping 20 gallery subjects is sufficient to
ensure that the correct subject is kept for the recognition
stage with 95% probability. Since recognition failures are
typically caused by a poor alignment, we find that keeping
more subjects for the recognition stage does not necessarily
improve recognition rate.

Figure 4 shows the recognition stage runtime for different
image sizes: 32 X 32, 48 x 48, 64 x 64, 96 x 96, and 128 x

2The streams implementation is limited significantly by a cap on the number
of concurrent streams in the current version of CUDA.
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128. For all image resolutions, the problem size is sufficiently
small that the CPU is significantly faster than the GPU. Note
also that for both implementations, the recognition stage takes
much less time than the alignment stage.

Finally, we perform an experiment verifying the recognition
accuracy of the overall pipeline. As shown in Figure 5, at
the optimal resolution, which happens to match the alignment
stage resolution, the GPU implementation reaches 95% recog-
nition rate, the max achievable given the alignment selection
process. For significantly lower resolutions, the accuracy drops
off significantly. The slight difference in CPU vs. GPU accu-
racy may be a result of numerical precision differences in our
matrix inversion and vector reduction routines.

VI. CONCLUSION

In this paper, we have presented an efficient ¢;-min solver
based on augmented Lagrangian methods. The ALM solution

involves alternating between optimizing the ¢;-min objective
function in the primal and dual domains with an augmented
quadratic penalty term. The complexity of the algorithm is in
the same order of other first-order methods for ¢;-min, and is
significantly lower than the traditional interior-point methods.

Since the ALM algorithm mainly consists of vector-vector
and matrix-vector operations, we have investigated its paral-
lelization on modern multi-core CPU and GPU architectures.
Our experiment shows that parallelizations of ALM that solve
multiple face alignment problems concurrently are signifi-
cantly faster than implementations that purely rely on vendor-
supplied BLAS libraries. Furthermore, thanks to a combina-
tion of faster hardware and more efficient implementations,
dramatic improvements in recognition speed and limits on
the image resolution are achieved over previously reported
implementations.
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