Sparse and Low-Rank Representation for Biometrics – Lecture II: Low-Rank Representation and Applications

Allen Y. Yang
Department of EECS, UC Berkeley
yang@eecs.berkeley.edu

with John Wright and Yi Ma

ICB 2013 Tutorial
From Sparsity to Low Rank

- Previously: Sparse representation-based classification

\[y = A x + e \]

- This lecture: Recovering low-rank matrices (many correlated vectors)

\[Y = X + E \]
Formulation: Robust PCA

\[Y = X + E \]

Figure: Given \(Y = X + E \) with \(X \) low rank and \(E \) sparse, recover \(X \) and \(E \).

Existing approaches to Robust PCA in the literature:
- Multivariate trimming [Gnanadeskian & Kettering '72]
- Random sampling [Fischler & Bolles '81]
- Alternating minimization [Ke & Kanade '03]
- Influence functions [de la Torre & Black '03]

Can we find an efficient and provably correct algorithm?
Related Solutions: Matrix Recovery

- Classical singular-value decomposition (SVD) [Hotelling '35, Karhunen & Loeve '72]
 Given $Y = X + Z$, where Z represents Gaussian noise, recover X
 SVD is a stable, efficient algorithm. Theoretically optimal \rightarrow huge impact in practice.
Related Solutions: Matrix Recovery

- **Classical singular-value decomposition (SVD)** [Hotelling '35, Karhunen & Loeve '72]
 Given \(Y = X + Z \), where \(Z \) represents Gaussian noise, recover \(X \)
 SVD is a stable, efficient algorithm. Theoretically optimal \(\rightarrow \) huge impact in practice.

- **Matrix completion**: low rank with missing data [Candès & Recht '08, Candès & Tao '09, Keshevan et al. '09, Gross '09, Ravikumar & Wainwright '10]
 From \(Y = P_\Omega [X] \), recover \(X \).
 The problem is solvable if \(X \) is low rank and the support \(\Omega \) is large enough.
Robust PCA is a hard problem

(RPCA): \(Y = X + E \), whereby unknowns \(X \) is low-rank and \(E \) is sparse.

- Sparse matrices can be also low-rank:

\[
\begin{align*}
Y &= 1_{ij} \\
X &= 1_{ij} \\
E &= 0 \\
X &= 0 \\
E &= 1_{ij}
\end{align*}
\]

- Certain sparse error patterns \(E \) make exactly recovering \(X \) impossible:

\[
\begin{align*}
X \\
E = e_i v^* \\
Y = X + E
\end{align*}
\]

Exclude these ambiguities from the possible solutions.
Incoherence Conditions

Theorem [Candès & Recht '08]

\(X \) can be recovered if it is **incoherent** with the standard basis on which \(E \) is sparse.

On \(X \): Incoherence condition on singular vectors

1. Singular vectors of \(X \) not too spiky: \(\max_i \| U_i \|^2 \leq \mu r / m \), \(\max_i \| V_i \|^2 \leq \mu r / n \).
2. Not too cross-correlated: \(\| U V^* \|_\infty \leq \sqrt{\mu r / mn} \).

http://www.eecs.berkeley.edu/~yang

Sparse and Low-Rank Representation
Incoherence Conditions

Theorem [Candès & Recht '08]

X can be recovered if it is **incoherent** with the standard basis on which E is sparse.

- **On X:** Incoherence condition on singular vectors
 1. Singular vectors of X not too spiky: $\max_i \|U_i\|^2 \leq \mu r / m$
 $\max_i \|V_i\|^2 \leq \mu r / n$.
 2. Not too cross-correlated: $\|UV^*\|_\infty \leq \sqrt{\mu r / mn}$.

- **On E:** Uniform model on error support, but signs and magnitudes are arbitrary:

 $$\text{supp}(E) \sim \text{uni}([m] \times [n], \rho).$$
Convex Optimization

- Exact solution is nonconvex and NP-hard

\[
\min \text{ rank}(X) + \gamma \|E\|_0 \quad \text{subj. to} \quad Y = X + E.
\]

Neither \(\text{rank}(X)\) nor \(\|E\|_0\) is a smooth convex function.
Convex Optimization

- Exact solution is nonconvex and NP-hard
 \[
 \min \text{rank}(X) + \gamma \|E\|_0 \quad \text{subj. to} \quad Y = X + E.
 \]

 Neither \(\text{rank}(X)\) nor \(\|E\|_0\) is a smooth convex function.

- **Convex relaxation:** [Fazel et al. '01, Recht et al. '08]
 1. **Rank:** \(\text{rank}(X)\) equivalent to \(\ell_0\)-norm of its singular values.

 Nuclear norm \(\|X\|_* = \sum_i \sigma_i(X)\) equivalent to \(\ell_1\)-norm of its singular values.
 \[
 \text{rank}(X) \Rightarrow \|X\|_*
 \]

 2. **Sparse error:**
 \[
 \|E\|_0 \Rightarrow \|E\|_1 = \sum_{ij} |E_{ij}|.
 \]
Theorem (Principal Component Pursuit) [Candès et al. '09]

If $X_0 \in \mathbb{R}^{m \times n}$, assuming $m \geq n$, has rank

$$r \leq \rho r \frac{n}{\mu \log^2(m)}$$

and E_0 has Bernoulli support with error probability $\rho \leq \rho_s$, then with very high probability

$$(X_0, E_0) = \arg\min \|X\|_* + \frac{1}{\sqrt{m}} \|E\|_1 \text{ subj. to } X + E = X_0 + E_0,$$

and the minimizer is unique.

Convex optimization recovers matrices of rank $O\left(\frac{n}{\log^2(m)}\right)$ from errors corrupting $O(mn)$ entries.
Big Picture: Parallelism of Sparsity and Low-Rank

<table>
<thead>
<tr>
<th>Sparse Vector</th>
<th>Low-Rank Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degeneracy of</td>
<td>one signal</td>
</tr>
<tr>
<td>Measure</td>
<td>(\ell^0) norm (|x|_0)</td>
</tr>
<tr>
<td>Convex Surrogate</td>
<td>(\ell^1) norm (|x|_1)</td>
</tr>
<tr>
<td>Compressed Sensing</td>
<td>(y = Ax)</td>
</tr>
<tr>
<td>Error Correction</td>
<td>(y = Ax + e)</td>
</tr>
<tr>
<td>Domain Transform</td>
<td>(y \circ \tau = Ax + e)</td>
</tr>
</tbody>
</table>
Two Important Variations

- **Matrix completion**: \(Y = \mathcal{P}_\Omega[A_0 + E_0] \)
 With conditions similar to RPCA, but the observation \(Y \) is only a random subset of entries of size
 \[|\Omega| = \frac{mn}{10}. \]
 Then with very high probability, solving the convex program
 \[
 \min \|X\|_* + \frac{1}{\sqrt{m}}\|E\|_1 \quad \text{subj. to} \quad \mathcal{P}_\Omega[X + E] = Y,
 \]
 uniquely recovers \((X_0, E_0)\).
Two Important Variations

Matrix completion: \(Y = \mathcal{P}_\Omega [A_0 + E_0] \)
With conditions similar to RPCA, but the observation \(Y \) is only a random subset of entries of size
\[|\Omega| = mn/10. \]
Then with very high probability, solving the convex program
\[
\min \| X \|_* + \frac{1}{\sqrt{m}} \| E \|_1 \quad \text{subj. to} \quad \mathcal{P}_\Omega [X + E] = Y,
\]
uniquely recovers \((X_0, E_0)\).

RPCA with Noise: \(Y = A_0 + E_0 + Z \)
With conditions similar to RPCA, but assuming \(\| Z \|_F \leq \eta \). Then with very high probability, solving the convex program
\[
\min \| X \|_* + \frac{1}{\sqrt{m}} \| E \|_1 \quad \text{subj. to} \quad \| Y - X - E \|_F \leq \eta,
\]
satisfies the following bound for some constant \(C > 0 \):
\[
\| (X^*, E^*) - (X_0, E_0) \|_F \leq C\eta.
\]
Simulations

- White regions are instances with perfect recovery.
- Correct recovery when X is low-rank and E is sparse.
Other Useful Regularizers in Sparse and Low-Rank Representation

There are many types of low-dimensional structures:
- [Zhou et al. '09]: Spatially contiguous sparse errors via MRF
- [Bach '10]: Structured relaxations from sub modular functions
- [Negahban et al. '10]: Geometric analysis of recovery
- [Becker et al. '10]: Algorithmic templates
- [Xu et al. '11]: Column sparse errors $L_{2,1}$ norm
- [Recht et al. '11]: Compressive sensing of various structures
- [Candès & Recht '11]: Compressive sensing of decomposable structures
- [McCoy & Tropp '11]: Decomposition of sparse and low-rank structures
- [Wright et al. '12]: Superposition of decomposable structures
- [Ohlsson et al. '13]: Quadratic basis pursuit

Take-Home Message
Let the data tell you the right structure: **geometry, statistics, learning algorithms, computation.**
Removing varying illumination from face images

58 images of one person under varying lighting:

$\begin{bmatrix}
Y \\
\vdots \\
Y
\end{bmatrix} \rightarrow \text{RPCA} \rightarrow
\begin{bmatrix}
Y \\
\vdots \\
Y
\end{bmatrix}$

Specularity

Self-shadowing

http://www.eecs.berkeley.edu/~yang

Sparse and Low-Rank Representation
Background subtraction from video

Static camera surveillance video

200 frames, 144 x 172 pixels,

Significant foreground motion

\[\text{Video } Y = \text{Low-rank appx. } X + \text{Sparse error } E \]
Repairing low-rank textures

http://www.eecs.berkeley.edu/~yang
Repairing low-rank textures
Minimize Image Rank Under Transformation

- Most symmetric image patterns (if treated as matrices) are low-rank
Minimize Image Rank Under Transformation

- Most symmetric image patterns (if treated as matrices) are low-rank

![Images](e.png: Output (r = 14), f.png: Output (r = 8), g.png: Output (r = 19), h.png: Output (r = 6)]

- Camera projection and pose variation distort/destroy the low-rank representation

![Images](a.png: Input (r = 35), b.png: Input (r = 15), c.png: Input (r = 53), d.png: Input (r = 13)]

Recover camera projection and pose

Minimizing the rank of texture images may recover the hidden information about the orientation of the patterns in 3-D space.
Objective function [Zhang et al. '10]

\[
\min_{A,E,\tau} \|A\|_* + \lambda \|E\|_1 \quad \text{subj. to} \quad I \circ \tau = A + E,
\]

where \(A\) is low-rank and \(E\) is sparse, \(\tau\) parametrizes an image transformation.
Transform Invariant Low-rank Texture (TILT)

- Objective function [Zhang et al. '10]

$$\min_{A, E, \tau} \|A\|_* + \lambda \|E\|_1 \quad \text{subj. to} \quad I \circ \tau = A + E,$$

where A is low-rank and E is sparse, τ parametrizes an image transformation.

More Examples

- Corner point
- Edge
- Characters
- Frieze Pattern
Repair Distorted Low-rank Textures

Low-rank Method

Input

Output

Photoshop
Robust Alignment via Low-rank and Sparse Decomposition (RASL)

Problem: Given $D \circ \tau = A_0 + E_0$, recover τ, A_0 and E_0.

- Parametric deformations (rigid, affine, projective...)
- Low-rank component
- Sparse component

Solution: Robust Alignment via Low-rank and Sparse (RASL) Decomposition

Iteratively solving the linearized convex program:

\[
\min \|A\|_* + \lambda \|E\|_1 \quad \text{subj} \quad A + E = D \circ \tau_k + J \Delta \tau \\
\text{(or } Q(A + E) = QD \circ \tau_k, QJ = 0)\]

Reference: Peng, Ganesh, Wright, Ma, '10.

http://www.eecs.berkeley.edu/~yang

Sparse and Low-Rank Representation
RASL Example: Face Alignment
Input: faces detected by a face detector (D)
After RASL Alignment

Output: aligned faces \((D \circ \tau) \)

Average
Sparse error of the face image

Output: sparse error images (E)
Aligning hand-written digits using RASL

D

Learned-Miller PAMI’06

Vedaldi CVPR’08

A

E
Recover low-dimensional structures from diminishing fraction of corrupted measurements.

Reference: Zhou, Min, & Ma '12.
Example

http://www.eecs.berkeley.edu/~yang

Sparse and Low-Rank Representation
Compare to AutoStitch and PhotoShop

Low-rank

AutoStitch

Photoshop

http://www.eecs.berkeley.edu/~yang
Compare to AutoStitch and PhotoShop

Low-rank

AutoStitch

Photoshop

http://www.eecs.berkeley.edu/~yang

Sparse and Low-Rank Representation
Informative feature selection via Sparse PCA

Goal
- Select strong/informative object features for low-end mobile cameras, surveillance apps.
- Geometric methods are often ill-posed
 SfM plus camera adjacency graph
- Challenges: 1. objects lack invariant features; 2. excessive outliers; 3. pairwise matching is costly.

Approach
- A batch statistical solution: Sparse PCA
 \[
 \max_{\|x\|_2 \leq 1} x^T \Sigma x - \rho \|x\|_0
 \]
- An efficient convex algorithm as a SDP problem.
- Outperforms in both accuracy and speed

More Applications in Sparse and Low-Rank Representation:

- **Target Tracking** [Mei & Ling 2009, Liu et al. 2010, Li et al. 2011]

 ![Target Tracking Example](image)

- **Superresolution** [Yang et al. 2009]

 ![Superresolution Example](image)

- **Sparse dictionary learning** [Aharon et al. 2006, Mairal et al. 2008, Duarte-Carvajalino & Sapiro 2009]

 ![Sparse Dictionary Learning Example](image)
Take-Home Messages

1. (Transformed) **low-rank and sparse** structures are central to visual data modeling, processing, and analyzing.
2. Such structures can now be extracted **robustly and efficiently** from raw image pixels.
3. Low-rank and sparse representation capable of **capturing local or global information** from high-resolution images, surpassing human perception.
4. The new algorithms have exhibited tremendous impact to **board applications** in image processing, pattern recognition, and biometrics.