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Stereo Ranging with Verging Cameras 

Eric Krotkov, Knud Henriksen, and Ralf Kories 

Absfract-We present a novel method to compute absolute range from 
stereo disparities with verging cameras. The approach differs from others 
by concentrating, through both analysis and experiment, on the effects 
caused by convergence, rather than on the general camera calibration 
problem. To compute stereo disparities we first extract linear image 
features and then match them using a hypothesize-and-verify method. 
To compute range we derive the relationship between object distance, 
vergence angle, and disparity. Experimental results show the precision of 
the range computation, excluding mistaken matches, to be approximately 
5% for object distances up to three meters and a baseline distance of 
13 cm. Including mistaken matches results in performance an order of 
magnitude worse, leading us to suggest methods to identify and model 
them. 

Index Terms-Binocular stereo, stereo matching, stereo reconstruction, 
three-dimensional computer vision, vergence. 

I.  INTRODUCTION 
Computing range from stereo requires first matching the images 

taken by two cameras to determine disparities (differences in the 
positions of corresponding features), and then transforming these 
into absolute distances. A great deal of research in computer vision, 
robotics, photogrammetry, psychology, and neurophysiology has ad- 
dressed both of these problems. Our contribution to this research is 
to develop and analyze a novel method for absolute stereo ranging 
with a pair of verging cameras. 
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Fig. 1. The agile camera system. The agile camera system allows two 
cameras to translate horizontally and vertically, and to rotate by panning and 
tilting. Motors mounted in the camera housings allow control of the lenses 
by independently adjusting their focusing distance, focal length (zoom), and 
aperture diameter. 

Fig. 1 illustrates the physical camera system, which is described 
in detail elsewhere [9]. Two cameras mounted on a platform can 
translate horizontally and vertically, and rotate left-right and up- 
down. Motors mounted on each lens adjust the focal length, focusing 
distance, and aperture diameter. Further, the two cameras can verge, 
by rotating towards each other (converging) or away from each 
other (diverging). Fig. 2 illustrates the vergence mechanism; the 
travel from minimum to maximum vergence angle is approximately 
6”, covering 90 000 motor steps. Potential advantages of vergence 
include increasing the field of view common to two cameras, and 
constraining the stereo disparity. 

We model each lens as a pinhole, assuming that to first order all 
lines of sight intersect at a unique lens center. The lens centers are 
separated by a baseline distance b, and both lenses have focal length 
f. Associated with the cameras are reference frames L and R, with 
origins at the lens centers, and Z-axes coincident with the optic axes, 
positive in the direction of the scene. We define a Cyclopean reference 
frame W with origin at the midpoint of the baseline, Z-axis normal 
to the baseline, and X-axis coincident with the baseline (Fig. 3) .  

We address the following problem: identify the three-dimensional 
position of an object point P = [ X w .  Yu. Z W ] ~  in the Cyclopean 
frame from its projections ( T L .  y ~ )  and (zn, y ~ )  onto the left and 
right image planes, respectively, using verging cameras. In addition, 
we are interested in the uncertainty on the measurement of ZW. 

This correspondence presents a novel method to compute ZW 
that differs from classical approaches to stereo ranging that involve 
solving the camera calibration problem [5], [11]-[13] or related 
orientation problems [7, p. 3111. The approach differs by concentrat- 
ing, through both analysis and extensive experiments, on the effects 
caused by convergence. 

The correspondence is organized as follows. In Section I1 we 
describe a method for computing stereo disparities based on extracting 
and matching lines. We present in Section I11 the method for comput- 
ing range as a function of disparity and vergence angle, and describe 
in Section IV a procedure to identify the parameters required for the 
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Fig. 2. Vergence mechanism. Top view of the vergence mechanism, which 
allows the two cameras to converge and diverge. The cameras are secured to 
the camera plates so that their optic axes point toward the top of the page. 
The D.C. servomotor turns the screw, which displaces the slide, causing the 
two camera plates (and thus the cameras) to rotate about the plate bearings. 

i 

Fig. 3. Reference frames. 

range computation. We provide quantitative experimental results in 
Section V, and conclude by summarizing the method and results, and 
discussing directions for future research. 

11. COMPUTING STEREO DISPAR~ES 
To match two images, we must identify features in the two images 

that are projections of the same entity in the three-dimensional 
world. Bamard and Fischler [2] and Dhond and Aggarwal [4] 
survey numerous possible solutions. This section briefly describes 
one method for computing stereo disparities based on matching lines, 
which is detailed by Henriksen [6], and presents an example of its 
operation. The justification for using lines is that they are more likely 
to produce reliable matches than are points. 

There are two basic steps in this approach: line extraction and line 
matching. The line extraction procedure (similar to [3]) describes 
the image by a set of line segments. The matcher proceeds by 
recursive prediction and verification (similar to [l]): first, it generates 
hypothetical matches that satisfy geometric constraints on the epipolar 
lines, and the differences in line segment length, orientation, and 
gradient magnitude; second, it prunes the hypotheses that do not 
satisfy local constraints of uniqueness and continuity; and third, it 
resolves ambiguities using global constraints. 

The final outcome of the stereo matching process is a list of 
matching line segments and their disparities. The disparity is the 
distance in the image plane between two corresponding features. 
For the pumose of this correspondence, the disparity of two line 

between their midpoints. This is a simplification, since the midpoints 
of corresponding line segments are seldom the images of the same 
physical point, and because the vertical disparity component is 
ignored. 

Fig. 4 illustrates an example of the line matcher’s performance. 
Figs. 4(a) and (b) show two images digitized to 256 gray-levels, with 
no enhancement or preprocessing. Figs. 4(c) and (d) show the line 
segments extracted from the images, 260 from each. On a VAX 11- 
750 without floating point accelerator this took 619.9 seconds. The 
line matcher determines the correspondence between these segments 
over a maximum disparity of 170 pixels, with maximum allowed 
difference in length of 10 pixels, maximum allowed angular deviation 
of loo,  and maximum allowed gradient magnitude difference of 
5 units. The matching took 409.5 seconds for this example. Figs. 4(e) 
and ( f )  illustrate the 141 left-right and 144 right-left matches. The 
intersection of the two sets of matches contains three mistaken 
matches. 

We believe that this example illustrates typical performance of the 
matcher. Qualitatively, we can describe its performance as fairly good 
at finding lines, and very conservative in matching lines. Naturally, 
prudent tuning of the extraction and verification parameters can 
improve performance significantly on any single stereo pair. To the 
extent that automatic adaptive tuning is not yet possible, we employ 
in all cases the same values as in this example for the experiments 
described below. 

111. COMPUTING RANGE 
In this section we derive the analytical relationship between range, 

disparity, and vergence angle. We then formulate a procedure to 
identify from available measurements the parameters required for the 
range computation. 

A. Derivation of Range Equation 
Suppose that we rotate the right camera about the right lens 

center by 8, and that we rotate the left camera about the left lens 
center by -8 Fig. 3 . Then the coordinates of the point P = 
( X W ,  Yw, ZW) expressed in the left and right camera coordinate 
systems, respectively, are 

! r )  

(x, + 4) cos8 - Z w s i n 8  
Yw 

( x W +  % ) s i n B + Z w c o s @  

( X w  - 4) cos0 + Zw sin8 
Yw 

-(xW - i) sine + z w c o s 8  1 
Perspective transformation yields the following image coordinates: 

(Xw + t) cos8 - ZW sin8 
( X w  + 4) sin8 + Z w c o s 8 ’  

( x W -  i ) c o s 8 + Z w s i n @  

X L  = f 

X R  = f -(xW - i ) s i n O + Z w c o s 8 ’  

We solve both equations for XW and equate them, thus eliminating 
XW. Then we solve for ZW: 

(1) 
- b( f cos 8 - L L  sin e)( f cos 8 + ZR sin 8) - 

f(xL - XR) c o ~ 2 8  + ( f z  + ~ ~ z ~ ) s i n 2 8 ’  

This is the distance, normal to the baseline, from the baseline to 
the object point. It is convenient to measure distance not from the 
baseline, but from a plane T attached to the platform that supports the 
cameras and parallel to the baseline. We accomplish this by writing 
Z = Z w  + 20, where 20 is the baseline ofset (distance from the . .  . -  

segments is computed as the horizontal component of distance baseline to T) .  
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Fig. 4. Example of matching line segments. (a) Left image. (b) Right image. (c) Line segments extracted from the left image. (d) Line segments extracted 
from the right image. (e) Left-right matches (141) shown in the left image. ( f )  Right-left matches (144) shown in the right image. A postprocessor 
considers the set intersection of the matched segments in (e) and (f), and computes the disparity of two corresponding line segments as the horizontal 
component of distance between their midpoints. 

B. Relationship of Parameters to Observations 
We summarize the derivation just completed as a function E :  

2 = Z ( 2 w .  2,) = ((sL. XR. 8. f. b. 20). (2) 
We do not observe directly any of the parameters of E .  We infer XL 

and XR from image coordinates, we inferfand 8 from motor positions, 
and we do not know b or ZO. In this section we rewrite < in terms of 
parameters that we observe directly, and develop constraints on the 
parameters of [. We consider the parameters in the order in which 
they appear in (2). 

We express the feature coordinates XL and XR, measured in mm, in a 
lens-centered frame (Fig. 3). The matcher finds corresponding points 
(UT,. t i [ , ) ,  and ( U R ,  P J R ) ,  measured in pixels, in an image-centered 
reference frame. Appendix A derives the transformation from image 
coordinates (pixels) to camera coordinates (mm). 

We measure directly the vergence motor position V, not the 
vergence angle 8. The shape of the bearing guides on the camera 
plates (Fig. 2) determines the relationship between V and 8. Previous 
work [lo, Appendix 2.41 shows that the relationship is quadratic, 
8(V) = k1Ir2  + kzV + kg, and identifies the values of k;. 
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Fig. 4. (Continued. ) 

We measure directly the zoom motor position F, not the focal 
length f. Previous work [lo, Appendix 2.21 discusses the relationship 
between F and f. For the work reported here we set f to 20.0 (mm), 
and do not servo further the zoom motor. 

The baseline is the line between the two lens centers; the baseline 
distance is b. The lens center is not a well-defined, constant, physical 
location; it actually moves as the lens focuses and zooms, making it 
difficult physically to measure b. In contrast, the camera rotation cen- 
ter is a well-defined location, about which the vergence mechanism 
rotates the cameras to converge them. We measure a distance r of 
128 mm between the rotation centers, and estimate that the distance s 
normal to the optic axis between the lens center and the rotation center 
can be no greater than f 5  mm. Thus, for parallel camera stations 
T - 2s 5 b 5 T + 2s (mm). Appendix B shows that this constraint 
suffices for our camera system, i.e., in this case we can neglect 
constraints on b that arise uniquely from nonparallel camera stations. 

Empirical observation suggests that the platform plane .rr is approx- 
imately 100 mm behind the baseline. So we constrain ZO by -200 5 
ZO 5 0 (mm). 

We now can write the range Z as a function q,  

where we observe UL and UR from images, we know k1, kz, k3 and f 
from previous work, we observe V from the vergence motor encoder, 
and we do not know b or ZO. 

IV. PARAMETER IDENTIFICATION 

This section presents a least-squares method to identify the un- 
known parameters b and ZO. If we did not know ki, kz, k3, or f, then 
we could use the same method to identify them. 

First, we acquire ground-truth data. We place M planar objects in 
the field of view common to the cameras, and orient each visible face 
to be parallel to .rr (the plane attached to the platform and parallel 
to the baseline, cf. Section 111-A). Let this be Scene A (Fig. 5). Then 
we manually measure the distance Z;, 1 5 j M ,  normal to .rr to 
the jth object. 

Second, we acquire disparity data for this scene viewed with 
different vergence angles. We servo the vergence motor to N different 

Fig. 5. Image of Scene A. The objects possess linear features at various 
orientations, and one possesses circular features (a challenge for the line 
finder). 

positions. At each, we digitize a stereo pair of images, and identify 
conjugate image points for each of the M objects. We supervise the 
selection of conjugate points to guarantee no mistakes in solving the 
correspondence problem and to bound tightly the feature localization 
error. The outcome of this procedure is M x N conjugate points 
(UL,  WL), ( u ~ ,  WR) and the associated vergence motor positions V. 

Third, we search for the least-squares values for b and ZO. Define 
the error at the ijth data point as e i j  = 2; - Zij, where Zij is 
the distance computed by (3) to the jth object point while at the 
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ith vergence position, and Zf is the manually measured distance. We 
employ a constrained minimization procedure (routine ZXMWD from 
the IMSL package) to identify the values of b and ZO that minimize 
Esse within the bounds on b and Zo defined in Section 111-B: 

(4) 

where N is the number of vergence positions and M is the number 
of object points. 

. -  

V. EXPERIMENTAL RESULTS 

In this section we present experimental results for the range 
computation using disparities computed with supervision, with no 
supervision, and with partial supervision. We present results for 
Scene A and Scene B, which contains the same objects as Scene A, 
but differently arranged. 

We quantify the results in terms of the distributions of absolute 
errors and relative errors. The absolute error is e = Z* - Z, 
where Z* is the manually measured distance, and Z is the distance 
computed by (3). The relative error is r = 100e/Z* (percent). We 
compute the sample mean p~ and sample standard deviation UE of the 
distribution of absolute errors; similarly, we compute p~ and UR for 
the distribution of relative errors. The mean represents the accuracy 
of the range computation, and the standard deviation expresses its 
precision. 

First, we compute disparities with supervision of both feature ex- 
traction and matching, as in Section IV. This guarantees no mistakes 
in solving the correspondence problem. For Scene A, M = 7 and N = 
9; for Scene B, M = 8 and N = 8. Fig. 6 graphs the errors for Scene A, 
and Table I shows the statistics for the error distributions for both 
scenes. It shows that the range computation is highly accurate (almost 
0% difference between known and measured ranges), which suggests 
that it does not introduce systematic error. It also shows that the 
precision of the range computation is about 2%, which quantifies the 
effect of imperfect parameter identification, imperfect in the sense 
that E,,, # 0 in (4). 

Second, we compute disparities with no supervision whatsoever, 
running the matcher with default parameters (the same for all im- 
ages) that enforce the constraints mentioned in Section 11. Table I1 
shows the statistics for the error distributions. Both accuracy and 
precision are significantly poorer than with supervision, particularly 
for Scene A. This decrease in precision is due to the presence of false 
matches, or mistakes, which result in unreasonable measurements 
(outliers). For example, we compute the position of one point to be 
across the street from our laboratory. The large standard deviations for 
Scene A show that mistaken matches can cause large range errors; 
the smaller standard deviations for Scene B show that this is not 
necessarily the case. 

Third, we compute disparities with partial supervision, i.e., unsu- 
pervised feature extraction with supervised matching (postprocessing 
to remove mistaken matches). We define a mistake as a match 
resulting in UR > 25%. Using this definition, we find that 5.1% 
of the matches are mistaken for Scene A, and 5.4% for Scene B. 
Table Ill shows the statistics for the error distributions after removing 
disparities due to mistaken matches. Both accuracy and precision are 
significantly better than without supervision; the precision is on the 
order of 5% for both scenes. 

In summary, the error of the range computation with supervised 
feature extraction and supervised matching is approximately two 
percent; this includes errors due to imperfect parameter identification. 
The error with unsupervised feature extraction and supervised match- 
ing is approximately 5%; this includes errors due to imperfect feature 
localization and imperfect parameter identification, but excludes 
mistaken matches. The error with no supervision can be substantially 
larger, and may vary significantly across scenes. For this type of 
scene, approximately 5% of all matches are mistakes. 

I - 4 I -  
I 

I I I I I 
2 I O I 2 

Dispanly (mm) 

Fig. 6. Distance versus disparity for Scene A. The solid lines connect 
measured points (drawn as vertical ticks) that lie at the same distance. The 
dotted lines connect computed points (drawn as large dots) with the same 
vergence angle. The effect of increasing the convergence angle is to shift the 
dotted lines to the left along the disparity axis. Note that convergence does 
not significantly affect the shape of the curves. 

TABLE I 
RANGE ERRORS USING D I S P A R ~ E ~  COMPUTED WITH SUPERVISION 

Number P E  UE PR UR 
Scene of Points mm mm percent percent 

A 63 0.0 41.0 0.0 1.9 

B 64 -5.5 44.7 -0.2 2.0 

TABLE I1 
RANGE ERRORS USING DISPARITIES COMPUTED WITH NO SUPERVISION 

Number P E  U E  PR U R  
Scene of Points mm mm percent percent 

A 336 28.0 505.2 2.0 32.5 

B 294 -21.1 145.9 -1.6 8.7 

TABLE 111 
RANGE ERRORS USING DISPARITIES COMPUTED WITH PARTIAL SUPERVISION 

Number P E  U E  PR OR 
Scene of Points mm mm percent percent 

A 319 -1.45 111.6 -0.2 5.0 

B 278 -7.0 108.8 -0.6 5.5 

VI. DISCUSSION 
We have presented a novel method for stereo ranging with verging 

cameras, and analyzed its performance. We derived the analytical re- 
lationship between range, vergence angle, and disparity, and showed 
how to estimate range given indirect measurements of vergence angle, 
disparity, and other parameters. We demonstrated the precision of the 
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range computation with real images to be approximately five percent 
of the true range. Although this performance is acceptable for many 
applications, extensions and future work are possible. 

We can extend the model relating range to measurable quantities. 
For instance, we could compensate for radial distortions of the lenses, 
the optical axes not piercing the image centers, and the tilt of the 
receptor planes with respect to each other. 

Another topic for future work is to eliminate or identify mistaken 
matches, which, as we have seen, can cause large range errors. This 
is a difficulty faced by all solutions to the correspondence problem; 
it is not unique to the matching procedure employed here. One 
possibility is to incorporate knowledge about the scene, in particular, 
the minimum and maximum object distances. This constrains the 
disparities to lie within a certain interval, and therefore bounds 
the disparity error. A second possibility is to enforce consistency 
between the range from stereo and the range computed by an 
independent process, e.g., focus ranging 181. A third possibility is 
to tune the matcher to minimize the probability of mistakes, e.g., 
by increasing the number of neighboring matches required to have 
similar disparities. Of course, this will tend to decrease the number 
of matches, particularly in areas of range discontinuities. 

Another interesting direction of future research is to model the 
disparity error distribution (and eventually, range error distribution) 
by a p-contaminated distribution. In such a distribution, a large 
fraction of the time the disparity error follows a smaller variance 
distribution of feature localization errors, and a small fraction of 
the time the disparity error follows a larger variance distribution 
of mistaken matches. To further describe this distribution, let d* 
represent the true disparity of an object point, and di represent the 
disparity computed by the ith execution of the matching algorithm. 
Suppose the additive error model d, = d* + 6,, where the disparity 
errors 6i are identically distributed with a p-contaminated Gaussian 
probability density f(6): 

where p E [0,1], and c(6) denotes any density function that is 
unimodal and symmetric about d*. As an illustration, we sketch 
what the p-contaminated disparity distribution might be for our data. 
Assuming the Gaussian density N ( d * ,  g;) for c, we estimate roughly 
that p = 0.05, glPp = 0.07 mm (2 pixels), and gP = 1.44 mm 
(48 pixels). We emphasize that this is an illustration, not a result. 

APPENDIX A 
IMAGE TO CAMERA COORDINATE TRANSFORMATION 

In this Appendix, we derive the transformation from the image 
reference frame in units of pixels to the camera reference frame in 
metric units. The method applies to solid-state sensors with known 
geometries. 

Define two reference frames, one for the image and one for the 
camera. The origin of the image reference frame is the upper left- 
hand corner of the image. The u-axis is aligned with the scan-lines, 
and the v-axis points to the bottom of the image. Let this frame be 
left-handed. The origin of the camera reference frame is at the lens 
center. The x-axis is aligned with the scan-lines, and the y-axis points 
to the top of the image. Let this frame be right-handed. 

We account for scaling, rotation, and translation between the two 
frames by 

where N, is the number of columns, Ny is the number of scan-lines, 
I, is the horizontal interelement spacing (in mm) in the direction of 
the scan-line, Zy is the vertical interelement spacing, and cy is the size 
in mm of a pixel. Note that this is an improper transformation (det 
R = -1); it changes the handedness from left to right. 

1205 

Lens Center 

h Center of 
Rotation 

After Vergence 
Before 

Fig. 7. Vergences changes the baseline distance. This figure illustrates the 
case where the center of rotation does not coincide with the lens center, but 
is displaced along the optic axis by an amount 6. When the two optic axes 
are parallel, the baseline distance is b. When the cameras verge by angle 0, 
then the baseline distance becomes b f 2 y .  

APPENDIX B 
VERGENCE CHANGES BASELINE DISTANCE 

Suppose that the camera stations are not parallel, and that the lens 
center is displaced from the rotation center by a distance 6 along 
the optic axis. If 6 > 0, as in Fig. 7, then the baseline distance b 
increases as the vergence angle 0 increases. Let y be the distance 
parallel to the baseline between the rotation center and lens center 
after vergence. From the triangle in the figure, y = 6 sin 8. Thus, the 
baseline distance for verged cameras is b ,  = b + 27. 

To quantify the change in the baseline caused by vergence, we 
assign the parameters physically realistic values. The vergence mech- 
anism constrains the vergence angle by 8 s 5” ,  and since y increases 
with 0, the worst case is 8 = 5” .  We estimate that 6 = 1 cm, implying 
that y M 0.8 mm. Under these conditions, the difference 27 between 
b, and b is negligible. 

However, since b, - b increases with 6, the change in baseline 
distance caused by vergence cannot always be safely neglected. 
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