
Outline Multibody Epipolar Constraint GPCA-Voting Robust GPCA Applications Conclusion

Segmentation of Subspace Arrangements
III – Robust GPCA

Allen Y. Yang

Berkeley CS 294-6, Lecture 25

Dec. 3, 2006

Allen Y. Yang Segmentation of Subspace Arrangements III – Robust GPCA



Outline Multibody Epipolar Constraint GPCA-Voting Robust GPCA Applications Conclusion

Generalized Principal Component Analysis (GPCA): (an overview)

x ∈ V1 ∪ V2 ⇒ (x3 = 0)or(x1 = x2 = 0)
⇒ {x1x3 = 0, x2x3 = 0}.

Veronese Map: Given N samples x1, . . . , xN ∈ R3,

L2
.
= [ν2(x1), . . . , ν2(xN )] ∈ RM

[3]
2
×N

=


··· (x1)2 ···
··· (x1x2) ···
··· (x1x3) ···
··· (x2)2 ···
··· (x2x3) ···
··· (x3)2 ···



V1

V2

R3x3

x1

x2

The null space of L2 is
c1 = [0, 0, 1, 0, 0, 0]
c2 = [0, 0, 0, 0, 1, 0]

⇒ p1 = c1ν2(x) = x1x3

p2 = c2ν2(x) = x2x3

P(x)
.
= [p1(x) p2(x)] = [x1x3, x2x3], then

∇xP = [∇xp1 ∇xp2 ] =

[
x3 0
0 x3
x1 x2

]
.

∇xP at one sample per subspace gives normal vectors that span V⊥1 and V⊥2 :

x = [a, b, 0]T ∈ V1 ⇒ ∇xP|x =
[

0 0
0 0
a b

]
∈ V⊥1 .

y = [0, 0, c]T ∈ V2 ⇒ ∇xP|y =
[

c 0
0 c
0 0

]
∈ V⊥2 .

Segment samples and recover V1 and V2.
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Multibody Fundamental Matrix

Given K rigid bodies, an image correspondence (x1, x2) satisfies:

f (x1, x2) = (xT
2 F1x1)(x

T
2 F2x1) · · · (xT

2 FK x1) = 0.

Using the kronecker product:

f (x1, x2) = {(x1 ⊗ x2)
T F s

1} · · · {(x1 ⊗ x2)
T F s

K}.

We treat z = x1 ⊗ x2 ∈ R9 as the new feature vector, then

f (x1, x2) = νK (z)T c.

A second way to rewrite the bilinear constraint:

f (x1, x2) is a linear constraint with respect to x1 and x2, respectively:

f (x1, x2) = fx2 (x1) = cT
x2

νK (x1); f (x1, x2) = fx1 (x2) = cT
x1

νK (x2).

Hence, f (x1, x2) can be rewritten by applying the Veronese map individually:

f (x1, x2) = νK (x2)
TFνK (x1), where F ∈ RM

[3]
K
×M

[3]
K .

Which representation is more compact?

1 K = 2: For c, M
[9]
2 =

(
2+9−1

2

)
= 45. For F , (M

[3]
2 )2 = 62 = 36.

2 K = 4: For c, M
[9]
4 = 495. For F , (M

[3]
4 )2 = 152 = 225.

Choose the second one.

F is called the multibody fundamental matrix, comparing to the (single) fundamental matrix F .
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Segmentation of Multibody Motion

The vanishing polynomial f (x1, x2) is solved as the following:

f (x1, x2) = νK (x2)
TFνK (x1) = (νK (x1)⊗ νK (x2))

TF s
.

∂
∂x2

f (x1, x2) =
∑K

i=1

(∏
j 6=i x

T
2 Fjx1

)
(Fix1).

Suppose (x1, x2) on Object k, then
(∏

j 6=i x
T
2 Fjx1

)
= 0 for all i 6= k:

∂

∂x2
f (x1, x2) =

∏
j 6=k

xT
2 Fjx1

 (Fkx1) ∼ (Fkx1) ∼ l2k .

Hence, ∂
∂x2

f (x1, x2) ∼ l2k ⊥ e2
k .

Given K rigid body motions, there exist K different epipoles e1, · · · , eK in the second view such that:

(eT
1 l)(eT

2 l) · · · (eT
K l) = 0,

which is a standard subspace-segmentation problem.
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GPCA-Voting: A Stable Implementation

PDA on noisy data

V1

V2 RD

=⇒
νn(x) Null(Ln)

=⇒ =⇒
∇x

V1

V2RM
[D]
n RM

[D]
n

p(x) = cTx RD

The noise affects the algebraic PDA process:

1 The data matrix LK (V ) is always full-rank.
Solution: Use SVD to estimate Null(LK ).

2 How to choose one point per subspace as the representative?
Solution: Rule of thumb is to pick samples far away from the origin and intersections.

3 Even with a good sample, evaluation of ∇P is still perturbed away from the true position.
Solution: We propose a voting algorithm to evaluate ∇P at all samples.
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A Voting Scheme

Goal:

1 Averaging ∇xP at more samples of a subspace.
2 Recover correct rank of ∇xP.

Difficulty: Do not know which samples belong to the same subspace, yet.

GPCA-Voting (a simple example)

1 Assume subspaces (2, 1, 1) in R3.

2 hI (3) = 4 vanishing polynomials ⇒ ∇xP ∈ R3×4.

3 Vote on rank-1 & rank-2 codimensions with a tolerance threshold τ

4 Average normal vectors associated with highest votes.

5 (optional) Iteratively refine the segmentation via EM or K-Subspaces.
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Simulation Results

1 Illustrations

(a) 8% (b)
12%

(c)
16%

Figure: (2, 1, 1) ∈ R3.

(a) 8% (b)
12%

(c)
16%

Figure: (2, 2, 1) ∈ R3.

2 Segmentation simulations

Table: Segmentation errors. 4% Gaussian noise is added.

Subspace Dimensions EM K-Subspaces PDA Voting Voting+K-Subspaces

(2, 2, 1) in R3 29% 27% 13.2% 6.4% 5.4%

(4, 2, 2, 1) in R5 53% 57% 39.8% 5.7% 5.7%

(4, 4, 4, 4) in R5 20% 25% 25.3% 17% 11%
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Outlier Issue

GPCA process:

V1

V2 RD

=⇒
νn(x) Null(Ln)

p(x) = cTx

=⇒ =⇒
∇x

Rank(Ln) = M
[D]
n − hI (n)

V1

V2RM
[D]
n RM

[D]
n RD

Breakdown of GPCA is 0% because breakdown of PCA is 0%:
a large outlier can arbitrarily perturb Null(Ln)

V1

V2 RD

=⇒
νn(x) Null(Ln)

=⇒

RM
[D]
n

p(x) = cTx

RM
[D]
n

⇒

⇒ Seek a robust PCA to estimate Null(Ln), where Ln = [νn(x1), · · · , νn(xN )].
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Three approaches to tackle outliers:

1 Probability-based: small-probability samples.

Probability plots: [Healy 1968, Cox 1968]
PCs: [Rao 1964, Ganadesikan & Kettenring 1972]
M-estimators: [Huber 1981, Campbell 1980]
multivariate trimming (MVT): [Ganadesikan & Kettenring 1972]

2 Influence-based: large influence on model parameters.

Parameter difference with and without a sample: [Hampel et al.
1986, Critchley 1985]

3 Consensus-based: not consistent with models of high consensus.

Hough: [Ballard 1981, Lowe 1999]
RANSAC: [Fischler & Bolles 1981, Torr 1997]
Least Median Estimate (LME): [Rousseeuw 1984, Steward 1999]
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Robust GPCA

STEP 1: Given the outlier percentage α%, robustify PCA:

Influence function:

1 Compute null space C = {c1, c2, . . . , cm} for Ln = [νn(x1) · · · νn(xN )].
2 For xi , compute C (i) for L(i)

n = [νn(x1) · · · î · · · νn(xN )].

3 I (xi )
.
= 〈C , C (i)〉.

4 Reject top α% samples with highest influence.

Multivariate-trimming (MVT):
Assuming a Gaussian distribution, samples with large Mahalanobis distance more likely to be outliers.

1 Compute a robust mean ū. vi = ui − ū. ui , vi ∈ RM
[D]
n

2 Initialize Σ0 = I
M

[D]
n ×M

[D]
n

.

3 In kth iteration, sort v1, . . . , vN by the Mahalanobis distance:

di = vT
i Σ−1

k−1vi .

4 Update Σk from (100− α)% samples with smallest distances.
5 Iteration stops when ‖Σk−1 − Σk‖ is small.
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STEP 2: Estimating the outlier percentage α%: Do we need the exact percentage for estimation?

(a) 16% out-
liers

(b) 7% re-
jected

(c) 38% re-
jected

(d) Maximal sample resid-
uals.

1 With noise and outliers present, unnecessary to distinguish outliers close to subspaces.

2 Robust PCA is moderately stable when the outlier percentage is over-estimated.

Outlier Percentage Test based on the Influence Function Principle

Further rejection only results in small changes in the
model parameters and sample residuals (w.r.t. boundary
threshold σ), i.e., the arrangement model stabilizes.

Influence
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Simulations on Robust GPCA (parameters fixed at τ = 0.3rad and σ = 0.4)

RGPCA-Influence

(e) 12% (f) 32% (g) 48% (h) 12% (i) 32% (j) 48%

RGPCA-MVT

(k) 12% (l) 32% (m) 48% (n) 12% (o) 32% (p) 48%
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Comparison with RANSAC

Accuracy

(q) (2, 2, 1) in R3 (r) (4, 2, 2, 1) in R5 (s) (5, 5, 5) in R6

Speed

Table: Average time of RANSAC and RGPCA with 24% outliers.

Arrangement (2,2,1) in R3 (4,2,2,1) in R5 (5,5,5) in R6

RANSAC 44s 5.1m 3.4m
MVT 46s 23m 8m

Influence 3m 58m 146m

Allen Y. Yang Segmentation of Subspace Arrangements III – Robust GPCA



Outline Multibody Epipolar Constraint GPCA-Voting Robust GPCA Applications Conclusion

Limitations of RGPCA

1 Hardware limits for high subspace dimension (> 10) or subspace number (> 6) in MATLAB.

2 Need to know the number of subspaces and dimensions.

3 Overfitting when percentage is overestimated, especially for MVT.

Animation

=⇒

Next section, we show solutions to these limitations via a new lossy coding framework.
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Experiment 1: Motion Segmentation under 3-D Affine Projection

Sequences: parking-lot segway toys man segway3

RANSAC:

MVT:

Influence:

Feature extraction: Shi and Tomasi. Good features to track. CVPR 1994.
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Experiment 2: Vanishing-Point Detection
RGPCA-Influence

Images:

Segments:

Influence:

Feature extraction: Kahn et al. A fast line finder for vision-guided robot navigation. PAMI, 1990.
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RGPCA-MVT

Images:

Segments:

MVT:
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RANSAC-on-Subspaces

Images:

Segments:

RANSAC:
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Conclusions

Estimation of hybrid subspace models is closely related to the study of subspace arrangements in algebraic
geometry.

Global structure of K subspaces uniquely determined by K th degree vanishing polynomials.

Two algorithms were proposed using vanishing polynomials as a global signature

1 Noise: GPCA-Voting .
2 Outliers: RGPCA.

Confluence of Algebra and Statistics

In estimation of hybrid subspace models:

Algebra makes statistical algorithms well-conditioned;

Statistics makes algebraic algorithms robust.
G
P
C
A
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Future Directions

Mathematics: More complex models [Rao et al. ICCV 2005].

1 A union of quadratic surfaces.

2 A mixture of linear subspaces and
quadratic surfaces.

Kernel GPCA: tackle the curse of dimensionality in Veronese embedding.

V1

V2 RD

=⇒
νn(x) Null(Ln)

p(x) = cTx

=⇒ =⇒
∇x

Rank(Ln) = M
[D]
n − hI (n)

V1

V2RM
[D]
n RM

[D]
n RD

Model selection: a unified scheme to tackle simultaneous model estimation and selection.

Applications

1 Natural image compression and classification.
2 Hyper-spectral image analysis.
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