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Generalized Principal Component Analysis (GPCA): (an overview)

0 xEViUW = (x3=0)or(x1 = x =0)
= {x1x3 = 0,xx3 = 0}.

@ Veronese Map: Given N samples x1, . ..,xy € R3,
3]
L = [nx),..., 0] € RY2 XV
- a)?
C () e
_ | )
- - (e)?
- (ox3) -
- (a)?
. ¢ =1[0,0,1,0,0,0] p1 = c1v(x) = x1x3
@ The null space of L; is ¢ = [0,0,0,0,1,0] = P2 = Cova(x) = xax3
0 P(x) = [p1(x) p2(x)] = [x1x3, x2x3], then
x3 0
VP = [Vxp1 Vxp2] = [ 03><3
X1 X2

@ V4P at one sample per subspace gives normal vectors that span Vll and V2l

x=[a,b,0] € Vi = VPl = |0
a

y=100,0,c]" € Vb = V, Ply =

ono woo

coan

@ Segment samples and recover Vi and V5.
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Multibody Epipolar Constraint
o0

Multibody Fundamental Matrix

@ Given K rigid bodies, an image correspondence (x1, x2) satisfies: | (R, Ty)

f(x1,%2) = (x2TF1x1)(x2TF2x1) S (szFle) =0. &)

Using the kronecker product:
Flxi, %) = {(x1 ®x2) F{}- - {(x1 ® x2) " F}.
We treat z = x; ® x» € R® as the new feature vector, then
f(x1,%2) = VK(Z)TC.
@ A second way to rewrite the bilinear constraint:
e f(x1,x2) is a linear constraint with respect to x; and xz, respectively:
Flxi, %) = fiy (1) = el ui(xa);  Fx1, %) = £y (%) = ¢ vi(x2).

o Hence, f(x1,X2) can be rewritten by applying the Veronese map individually:

f(x1,%2) = I/K(XQ)T]:VK(Xl), where F € ]RME] XME].
@ Which representation is more compact?
O K =2 Forc, M = (21971) = 45. For 7, (MP)? = 6% = 36.
@ K =4: Forc, M = 495. For 7, (MI)2 = 152 = 225.
Choose the second one.

@ F is called the multibody fundamental matrix, comparing to the (single) fundamental matrix F.
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Multibody Epipolar Constraint
oe

Segmentation of Multibody Motion

@ The vanishing polynomial f(x1, x2) is solved as the following:

F(x1,%2) = vk(x2)T Frk(x1) = (vk(x1) @ vk(x2))T F*.

° 322 f(x1,%x2) = Z,K:1 (Hj#i x;—ij1> (Fix1).

@ Suppose (x1,x2) on Object k, then (Hj#i x;—ij1> =0 forall i # k:

1%}
7f(X1,X2) = H X;ijl (Fkxl) ~ (Fkxl) ~ |i
%2 Jk

Hence, a—‘zzf(xl,xQ) ~ Ii 1 ei.

@ Given K rigid body motions, there exist K different epipoles e;, - - - , ex in the second view such that:
(e/ (e 1)+ (exl) =0,

which is a standard subspace-segmentation problem.
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GPCA-Voting
[ ]

GPCA-Voting: A Stable Implementation

PDA on noisy data

o
The noise affects the algebraic PDA process:

@ The data matrix Lx(V) is always full-rank.
Solution: Use SVD to estimate Null(Lk).

@ How to choose one point per subspace as the representative?
Solution: Rule of thumb is to pick samples far away from the origin and intersections.

ba ~ Dpn(y2)

ab1~ Dpn(y1)

© Even with a good sample, evaluation of VP is still perturbed away from the true position.
Solution: We propose a voting algorithm to evaluate VP at all samples.

Allen Y. Yang Segmentation of Subspace Arrangements Il — Robust GPCA



GPCA-Voting
L]

A Voting Scheme
@ Goal:

© Averaging V4P at more samples of a subspace.
@ Recover correct rank of V,P.

@ Difficulty: Do not know which samples belong to the same subspace, yet.

GPCA-Voting (a simple example)

@ Assume subspaces (2,1,1) in R3.
@ h(3) = 4 vanishing polynomials = VP € R3%4,

© Vote on rank-1 & rank-2 codimensions with a tolerance threshold 7

Table: Plot of normal vectors
Rank 1

Lz
L&
9

pl [— A
: |
L=

Pick 2 rank-2 bases with highest votes
Pick 1 rank-1 hasis with highest votes

/ .\» ’ H
N
b
ik
il

@ Average normal vectors associated with highest votes.

© (optional) Iteratively refine the segmentation via EM or K-Subspaces.
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GPCA-Voting
[ ]

Simulation Results

@ lllustrations

(a) 8% (b) (c)
12% 16%

(a) 8% (b) (c)
12% 16%

Figure: (2,1,1) € R3. Figure: (2,2,1) € R3.

@ Segmentation simulations

Table: Segmentation errors. 4% Gaussian noise is added.

[ Subspace Dimensions [[ EM [ K-Subspaces | PDA [ Voting [ Voting+K-Subspaces
(2,2, 1) in K3 29% 2% 132% | 6.4% 5.4%
(4,2,2,1) in R> 53% 57% 39.8% 5.7% 5.7%
(4,4,4,4) inB° 20% 25% 253% | 17% 11%
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Robust GPCA
[ 1o}

Outlier Issue

@ GPCA process:
vl

RO RMP rRM

Null(L,)

Rank(L,) = MIP' — hy(n

@ Breakdown of GPCA is 0% because breakdown of PCA is 0%:
a large outlier can arbitrarily perturb Null(L,)

g

= Seek a robust PCA to estimate Null(L,), where L, = [vp(x1), -+, va(xn)].

Allen Y. Yang Segment: of Subspace Arrangements Ill — Robust GPCA



Robust GPCA
(o] }

Three approaches to tackle outliers:
@ Probability-based: small-probability samples.

Probability plots: [Healy 1968, Cox 1968]

PCs: [Rao 1964, Ganadesikan & Kettenring 1972]
M-estimators: [Huber 1981, Campbell 1980]

multivariate trimming (MVT): [Ganadesikan & Kettenring 1972]

@ Influence-based: large influence on model parameters.

Parameter difference with and without a sample: [Hampel et al.
1986, Critchley 1985]

© Consensus-based: not consistent with models of high consensus.

Hough: [Ballard 1981, Lowe 1999]
RANSAC: [Fischler & Bolles 1981, Torr 1997]
Least Median Estimate (LME): [Rousseeuw 1984, Steward 1999]
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Robust GPCA
[ Je]

Robust GPCA

STEP 1: Given the outlier percentage a%, robustify PCA:

@ Influence function:
@ Compute null space C = {c1,¢2,...,¢cn} for L, = [vp(x1) - - - vn(xn)].

@ For x;, compute c for L(,,i) = [wa(x1) 1 va(xn)]

Q /(x;) = (C, ).
Q Reject top % samples with highest influence.

@ Multivariate-trimming (MVT):
Assuming a Gaussian distribution, samples with large Mahalanobis distance more likely to be outliers.
_ _ mtPl
@ Compute a robust mean @. v; = u; — 0. u;,v; € R"n
Initialize o =/ .
Q o = Iyl o)
© In kth iteration, sort v1, ..., vy by the Mahalanobis distance:
Te—1
d,‘ =V; zk71V[.

Q Update X from (100 — a)% samples with smallest distances.
@ lIteration stops when ||Z;_1 — X«|| is small.
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Robust GPCA
[e]

STEP 2: Estimating the outlier percentage a%: Do we need the exact percentage for estimation?

I
Sanple ejecson it 15

(a) 16% out- (b) 7% re- (c) 38% re- (d) Maximal sample resid-
liers jected jected uals.

@ With noise and outliers present, unnecessary to distinguish outliers close to subspaces.

@ Robust PCA is moderately stable when the outlier percentage is over-estimated.

Outlier Percentage Test based on the Influence Function Principle

Further rejection only results in small changes in the
model parameters and sample residuals (w.r.t. boundary
threshold o), i.e., the arrangement model stabilizes.

Influence
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Robust GPCA
@00

Simulations on Robust GPCA (parameters fixed at 7 = 0.3rad and o = 0.4)

@ RGPCA-Influence

(e) 12% (f) 32% (g) 48% (h) 12% (i) 32% () 48%
@ RGPCA-MVT
R e A
o f@%ﬁ*
BET S T
M £
* H

(p) 48%

(m) 48% (n) 12% (o) 32%

1) 32%

(k) 12%
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Robust GPCA
(o] o}

Comparison with RANSAC

@ Accuracy

E 5 60 E
E g 40 g
® T el e == @
10 20 30 40 50
Outlier Percentage [%] Outlier Percentage [%] Outlier Percentage [3%]

(q) (2,2,1) in R3 (r) (4,2,2,1) in R® (s) (5,5,5) in R®

@ Speed

Table: Average time of RANSAC and RGPCA with 24% outliers.

[ Arrangement [| (221)inR® [ (4221)inR° | (555)inR°® |

RANSAC 44s 5.1m 3.4m
MVT 46s 23m 8m
Influence 3m 58m 146m
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Robust GPCA
ooe

Limitations of RGPCA
@ Hardware limits for high subspace dimension (> 10) or subspace number (> 6) in MATLAB.
@ Need to know the number of subspaces and dimensions.

© Overfitting when percentage is overestimated, especially for MVT.

Animation

Next section, we show solutions to these limitations via a new lossy coding framework.
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Applications
°

Experiment 1: Motion Segmentation under 3-D Affine Projection

Sequences: parking-lot segway man segway3
C e e o ]
5o eoss %0 g K - . 5
g e B o3 ¥, ¥
8 or 2 Saan N cftlh
;’:’":i?g"':" e ot = ,! T g
% -
RANSAC: |
0455 gy0 B8 & =
Sad i B iat # ] g 4
o gl g o B e w g
PR % . S
';:n N ¥ o Y &
MVT: R
Sas i iiin fr ity - e 3
oy o 28 s L
il YO O W < e RS £

Influence:

Feature extraction: Shi and Tomasi. Good features to track. CVPR 1994.
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Experiment 2: Vanishing-Point Detection
RGPCA-Influence

s

] ﬁ
gﬁﬁﬁ"f’:@<

Segments:

Influence:

Feature extraction: Kahn et al. A fast line finder for vision-guided robot navigation. PAMI/, 1990.
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Applications

oeo

RGPCA-MVT

Images:
Segments:
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RANSAC-on-Subspaces

Segments:

200 400 600 €00 1000 1200

-
RANSAC: R e o

2000 4 B
2000
o) |y = o 4 L
o * 1000
oo | |
1000 1000 E o s
2000
000 5 e s 2 4 [ R
o an oo T TS Tom o ode 20 w00 et
Robust GPCA
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Concl
°

Conclusions

@ Estimation of hybrid subspace models is closely related to the study of subspace arrangements in algebraic
geometry.

@ Global structure of K subspaces uniquely determined by Kth degree vanishing polynomials.

@ Two algorithms were proposed using vanishing polynomials as a global signature
@ Noise: GPCA-Voting .
@ Outliers: RGPCA.

Confluence of Algebra and Statistics

In estimation of hybrid subspace models:
@ Algebra makes statistical algorithms well-conditioned;

@ Statistics makes algebraic algorithms robust.
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nclusion

Future Directions

@ Mathematics: More complex models [Rao et al. /CCV 2005].

@ A union of quadratic surfaces.

@ A mixture of linear subspaces and
quadratic surfaces.

M)
R PORr
it

.
. Null(L,) .
. - =
- Rank(Ly) = M) — hy(n)

@ Model selection: a unified scheme to tackle simultaneous model estimation and selection.

@ Applications

© Natural image compression and classification.
@ Hyper-spectral image analysis.
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