CYCLADES:
Conflict-free Asynchronous Machine Learning

Abstract

We present CYCLADES, a general framework for parallelizing stochastic optimization algorithms in a shared memory setting. CYCLADES is asynchronous during model updates, and requires no memory locking mechanisms, similar to HOGWILD!-type algorithms. Unlike HOGWILD!, CYCLADES introduces no conflicts during parallel execution, and offers a black-box analysis for provable speedups across a large family of algorithms. Due to its inherent cache locality and conflict-free nature, our multi-core implementation of CYCLADES consistently outperforms HOGWILD!-type algorithms on sufficiently sparse datasets, leading to up to 40% speedup gains compared to HOGWILD!, and up to 5× gains over asynchronous implementations of variance reduction algorithms.

1 Introduction

Following the seminal work of HOGWILD! [17], many studies have demonstrated that near linear speedups are achievable on several machine learning tasks via asynchronous, lock-free implementations [25, 13, 8, 16]. In all of these studies, classic algorithms are parallelized by simply running parallel and asynchronous model updates without locks. These lock-free, asynchronous algorithms exhibit speedups even when applied to large, non-convex problems, as demonstrated by deep learning systems such as Google’s Downpour SGD [6] and Microsoft’s Project Adam [4]. While these techniques have been remarkably successful, many of the above papers require delicate and tailored analyses to quantify the benefits of asynchrony for each particular learning task. Moreover, in non-convex settings, we currently have little quantitative insight into how much speedup is gained from asynchrony.

In this work, we present CYCLADES, a general framework for lock-free, asynchronous machine learning algorithms that obviates the need for specialized analyses. CYCLADES runs asynchronously and maintains serial equivalence, i.e., it produces the same outcome as the serial algorithm. Since it returns the same output as a serial implementation, any algorithm parallelized by our framework inherits the correctness proof of the serial counterpart without modifications. Additionally, if a particular serially run heuristic is popular, but does not have a rigorous analysis, CYCLADES still guarantees that its execution will return a serially equivalent output.

CYCLADES achieves serial equivalence by partitioning updates among cores, in a way that ensures that there are no conflicts across partitions. Such a partition can always be found efficiently by leveraging a powerful result on graph phase transitions [12]. When applied to our setting, this result guarantees that a sufficiently small sample of updates will have only a logarithmic number of conflicts. This allows us to evenly partition model updates across cores, with the guarantee that all conflicts are localized within each core. Given enough problem sparsity, CYCLADES guarantees a nearly linear
speedup, while inheriting all the qualitative properties of the serial counterpart of the algorithm, e.g., proofs for rates of convergence. Enforcing a serially equivalent execution in CYCLADES comes with additional practical benefits. Serial equivalence is helpful for hyperparameter tuning, or locating the best model produced by the asynchronous execution, since experiments are reproducible, and solutions are easily verifiable. Moreover, a CYCLADES program is easy to debug because bugs are repeatable and we can examine the step-wise execution to localize them.

A significant benefit of the update partitioning in CYCLADES is that it induces considerable access locality compared to the more unstructured nature of the memory accesses during HOGWILD!. Cores will access the same data points and read/write the same subset of model variables. This has the additional benefit of reducing false sharing across cores. Because of these gains, CYCLADES can actually outperform HOGWILD! in practice on sufficiently sparse problems, despite appearing to require more computational overhead. Remarkably, because of the added locality, even a single threaded implementation of CYCLADES can actually be faster than serial SGD. In our SGD experiments for matrix completion and word embedding problems, CYCLADES can offer a speedup gain of up to 40% compared to that of HOGWILD!. Furthermore, for variance reduction techniques such as SAGA [7] and SVRG [11], CYCLADES yields better accuracy and more significant speedups, with up to 5x performance gains over HOGWILD!-type implementations.

2 The Algorithmic Family of Stochastic-Updates

We study parallel asynchronous iterative algorithms on the computational model used by [17]: several cores have access to the same shared memory, and each of them can read and update components of the shared memory. In this work, we consider a family of randomized algorithms that we refer to as Stochastic Updates (SU). The main algorithmic component of SU focuses on updating small subsets of a model variable x, according to prefixed access patterns, as sketched by Alg. 1.

In Alg. 1, S_i is a subset of the coordinates in x, each function f_i operates on the subset S_i of coordinates, and u_i is a local update function that computes a vector with support on S_i using as input x_{S_i} and x_i. Moreover, T is the total number of iterations, and D is the distribution with support $\{1, \ldots, n\}$ from which we draw i. Several machine learning algorithms belong to the SU algorithmic family, such as stochastic gradient descent (SGD), with or without weight decay and regularization, variance-reduced learning algorithms like SAGA and SVRG, and even some combinatorial graph algorithms. In our supplemental material, we explain how these algorithms can be phrased in the SU language.

The updates conflict graph A useful construct for our developments is the conflict graph between updates, which can be generated from the bipartite graph between the updates and the model variables. We define these graphs below, and provide an illustrative sketch in Fig. 1.

Definition 1. Let G_u denote the bipartite update-variable graph between the n updates and the d model variables. An update u_i is linked to a variable x_j, if u_i requires to read/write x_j. Let E_u denote the number of edges in the bipartite graph, Δ_L the max left degree of G_u, and $\overline{\Delta}_L$ the average left degree. Finally, we denote by G_c the conflict graph on the n updates. Two vertices in G_c are linked, if the corresponding updates share at least one variable in G_u. We also denote as Δ the max vertex degree of G_c.

We stress that the conflict graph is never constructed, but is a useful for understanding CYCLADES.

Our Main Result By exploiting the structure of the above graphs and through a light-weight sampling and allocation of updates, CYCLADES guarantees the following result for SU algorithms, which we establish in the following sections.

Theorem 1 (informal). Let an SU algorithm A be defined through n update rules, where the conflict max degree between the n updates is Δ, and the sampling distribution D is uniform with (or without) replacement from $\{1, \ldots, n\}$. Moreover, assume that we wish to run A for $T = \Theta(n)$ iterations, and...
that $\Delta_{\ell_i} \leq \sqrt{n}$. Then on up to $P = \tilde{O}(\frac{n}{\Delta})$ cores, CYCLADES guarantees a $\tilde{\Omega}(P)$ speedup over \mathcal{A}, while outputting the same solution x as \mathcal{A} would do after the same random set of T iterations.\footnote{$\tilde{\Omega}(\cdot)$ and $\tilde{O}(\cdot)$ hide polylog factors.}

We now provide two examples of how these guarantees translate for specific problem cases.

Example 1. In many applications we seek to minimize: $\min_{x} \frac{1}{n} \sum_{i=1}^{n} \ell_i(x^T x)$ where a_i represents the ith data point, x is the parameter vector, and ℓ_i is a loss. Several problems can be formulated in this way, such as logistic regression, least squares, binary classification, etc. If we tackle the above problem using SGD, or techniques like SVRG and SAGA, then (as we show in the supplemental) the update sparsity is determined by the gradient of a single sampled data point a_i. Here, we will have $\Delta_L = \max_i \|a_i\|_0$, and Δ will be equal to the maximum number of data points a_i that share at least one feature. As a toy example, let $\frac{n}{\Delta} = \Theta(1)$ and let the non-zero support of a_i be of size n^δ and uniformly distributed. Then, one can show that with high probability $\Delta = \tilde{O}(n^{1/2+\delta})$ and hence CYCLADES achieves an $\tilde{\Omega}(P)$ speedup up to $P = \tilde{O}(n^{1/2-2\delta})$ cores.

Example 2. Consider the generic optimization $\min_{x,y} \sum_{i=1}^{m} \sum_{j=1}^{m} \phi_{i,j}(x_i, y_j)$, which captures several problems like matrix completion and factorization \cite{lee2008approximate}, word embeddings \cite{mikolov2013distributed}, graph k-way cuts \cite{lee2008approximate}, etc. Assume that we aim to minimize the above by sampling a single function $\phi_{i,j}$ and then updating x_i and y_j using SGD. Here, the number of update functions is proportional to $n = m^2$, and each gradient update with respect to the sampled function $\phi_{i,j}(x_i, y_j)$ is only interacting with the variables x_i and y_j, i.e., only two variable vectors out of the $2m$ vectors (i.e., $\Delta_L = 2$). This also implies a conflict degree of at most $\Delta = 2m$. Here, CYCLADES can provably guarantee an $\tilde{\Omega}(P)$ speedup up to $P = O(m)$ cores.

In our experiments we test CYCLADES on several problems including least squares, classification with logistic models, matrix factorization, and word embeddings, and several algorithms including SGD, SVRG, and SAGA. We show that in most cases it can significantly outperform the HOGWILD! implementation of these algorithms, if the data is sparse.

Remark 1. We would like to note that there are several cases where there might be a few outlier updates with extremely high conflict degree. In the supplemental material, we prove that if there are no more than $O(n^\delta)$ vertices of high conflict degree Δ, and the rest of the vertices have max degree at most Δ, then the result of Theorem 1 still holds in expectation.

In the following section, we establish the theory of CYCLADES and provide the details behind our parallelization framework.

3 CYCLADES: Shattering Dependencies

CYCLADES consists of three computational components as shown in Fig. 2. It starts by sampling (according to a distribution \mathcal{D}) a number of B updates from the graph shown in Fig. 1, and assigns a label to each of them (a processing order). After sampling, it computes the connected components of the sampled subgraph induced by the B sampled updates, to determine the conflict groups.

Once the conflicts groups are formed, it allocates them across P cores. Finally, each core processes locally the conflict groups of updates that it has been assigned, following the order that each update has been labeled with. The above process is then repeated, for as many iterations as needed. The key component of CYCLADES is to carry out the sampling in such a way that we have as many connected components as possible, and all of them of small size, provably. In the next subsections, we explain how each part is carried out, and provide theoretical guarantees for each of them individually, which we combine at the end of this section for our main theorem.

Figure 2: CYCLADES samples updates, finds conflict-groups, and allocates them across cores. Each core asynchronously updates the model, without access conflicts. This is possible by processing the conflicting updates within the same core.
A key technical aspect that we exploit in CYCLADES is that appropriate sampling and allocation of updates can lead to near optimal parallelization of SU algorithms. To do that we expand upon the following result established in [12].

Theorem 2. Let \(G \) be a graph on \(n \) vertices, with max degree \(\Delta \). Let us sample each vertex independently with probability \(p = \frac{1}{\Delta} \) and define as \(G' \) the induced subgraph on the sampled vertices. Then, the largest connected component of \(G' \) has size at most \(\frac{4}{\Delta} \log n \), with high probability.

The above result pays homage to the giant component phase transition phenomena in random Erdos-Renyi graphs. What is surprising is that similar phase transitions apply to any given graph!

In practice, for most SU algorithms of interest, the sampling distribution of updates is either with or without replacement from the \(n \) updates. As it turns out, morphing Theorem 2 into a with-/without-replacement result is not straightforward. We defer the analysis needed to the supplemental material, and present our main theorem about graph sampling here.

Theorem 3. Let \(G \) be a graph on \(n \) vertices, with max degree \(\Delta \). Let us sample \(B = \frac{(1-\epsilon)n}{\Delta} \) vertices with or without replacement, and define as \(G' \) the induced subgraph on the sampled vertices. Then, the largest connected component of \(G' \) has size at most \(O\left(\frac{\log n}{\epsilon^2}\right) \), with high probability.

The key idea from the above is that if one samples no more than \(B = \frac{(1-\epsilon)n}{\Delta} \) updates, then there will be at least \(O(\epsilon^2 B/\log n) \) conflict groups to allocate across cores, each of size at most \(O(\log n/\epsilon^2) \). Since there are no conflicts between different conflict-groups, the processing of updates per any single group will never interact with the variables corresponding to the updates of another conflict group. The next step of CYCLADES is to form and allocate the connected components (CCs) across cores, efficiently. We address this in the following subsection. In the following, for brevity we focus on the with-replacement sampling case, but the results can be extended to the without-replacement case.

Identifying groups of conflict In CYCLADES, we sample batches of updates of size \(B \) multiple times, and for each batch we need to identify the conflict groups across the updates. Let us refer to \(G'_{i} \) as the subgraph induced by the \(i \)th sampled batch of updates on the update-variable graph \(G_u \). In the following we always assume that we sample \(n_b = c \cdot \Delta/(1-\epsilon) \) batches, where \(c \geq 1 \) is a constant. This number of batches results in a constant number of passes over the dataset. Then, identifying the conflict groups in \(G'_{i} \) can be done with a connected components (CC) algorithm. The main question we need to address is what is the best way to parallelize this graph partitioning part. In the supplemental, we provide the details of this part, and prove the following result:

Lemma 1. Let the number of cores be \(P = O\left(\frac{n}{\Delta \log \Delta}\right) \) and let \(\frac{n_b}{\Delta \log \Delta} \leq \sqrt{n} \). Then, the overall computation of CCs for \(n_b = c \cdot \frac{\Delta}{1-\epsilon} \) batches, each of size \(B = \frac{(1-\epsilon)n}{\Delta} \), costs no more than \(O\left(\frac{E_u}{P \log^2 n}\right) \).

Allocating updates to cores Once we compute the CCs (i.e., the conflicts groups of the sampled updates), we have to allocate them across cores. Once a core has been assigned with CCs, it will process the updates included in these CCs, according to the order that each update has been labeled with. Due to Theorem 3, each connected component will contain at most \(O\left(\frac{\log n}{\epsilon^2}\right) \) updates. Assuming that the cost of the \(j \)-th update in the batch is \(w_j \), the cost of a single connected component \(C \) will be \(w_C = \sum_{j \in C} w_j \). To proceed with characterizing the maximum load among the \(P \) cores, we assume that the cost of a single update \(u_i \), for \(i \in \{1,\ldots,n\} \), is proportional to the out-degree of that update — according to the update-variable graph \(G_u \) times a constant cost which we shall refer to as \(\kappa \). Hence, \(w_j = O\left(d_{L,j} \cdot \kappa\right) \), where \(d_{L,j} \) is the degree of the \(j \)-th left vertex of \(G_u \). In the supplemental material, we establish that a near-uniform allocation of CCs according to their weights leads to the following guarantee.

Lemma 2. Let the number of cores be bounded as \(P = O\left(\frac{n}{\Delta \log \Delta}\right) \), and let \(\frac{n_b}{\Delta \log \Delta} \leq \sqrt{n} \). Then, computing the stochastic updates across all \(n_b = c \cdot \frac{\Delta}{1-\epsilon} \) batches can be performed in time \(O\left(\frac{E_u \log^2 n}{P \cdot \kappa}\right) \), with high probability, where \(\kappa \) is the per edge cost for computing one of the \(n \) updates defined on \(G_u \).

Stitching the pieces together Now that we have described the sampling, conflict computation, and allocation strategies, we are ready to put all the pieces together and detail CYCLADES in full. Let us assume that we sample a total number of \(n_b = c \cdot \frac{\Delta}{1-\epsilon} \) batches of size \(B = \frac{(1-\epsilon)n}{\Delta} \) and that each update is sampled uniformly at random. For the \(i \)-th batch let us denote as \(C^i_1,\ldots,C^i_m \), the connected
components on the induced subgraph G_i. Due to Theorem 3, each connected component C contains a number of at most $O\left(\log^2 n\right)$ updates; each update carries an ID (the order of which it would have been sampled by the serial algorithm). Using the above notation, we give the pseudocode for CYCLADES in Alg. 2. Note that the inner loop that is parallelized (i.e., the SU processing loop in lines 6 – 9), can be performed asynchronously; cores do not have to synchronize, and do not need to lock any memory variables, as they are all accessing non-overlapping subset of x. This also provides for better cache coherence. Moreover, each core potentially accesses the same coordinates several times, leading to good cache locality. These improved cache locality and coherence properties experimentally lead to substantial performance gains as we see in the next section. We can now combine the results of the previous subsection to obtain our main theorem for CYCLADES.

Theorem 4. Let us assume any given update-variable graph G_u with Δ_L and Δ_L, such that $\frac{\Delta_L}{\Delta_M} \leq \sqrt{n}$, and with induced max conflict degree Δ. Then, CYCLADES on $P = O\left(\frac{n}{\sqrt{n}}\right)$ cores, with batch sizes $B = (1 - c)\frac{n}{\Delta}$ can execute $T = c \cdot n$ updates, for any constant $c \geq 1$, selected uniformly at random with replacement, in time $O\left(\frac{E_{\text{com}}}{P} \cdot \log^2 n\right)$, with high probability.

Observe that CYCLADES bypasses the need to establish convergence guarantees for the parallel algorithm. Hence, it could be the case for an applications of interest that we cannot analyze how a serial SU algorithm performs in terms of say the accuracy of the solution, but CYCLADES can still provide black box guarantees for speedup, since our analysis is completely oblivious to the qualitative performance of the serial algorithm. This is in contrast to recent studies similar to [5], where the authors provide speedup guarantees via a convergence-to-optimal proof for an asynchronous SGD on a nonconvex problem. Unfortunately these proofs can become complicated on a wider range of nonconvex objectives.

In the following section we show that CYCLADES is not only useful theoretically, but can consistently outperform HOGWILD! on sufficiently sparse datasets.

4 Evaluation

We implemented CYCLADES in C++ and tested it on a variety of problems, and a number of stochastic updates algorithms, and compared against their HOGWILD! (i.e., asynchronous, lock-free) implementations. Since CYCLADES is intended to be a general SU parallelization framework, we do not compare against algorithms tailored to specific applications, nor do we expect CYCLADES to outperform every such highly-tuned, well-designed, specific algorithms. Our experiments were conducted on a machine with 72 CPUs (Intel(R) Xeon(R) CPU E7-8870 v3, 2.10 GHz) on 4 NUMA nodes, each with 18 CPUs, and 1TB of memory. We ran CYCLADES and HOGWILD! with 1, 4, 8, 16 and 18 threads pinned to CPUs on a single NUMA node (i.e., the maximum physical number of cores per single node), to can avoid well-known cache coherence and scaling issues across nodes [24].

<table>
<thead>
<tr>
<th>Dataset</th>
<th># datapoints</th>
<th># features</th>
<th>av. sparsity / datapoint</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH2010</td>
<td>48,838</td>
<td>48,838</td>
<td>4.8026</td>
<td>Topological graph</td>
</tr>
<tr>
<td>DBLP</td>
<td>5,425,964</td>
<td>5,425,964</td>
<td>3.1880</td>
<td>Authorship network</td>
</tr>
<tr>
<td>MovieLens</td>
<td>~10M</td>
<td>82,250</td>
<td>200</td>
<td>10M movie ratings</td>
</tr>
</tbody>
</table>

Table 1: Details of datasets used in our experiments.

In our experiments, we measure overall running times which include the overheads for computing connected components and allocating work in CYCLADES. We also compute the objective value at the end of each epoch (i.e., one full pass over the data). We measure the speedups for each algorithm as the time of the parallel algorithm to reach ϵ objective time of the serial algorithm to reach ϵ objective

where ϵ was chosen to be the smallest objective value that is achievable by all parallel algorithms on every choice of number of threads. The serial algorithm used for comparison is HOGWILD! running serially on one thread. In Table 1 we list some details of the datasets that we use in our experiments. We tune our constant stepsizes so to maximize convergence...

5Code is available at https://github.com/amplab/cyclades.
without diverging, and use one random data reshuffling across all epochs. Batch sizes are picked to optimize performance for CYCLADES.

<table>
<thead>
<tr>
<th>CYCLADES, 1 threads</th>
<th>CYCLADES, 8 threads</th>
<th>CYCLADES, 18 threads</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Convergence of CYCLADES and HogWild! in terms of overall running time with 1, 8, 16, 18 threads. CYCLADES is initially slower, but ultimately reaches convergence faster than HogWild!.

(a) Least Sq., DBLP (b) Graph Eig., nh2010 (c) Mat. Comp., 10M, ℓ_2 (d) Word2Vec, EN-Wiki, SGD

Figure 4: Speedup of CYCLADES and HogWild! versus number of threads. On multiple threads, CYCLADES always reaches ϵ objective faster than HogWild!. In some cases CYCLADES is faster than HogWild! even on 1 thread, due to better cache locality. In Figs. 4(a) and 4(b), CYCLADES exhibits significant gains since HogWild! suffers from asynchrony noise, and we had to use comparatively smaller stepsizes to prevent it from diverging.

Least squares via SAGA The first problem we consider is least squares: $\min_{x} \min_{x} \frac{1}{n} \sum_{i=1}^{n} (a_i^T x - b_i)^2$ which we will solve using the SAGA algorithm [7], an incremental gradient algorithm with faster than SGD rates on convex, or strongly convex functions. In SAGA, we initialize $g_k = \nabla f_k(x_0)$ and iterate the following two steps $x_{k+1} = x_k - \gamma \cdot (\nabla f_k(x_k) - g_{s_k} + \frac{1}{n} \sum_{j=1}^{n} g_j)$ and $g_{s_k} = \nabla f_k(x_k)$, where $f_k(x) = (a_k^T x - b_k)^2$. In the above iteration it is useful to observe that the updates can be performed in a sparse and "lazy" way, as we explain in detail in our supplemental material.

The stepsizes chosen for each of CYCLADES and HogWild! were among the largest such that the algorithms did not diverge. We used the DBLP and NH2010 datasets for this experiment, and set A as the adjacency matrix of each graph. For NH2010, the values of b were set to population living in the Census Block. For DBLP we used synthetic values: we set $b = \bar{A} \bar{x} + 0.12$, where \bar{x} and \bar{z} were generated randomly. The SAGA algorithm was run for 500 epochs for each dataset. When running SAGA for least squares, we found that HogWild! was divergent with the large stepsizes that we were using for CYCLADES (Fig. 5). Thus, in the multi-thread setting, we were only able to use smaller stepsizes for HogWild!, which resulted in slower convergence than CYCLADES, as seen in Fig. 3(a). The effects of a smaller stepsizes for HogWild! are also manifested in terms of speedups in Fig. 4(a), since HogWild! takes a longer time to converge to an ϵ objective value.

Graph eigenvector via SVRG Given an adjacency matrix A, the top eigenvector of $A^T A$ is useful in several applications such as spectral clustering, principle component analysis, and others. In a

Figure 5: Convergence of CYCLADES and HogWild! on least squares using SAGA, with 16 threads, on DBLP dataset. HogWild! diverges with $\gamma > 10^{-5}$; thus, we were only able to use a smaller step size $\gamma = 10^{-5}$ for HogWild! on multiple threads. For HogWild! on 1 thread (and CYCLADES on any number of threads), we could use a larger step size of $\gamma = 3 \times 10^{-4}$.

<table>
<thead>
<tr>
<th>Objective Value</th>
<th>Time/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2</td>
<td>10^4</td>
</tr>
<tr>
<td>10^6</td>
<td>10^8</td>
</tr>
<tr>
<td>10^10</td>
<td>10^12</td>
</tr>
<tr>
<td>10^12</td>
<td>10^14</td>
</tr>
</tbody>
</table>
We run experiments on two graphs: DBLP and NH2010. We ran SVRG for 50 and 100 epochs.

We apply CYCLADES to the above SVRG iteration (see supplemental) for parallelizing this problem. We run experiments on two graphs: DBLP and NH2010. We ran SVRG for 50 and 100 epochs for NH2010 and DBLP respectively. The convergence of SVRG for graph eigenvectors is shown in Fig. 3(b). CYCLADES starts off slower than HOGWILD!, but always produces results equivalent to the convergence on a single thread. HOGWILD! does not exhibit the same behavior on multiple threads as it does serially; due to asynchrony causes HOGWILD! to converge slower on multiple threads. This effect is clearly seen on Figs. 4(b), where HOGWILD! fails to converge faster than the serial counterpart, and CYCLADES attains a significantly better speedup on 16 threads.

Matrix completion and word embeddings via SGD In matrix completion we are given a partially observed matrix M, and wish to factorize it as M ≈ UV where U and V are low rank matrices with dimensions n × r and r × m respectively. This may be achieved by optimizing \(\min \sum_{(i,j) \in \Omega} (M_{i,j} - U_{i,:} V_{:,j})^2 + \frac{\lambda}{2} (\|U\|_F^2 + \|V\|_F^2) \) where \(\Omega \) is the set of observed entries, which can be approximated by SGD on the observed samples. The regularized objective can be optimized by weighted SGD. In our experiments, we chose a rank of \(r = 100 \), and ran SGD and weighted SGD for 200 epochs. We used the MovieLens 10M dataset containing 10M ratings for 10K movies by 72K users.

Our second task that uses SGD is word embeddings, which aim to represent the meaning of a word \(w \) via a vector \(v_w \) ∈ \(\mathbb{R}^d \). A recent work by [2] proposes to solve: \(\min_{v_w} \mu \sum_{w,w'} A_{w,w'} \log(A_{w,w'}) - \|v_w + v_{w'}\|^2 \sqrt{2} - C^2 \), where \(A_{w,w'} \) is the number of times words \(w \) and \(w' \) co-occur within \(r \) words in the corpus. In our experiments we set \(r = 10 \) following the suggested recipe of the aforementioned paper. We can approximate the solution to the above problem, by obtaining one using SGD; we can repeatedly sample entries \(A_{w,w'} \) from \(A \) and update the corresponding vectors \(v_w, v_{w'} \). Then, at the end of each full pass over the data, we update the constant \(C \) by its locally optimal value, which can be calculated in closed form. In our experiments, we optimized for a word embedding of dimension \(d = 100 \), and tested on a 80MB subset of the English Wikipedia dump. For our experiments, we run SGD for 200 epochs.

Figs. 3(c) and 3(d) show the convergence for the matrix completion and word embeddings problems. CYCLADES is initially slower than HOGWILD! due to the overhead of computing connected components. However, due to better cache locality and convergence properties, CYCLADES is able to reach a lower objective value in less time than HOGWILD!. In fact, we observe that CYCLADES is faster than HOGWILD! when both are run serially, demonstrating that the gains from (temporal) cache locality outweigh the coordination overhead of CYCLADES. These results are reflected in the speedups of CYCLADES and HOGWILD! (Figs. 4(c) and 4(d)). CYCLADES consistently achieves a better speedup (up to 11× on 18 threads) compared to that of HOGWILD! (up to 9× on 18 threads).

Partitioning and allocation costs The cost of partitioning and allocation for CYCLADES is given in Table 2, relatively to the time that HOGWILD! takes to complete a single pass over the dataset. For matrix completion and the graph eigenvector problem, on 18 threads, CYCLADES takes the equivalent of 4-6 epochs of HOGWILD! to complete its partitioning, as the problem is either very sparse or the updates are expensive. For solving least squares using SAGA and word embeddings using SGD, the cost of partitioning is equivalent to 11-14 epochs of HOGWILD! on 18 threads. However, we point out that partitioning and allocation is a one-time cost which becomes cheaper with more stochastic update epochs. Additionally, note that this cost can become amortized due to the extra experiments one has to run for hyperparameter tuning, since the graph partitioning is identical across different stepsizes one might want to test.

Binary classification and dense coordinates Here we explore settings where CYCLADES is expected to perform poorly due to the inherent density of updates (i.e., for data sets with dense features). In particular, we test CYCLADES on a classification problem for text based data. Specifically, we run classification for the URL dataset [15] contains \(∼ 2.4M \) URLs, labeled as either benign or malicious.

\[^{5}\text{It has come to our attention post submission that parts of our partitioning and allocation code could be further parallelized. We refer the reader to our arXiv paper 1605.09721 for the latest results.}\]
<table>
<thead>
<tr>
<th># threads</th>
<th>Least Squares SAGA, DBLP</th>
<th>Graph Eig. SVRG, NH2010</th>
<th>Mat. Comp. ℓ₂-SGD, MovieLens</th>
<th>Word2Vec SGD, EN-Wiki</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.2245</td>
<td>0.9039</td>
<td>0.5507</td>
<td>0.5299</td>
</tr>
<tr>
<td>18</td>
<td>14.1792</td>
<td>4.7639</td>
<td>5.5270</td>
<td>3.9362</td>
</tr>
</tbody>
</table>

Table 2: Ratio of the time that CYCLADES consumes for partition and allocation over the time that HOGWILD! takes for 1 full pass over the dataset. On 18 threads, CYCLADES takes between 4-14 HOGWILD! epochs to perform partitioning. Note however, this computational effort is only required once per dataset.

and 3.2M features, including bag-of-words representation of tokens in the URL. For this classification task, we used a logistic regression model, trained using SGD. By its power-law nature, the dataset consists of a small number of extremely dense features which occur in nearly all updates. Since CYCLADES explicitly avoids conflicts, it has a schedule of SGD updates that leads to poor speedups.

However, we observe that most conflicts are caused by a small percentage of the densest features. If these features are removed from the dataset, CYCLADES is able to obtain much better speedups. The speedups that are obtained by CYCLADES and HOGWILD! on 16 threads are shown in Figure 6. Full results of the experiment are presented in the supplemental material. CYCLADES fails to get much speedup when nearly all the features are used. However, as more dense features are removed, CYCLADES obtains a better speedup, almost equalling HOGWILD!’s speedup when 0.048% of the densest features are filtered.

5 Related work

The end of Moore’s Law coupled with recent advances in parallel and distributed computing technologies have triggered renewed interest in parallel stochastic optimization [26, 9, 1, 22]. Much of this contemporary work is built upon the foundational work of Bertsekas, Tsitsiklis et al. [3, 23].

Inspired by HOGWILD!’s success at achieving nearly linear speedups for a variety of machine learning tasks, several authors developed other lock-free and asynchronous optimization algorithms, such as parallel stochastic coordinate descent [13]. Additional work in first order optimization and beyond [8, 21, 5], has further demonstrated that linear speedups are generically possible in the asynchronous shared-memory setting.

Other machine learning algorithms that have been parallelized using concurrency control, including non-parametric clustering [18], submodular maximization [19], and correlation clustering [20].

Sparse, graph-based parallel computation are supported by systems like GraphLab [14]. These frameworks require computation to be written in a specific programming model with associative, commutative operations. GraphLab and PowerGraph support serializable execution via locking mechanisms, this is in contrast to our partition-and-allocate coordination which allows us to provide guarantees on speedup.

6 Conclusion

We presented CYCLADES, a general framework for lock-free parallelization of stochastic optimization algorithms, while maintaining serial equivalence. Our framework can be used to parallelize a large family of stochastic updates algorithms in a conflict-free manner, thereby ensuring that the parallelized algorithm produces the same result as its serial counterpart. Theoretical properties, such as convergence rates, are therefore preserved by the CYCLADES-parallelized algorithm, and we provide a single unified theoretical analysis that guarantees near linear speedups.

By eliminating conflicts across processors within each batch of updates, CYCLADES is able to avoid all asynchrony errors and conflicts, and leads to better cache locality and cache coherence than HOGWILD!. These features of CYCLADES translate to near linear speedups in practice, where it can outperform HOGWILD!-type of implementations by up to a factor of 5×, in terms of speedups.

In the future, we intend to explore hybrids of CYCLADES with HOGWILD!, pushing the boundaries of what is possible in a shared-memory setting. We are also considering solutions for scaling out in a distributed setting, where the cost of communication is significantly higher.
References

A Algorithms in the Stochastic Updates family

Here we show that several algorithms belong to the Stochastic Updates (SU) family. These include the well-known stochastic gradient descent, iterative linear solvers, stochastic PCA and others, as well as combinations of weight decay updates, variance reduction methods, and more. Interestingly, even some combinatorial graph algorithms fit under the SU umbrella, such as the maximal independent set, greedy correlation clustering, and others. We visit some of these algorithms below.

Stochastic Gradient Descent (SGD) Given n functions f_1, \ldots, f_n, one often wishes to minimize the average of these functions:

$$\min_x \frac{1}{n} \sum_{i=1}^n f_i(x).$$

A popular algorithm to do so —even in the case of non-convex losses— is the stochastic gradient descent:

$$x_{k+1} = x_k - \gamma_k \cdot \nabla f_{i_k}(x_k).$$

In this case, the distribution \mathcal{D} for each sample i_k is usually a with or without replacement uniform sampling among the n functions. For this algorithm the conflict graph between the n possible different updates is completely determined by the support of the gradient vector $\nabla f_{i_k}(x_k)$.

Weight decay and regularization Similar to SGD, in some cases we might wish to regularize the objective with an ℓ_2 term and solve instead the following optimization:

$$\min_x \frac{1}{n} \sum_{i=1}^n f_i(x) + \frac{\eta}{2} \|x\|^2_2.$$

In this case, the update is a weighted version of the “non-regularized” SGD:

$$x_{k+1} = (1 - \gamma_k \eta) \cdot x_k - \gamma_k \cdot \nabla f_{s_k}(x_k).$$

The above stochastic update algorithm can be also be written in the SU language. Although here for each single update the entire model has to be updated with the new weights, we show below that with a simple technique it can be equivalently expressed so that each update is sparse and the support is again determined by the gradient vector $\nabla f_{s_k}(x_k)$.

First order techniques with variance reduction Variance reduction is a technique that is usually employed for (strongly) convex problems, where we wish to minimize the variance of SGD in order to achieve better rates. A popular way to do variance reduction is either through SVRG or SAGA, where a “memory” factor is used in the computation of each gradient update rule. For SAGA we have

$$x_{k+1} = x_k - \gamma \cdot \left(\nabla f_{s_k}(x_k) - g_{s_k} + \frac{1}{n} \sum_{i=1}^n g_i \right)$$

$$g_{s_k} = \nabla f_{s_k}(x_k).$$

For SVRG the update rule is

$$x_{k+1} = x_k - \gamma_k \cdot (\nabla f_{i_k}(x_k) - \nabla f_{i_k}(y) + g)$$
where $g = \nabla f(y)$, and y is updated every T iterations of the previous form to be equal to the last x_k iterate. Again, although at first sight the above updates seem to be dense, we show below how we can equivalently rewrite them so that the update-conflict graph is completely determined by the support of the gradient vector $\nabla f_i(x_k)$.

To reiterate, all of the above algorithms, various combinations of them, and further extensions can be written in the language of SU, as presented in Alg. 2.

A.1 Lazy Updates

For the cases of weight decay/regularization, and variance reduction, we can reinterpret their inherently dense updates in an equivalent sparse form. Let us consider the following generic form of updates:

$$x_j \leftarrow (1 - \mu_j)x_j - \nu_j + h_{ij}(x_{S_i})$$ \hfill (1)

where $h_{ij}(x_{S_i}) = 0$ for all $j \not\in S_i$. Each stochastic update therefore reads from the set S_i but writes to every coordinate. However, it is possible to make updates lazily only when they are required. Observe that if τ_j updates are made, each of which have $h_{ij}(x_{S_i}) = 0$, then we could rewrite these τ_j updates in closed form as

$$x_j = (1 - \mu_j)^\tau_j x_j - \nu_j \sum_{k=1}^{\tau_j} (1 - \mu_j)^k$$ \hfill (2)

$$= (1 - \mu_j)^\tau_j x_j - \frac{\nu_j}{\mu_j} (1 - (1 - \mu_j)\tau_j).$$ \hfill (3)

This allows the stochastic updates to only write to coordinates in S_i and defer writes to other coordinates. This procedure is described in Algorithm 3. With CYCLADES it is easy to keep track of τ_j, since we know the serially equivalent order of each stochastic update. On the other hand, it is unclear how a HOGWILD! approach would behave with additional noise in τ_j due to asynchrony. In fact, HOGWILD! could possibly result in negative values of τ_j, and in practice, we find that it is often useful to threshold τ_j by $\max(0, \tau_j)$.

Weight decay and regularization

The weighted decay SGD update is a special case of Eq 1, with $\mu_j = \eta \gamma$ and $\nu_j = 0$. Eq 3 becomes $x_j \leftarrow (1 - \eta \gamma)^\tau_j x_j$.

Variance reduction with sparse gradients

Suppose $\nabla f_i(x)$ is sparse, such that $[\nabla f_i(x)]_{j} = 0$ for all x and $j \not\in S_i$. Then we can perform SVRG and SAGA using lazy updates, with $\mu_j = 0$. For SAGA, the update Eq 2 becomes

$$x_j \leftarrow x_j - \gamma \tau_j g_j$$

where $g_j = \left[\frac{1}{n} \sum_{i=1}^{n} y_{k,i} \right]_j$ is the jth coordinate of the average gradient. For SVRG, we instead use $g_j = [\nabla f(y)]_j$.

SGD with dense linear gradients

Suppose instead that the gradient is dense, but has linear form $[\nabla f_i(x)]_j = \lambda_j x_j - \kappa_j + \hat{h}_{ij}(x_{S_i})$, where $\hat{h}_{ij}(x_{S_i}) = 0$ for $j \not\in S_i$. The SGD stochastic update on the jth coordinate is then

$$x_j \leftarrow x_j - \gamma (\lambda_j x_j - \kappa_j + \hat{h}_{ij}(x_{S_i}))$$

$$= (1 - \gamma \lambda_j) x_j + \gamma \kappa_j - \gamma \hat{h}_{ij}(x_{S_i}).$$

This fits into our lazy-updates framework with $\mu_j = \gamma \lambda_j$, $\nu_j = -\gamma \kappa_j$, and $\hat{h}_{ij}(x_{S_i}) = -\gamma \hat{h}_{ij}(x_{S_i})$.

Algorithm 3 Lazy Stochastic Updates pseudo-algorithm

1. **Input:** $x; f_1, \ldots, f_n; u_1, \ldots, u_n; g_1, \ldots, g_n; D; T$.
2. Initialize $\rho(j) = 0$.
3. for $t = 1 : T$ do
4. sample $i \sim D$.
5. x_{S_i} = read coordinates S_i from x.
6. for $j \in S_i$ do
7. $\tau_j = t - \rho(j) - 1$.
8. $x_j \leftarrow (1 - \mu_j)^\tau_j x_j - \nu_j \sum_{k=1}^{\tau_j} (1 - \mu_j)^k$.
9. $x_j \leftarrow (1 - \mu_j)x_j - \nu_j + h_{ij}(x_{S_i})$.
10. $\rho(j) \leftarrow t$.
11. **Output:** x.

11
SVRG with dense linear gradients Suppose instead that the gradient is dense, but has linear form $\nabla f_i(x)_j = \lambda_j x_j - \kappa_j + h_{ij}(x_S)$, where $h_{ij}(x_S) = 0$ for $j \notin S$. The SVRG stochastic update on the jth coordinate is then

$$x_j \leftarrow x_j - \gamma \left(\lambda_j x_j - \kappa_j + h_{ij}(x_S) - \gamma_j y_j + \kappa_j - h_{ij}(y_S) + g_j \right)$$

$$= (1 - \gamma \lambda_j) x_j - \gamma (g_j - \lambda_j y_j) - \gamma \left(h_{ij}(x_S) - h_{ij}(y_S) \right)$$

where $g_j = [\nabla f(y)]_j$, as above. This fits into our framework with $\mu_j = \gamma \lambda_j$, $\nu_j = \gamma (g_j - \lambda_j y_j)$, and $h_{ij}(x_S) = -\gamma \left(h_{ij}(x_S) - h_{ij}(y_S) \right)$.

B With and Without Replacement Proofs

In this Appendix, we show how the sampling and shattering Theorem 2 can be restated for sampling with, or without replacement to establish Theorem 3.

Let us define three sequences of binary random variables $\{X_i\}_{i=1}^n$, $\{Y_i\}_{i=1}^n$, and $\{Z_i\}_{i=1}^n$. $\{X_i\}_{i=1}^n$ consists of n i.i.d. Bernoulli random variables, each with probability p. In the second sequence $\{Y_i\}_{i=1}^n$, a random subset of B random variables is set to 1 without replacement. Finally, in the third sequence $\{Z_i\}_{i=1}^n$, we draw B variables with replacement, and we set them to 1. Here, B is integer that satisfies the following bounds

$$(n + 1) \cdot p - 1 \leq B < (n + 1) \cdot p.$$

Now, consider any function f, that has a “monotonicity” property:

$$f(x_1, \ldots, x_i, \ldots, x_n) \geq f(x_1, \ldots, 0, \ldots, x_n), \text{ for all } i = 1, \ldots, n.$$

Let us now define

$$\rho_X = \Pr (f(X_1, \ldots, X_n) > C)$$

$$\rho_Y = \Pr (f(Y_1, \ldots, Y_n) > C)$$

$$\rho_Z = \Pr (f(Z_1, \ldots, Z_n) > C)$$

for some number C, and let us further assume that we have an upper bound on the above probability

$$\rho_X \leq \delta.$$

Our goal is to bound ρ_Y and ρ_Z. By expanding ρ_X using the law of total probability we have

$$\rho_X = \sum_{b=0}^n \Pr \left(f(X_1, \ldots, X_n) > C \mid \sum_{i=1}^n X_i = b \right) \cdot \Pr \left(\sum_{i=1}^n X_i = b \right) = \sum_{b=0}^n q_b \cdot \Pr \left(\sum_{i=1}^n X_i = b \right)$$

where $q_b = \Pr (f(X_1, \ldots, X_n) > C \mid \sum_{i=1}^n X_i = b)$, denotes the probability that $f(X_1, \ldots, X_n) > C$ given that a uniformly random subset of b variables was set to 1. Moreover, we have

$$\rho_Y = \sum_{b=0}^n \Pr \left(f(Y_1, \ldots, Y_n) > C \mid \sum_{i=1}^n Y_i = b \right) \cdot \Pr \left(\sum_{i=1}^n Y_i = b \right)$$

$$\overset{(i)}{=} \sum_{b=0}^n q_b \cdot \Pr \left(\sum_{i=1}^n Y_i = b \right)$$

$$\overset{(ii)}{=} q_B \cdot 1$$

where (i) comes from the fact that $\Pr (f(Y_1, \ldots, Y_n) > C \mid \sum_{i=1}^n Y_i = b)$ is the same as the probability that $f(X_1, \ldots, X_n) > C$ given that a uniformly random subset of b variables where set to 1, and (ii) comes from the fact that since we sample without replacement in Y, we have that $\sum_{i=1}^n Y_i = B$.
In the expansion of ρ_X, we can keep the $b = B$ term, and lower bound the probability to obtain:

$$
\rho_X = \sum_{b=0}^{n} q_b \cdot \Pr \left(\sum_{i=1}^{n} X_i = b \right) \\
\geq q_B \cdot \Pr \left(\sum_{i=1}^{n} X_i = B \right) = \rho_Y \cdot \Pr \left(\sum_{i=1}^{n} X_i = B \right)
$$

(5)

since all terms in the sum are non-negative numbers. Moreover, since X_i’s are Bernoulli random variables, their sum $\sum_{i=1}^{n} X_i$ is Binomially distributed with parameters n and p. We know that the maximum of the Binomial pmf with parameters n and p occurs at $\Pr (\sum_{i=1}^{n} X_i = B)$ where B is the integer that satisfies the upper bound mentioned above: $\left(n + 1 \right) \cdot p - 1 \leq B < \left(n + 1 \right) \cdot p$. Furthermore, the maximum value of the Binomial pmf, with parameters n and p, cannot be less than the corresponding probability of a uniform element:

$$
\Pr \left(\sum_{i=1}^{n} X_i = B \right) \geq \frac{1}{n}.
$$

(6)

If we combine (5) and (6) we get

$$
\rho_X \geq \rho_Y / n \Leftrightarrow \rho_Y \leq n \cdot \delta.
$$

(7)

The above establish a relation between the without replacement sampling sequence $\{Y_i\}_{i=1}^{n}$, and the i.i.d. uniform sampling sequence $\{X_i\}_{i=1}^{n}$.

Then, for the last sequence $\{Z_i\}_{i=1}^{n}$ we have

$$
\rho_Z = \sum_{b=0}^{n} \Pr \left(f(Z_1, \ldots, Z_n) > C \left| \sum_{i=1}^{n} Z_i = b \right. \right) \cdot \Pr \left(\sum_{i=1}^{n} Z_i = b \right)
$$

$$
\overset{(i)}{=} \sum_{b=1}^{B} q_b \cdot \Pr \left(\sum_{i=1}^{n} Z_i = b \right)
$$

$$
\overset{(ii)}{=} \left(\max_{1 \leq b \leq B} q_b \right) \cdot \sum_{b=1}^{B} \Pr \left(\sum_{i=1}^{n} Z_i = b \right)
$$

$$
\overset{(iii)}{=} q_B = \rho_Y \leq n \cdot \delta,
$$

where (i) comes from the fact that $\Pr (\sum_{i=1}^{n} Z_i = b)$ is zero for $b = 0$ and $b > B$, (ii) comes by applying Hölder’s Inequality, and (iii) holds since f is assumed to have the monotonicity property:

$$
f(x_1, \ldots, x_i, \ldots, x_n) \geq f(x_1, \ldots, 0, \ldots, x_n),
$$

for any sequence of variables x_1, \ldots, x_n. Hence, for any $b_1 \geq b_2$

$$
\Pr \left(f(Z_1, \ldots, Z_n) > C \left| \sum_{i=1}^{n} Z_i = b_1 \right. \right) \geq \Pr \left(f(Z_1, \ldots, Z_n) > C \left| \sum_{i=1}^{n} Z_i = b_2 \right. \right).
$$

(9)

In conclusion, we have upper bounded ρ_Z and ρ_Y by

$$
\rho_Z \leq \rho_Y \leq n \cdot \rho_X \leq n \cdot \delta.
$$

(10)

Application to Theorem 3: For our purposes, the above bound Eq. (10) allows us to assert Theorem 3 for with replacement, without replacement, and i.i.d. sampling, with different constants. Specifically, for any graph G, the size of the largest connected component in the sampled subgraph can be expressed as a function $f_G(x_1, \ldots, x_n)$, where each x_i is an indicator for whether the ith vertex was chosen in the sampling process. Note that f_G is a monotone function, i.e., $f_G(x_1, \ldots, x_i, \ldots, x_n) \geq f_G(x_1, \ldots, 0, \ldots, x_n)$ since adding vertices to the sampled subgraph may only increase (or keep constant) the size of the largest connected component. We note that the high probability statement of Theorem 2, can be restated so that the constants in front of the size of the connected components accommodate for a statement that is true with probability $1 - 1/n^c$, for any constant $\zeta > 1$. This is required to take care of the extra n factor that appears in the bound of Eq. (10), and to obtain Theorem 3.
C Robustness against High-degree Outliers

Here, we discuss how CYCLADES can guarantee nearly linear speedups when there is a sublinear O(n^δ) number of high-conflict updates, as long as the remaining updates have small degree.

Assume that our conflict graph G_o defined between the n update functions has a very high maximum degree Δ_o. However, consider the case where there are only O(n^δ) nodes that are of that high-degree, while the rest of the vertices have degree much smaller (on the induced subgraph by the latter vertices), say Δ. According to our main analysis, our prescribed batch sizes cannot be greater than B = (1 - ϵ) (1 - n^δ)/Δ_o. However, if say Δ_o = Θ(n), then that would imply that B = O(1), hence there is no room for parallelization by CYCLADES. What we will show, is that by sampling according to B = (1 - ϵ) n^δ/Δ, we can on average expect a parallelization that is similar to the case where the outliers are not present in the conflict graph. For a toy example see Figure 7.

![Figure 7: The above conflict graph has a vertex with high degree (i.e., Δ_o = 6), and the remaining of the graph has maximum induced degree Δ = 2. In this toy case, when we sample roughly n^δ/Δ = 3 vertices, more often than not, the large degree vertex will not be part of the sampled batch. This implies that when parallelizing with CYCLADES these cases will be as much parallelizable as if the high degree vertex was not part of the graph. Each time we happen to sample a batch that includes the max. degree vertex, then essentially we lose all flexibility to parallelize, and we have to run the serial algorithm. What we establish rigorously is that "on average" the parallelization will be as good as one would hope for even in the case where the outliers are not present.](image)

Our main result for the outlier case follows:

Lemma 3. Let us assume that there are O(n^δ) outlier vertices in the original conflict graph G with degree at most Δ_o, and let the remaining vertices have degree (induced on the remaining graph) at most Δ. Let the induced update-variable graph on these low degree vertices abide to the same graph assumptions as those of Theorem 1. Moreover, let the batch size be bounded as

\[B \leq \min \left\{ (1 - \epsilon) \frac{n - O(n^\delta)}{\Delta}, \ O \left(\frac{n^{1-\delta}}{P} \right) \right\}. \]

Then, the expected runtime of CYCLADES will be \(O \left(\frac{E_{\text{\text{n}^{\delta}}}}{P} \cdot \log^2 n \right) \).

Proof. Let \(w_i \) denote the total work required for batch \(i \) if that batch contains no outlier notes, and \(w_i \) otherwise. It is not hard to see that \(w_s = \sum_i w_i = O \left(\frac{E_{\text{n}^{\delta}}}{P} \cdot \log^2 n \right) \) and \(w_o = \sum_i w_i = O (E_u \cdot \kappa \cdot \log^2 n) \) Hence, the expected computational effort by CYCLADES will be

\[w_s \cdot \text{Pr}\{\text{a random batch contains no outliers}\} + w_o \cdot \text{Pr}\{\text{a random batch contains outliers}\} \]

where

\[\text{Pr}\{\text{a random batch contains no outliers}\} = \Omega \left(\left(1 - \frac{1}{n^{1-\delta}} \right)^B \right) \geq 1 - O \left(\frac{B}{n^{1-\delta}} \right) \]

(11)

Hence the expected running time will be proportional to \(O \left(\frac{E_{\text{n}^{\delta}}}{P} \cdot \log^2 n \right) \), if \(O \left(\frac{E_{\text{n}^{\delta}}}{P} \cdot \log^2 n \right) = O(E_u \cdot \kappa \cdot \log^2 n \cdot \frac{B}{n^{1-\delta}}), \) which holds when \(B = O \left(\frac{n^{1-\delta}}{P} \right) \). □

D Parallel Connected Components Computation

As we will see in the following, the cost of computing CCs in parallel will depend on the number of cores so that uniform allocation across them is possible, and the number of edges that are induced
by the sampled updates on the bipartite update-variable graph G_u is bounded. As a reminder we
denote as G_u^i the bipartite subgraphs of the update-variable graph G_u, that is induced by the sampled
updates of the i-th batch. Let us denote as E_u^i the number of edges in G_u^i.

Following the sampling recipe of our main text (i.e., sampling each update per batch uniformly and
with replacement), let us assume here that we are sampling $c \cdot n$ updates in total, for some constant
$c \geq 1$. Assuming that the size of each batch is $B = (1 - \epsilon) \frac{n}{2}$, the total number of sampled batches
will be $n_b = \frac{c}{1 - \epsilon} \Delta$. The total number of edges in the induced sampled bipartite graphs is a random
variable that we denote as

$$Z = \sum_{i=1}^{n_b} E_u^i.$$

Observe that $E(Z) = c \cdot E_u$. Using a simple Hoeffding concentration bound we can see that

$$\Pr \{ |Z - cE_u| > (1 + \delta)c \cdot E_u \} \leq 2e^{-\frac{2c^2(1+\delta)^2E_u^2}{c\Delta^2}} \leq 2e^{-2c(1+\delta)^2n^2\Delta^2}$$

where Δ_L is the max left degree of the bipartite graph G_u and Δ_L is its average left degree. Now
assuming that

$$\frac{\Delta_L}{\Delta} \leq \sqrt{n}$$

we obtain

$$\Pr \{ |Z - cE_u| > \log n \cdot c \cdot E_u \} \leq 2e^{-c \cdot \log^2 n}.$$

Hence, we get the following simple lemma:

Lemma 4. Let $\frac{\Delta}{\Delta_L} \leq \sqrt{n}$. Then, the total number of edges $Z = \sum_{i=1}^{n_b} E_u^i$ across the $n_b = \frac{c}{1 - \epsilon} \Delta$
sampled subgraphs $G_u^1, \ldots, G_u^{n_b}$ is less than $O(E_u \log n)$ with probability $1 - n^{-\Omega(\log n)}$.

Now that we have a bound on the number of edges in the sampled subgraphs, we can derive the
complexity bounds for computing CCs in parallel. We will break the discussion into the not-too-many-
and many-core regime.

The not-too-many cores regime. In this case, we sample n_b subgraphs, allocate them across P
cores, and let each core compute CCs on its allocated subgraphs using BFS or DFS. Since each batch
is of size $B = (1 - \epsilon) \frac{n}{2}$, we need $n_b = \lceil c \cdot \frac{n}{B} \rceil = c \cdot \lceil \frac{\Delta}{1 - \epsilon} \rceil$ batches to cover $c \cdot n$ updates in total. If the number of cores is

$$P = O \left(\frac{\Delta}{\Delta_L} \cdot \Delta \right),$$

then the max cost of a single CC computation on a subgraph (which is $O(B\Delta_L)$) is smaller than the
average cost across P cores, which is $O(Z/P)$. This implies that a uniform allocation is possible, so
that P cores can share the computational effort of computing CCs. Hence, we can get the following
lemma:

Lemma 5. Let the number of cores be $P = O \left(\frac{\Delta}{\Delta_L} \cdot \Delta \right)$, and let us sample $O(\Delta)$ batches, where
each batch is of size $O(\frac{n}{\Delta})$. Then, each core will not spend more than $O \left(\frac{E_u \log n}{P} \right)$ time in computing
CCs, with high probability.

The many-cores regime. When $P \gg \frac{\Delta}{\Delta_L}$ the uniform balancing of the above method will break,
leaving no room for further parallelization. In that case, we can use a very simple “push-label”
CC algorithm, whose cost on P cores and arbitrary graphs with E edges and max degree Δ is
$O(\max\{ \frac{\Delta}{P}, \Delta \} \cdot C_{\text{max}})$, where C_{max} is the size of the longest-shortest path, or the diameter of the
graph. This parallel CC algorithm is given below, where each core is allocated with a number of
vertices

The above simple algorithm can be significantly slow for graphs where the longest-shortest path
is large. Observe, that in the sampled subgraphs G_u^i, the size of the shortest-longest path is always
bounded by the size of the largest connected component. By Theorem 3 that is bounded by $O \left(\frac{\log n}{\epsilon^2} \right)$. Hence, we obtain the following lemma.
Lemma 6. For any number of cores \(P = \Omega\left(\frac{n}{\Delta_L}\right) \), computing the connected component of a single sampled graph \(G_u^i \) can be performed in time \(O\left(\frac{E_u^i \log n}{P}\right) \), with high probability.

Since, we are interested in the overall running time for \(n_b \) batches of the CC algorithm, we can see that the above lemma simply boils down to the following:

Corollary 1. For any number of cores \(P = \Omega\left(\frac{n}{\Delta_L}\right) \), computing the connected component for all sampled graphs \(G_u^i, \ldots, G_u^{n_b} \) can be performed in time \(O\left(\frac{E_u \log^2 n}{P}\right) \).

Remark 2. In practice it seems to be that parallelizing the CC computation using the not-too-many core regime policy is significantly more scalable.

E Allocating the Conflict Groups

After we have sampled a single batch (i.e., a subgraph \(G^i \)), and computed the CCs for it, we have to allocate the connected components of that sampled subgraph across cores. Observe that each connected component will contain at most \(\log n \) updates, each ordered according to the a serial predetermined order. Once a core has been assigned all the CCs, it will process all the updates included in the CCs according to the order that each update has been labeled with.

Now assuming that the cost of the \(i \)-th update is \(w_i \), the cost of a single connected component \(C \) will be \(w_C = \sum_{i \in C} w_i \). We can now allocate the CCs across cores so that the maximum core load is minimized, using the following 4/3-approximation algorithm (i.e., an allocation with max load that is at most 4/3 times the maximum between the max weight, and the sum of weights divided by \(P \)).

To proceed with characterizing the maximum load among the \(P \) cores, we assume that the cost of a single update \(u_i \) is proportional to the out-degree of that update — according to the update-variable graph \(G_u \) — times a constant cost which we shall refer to as \(\kappa \). Hence, \(w_i = O(d_{L,i} \cdot \kappa) \), where \(d_{L,i} \) is the degree of the \(i \)-th left vertex of \(G_u \).

Observe that the total cost of computing the updates in a single sampled subgraph \(G_u^i \) is proportional to \(O(E_u^i \cdot \kappa) \). Moreover, observe that the maximum weight among all CCs cannot be more than \(O(\Delta_L \log nk) \) where \(\Delta_L \) is the max left degree of the bipartite update-variable graph \(G_u \).

Lemma 7. We can allocate CCs such that the maximum load among cores is \(O\left(\max\left\{\frac{E_u^i}{P}, \Delta_L \log n\right\} \cdot \kappa\right) \), with high probability, where \(\kappa \) is the per edge cost for computing one of the \(n \) updates defined on \(G_u \).

If \(P = \Omega\left(\frac{n}{\Delta_L}\right) \) then the average weight will be larger than the maximum divided by a \(\log n \) factor, and a near-uniform allocation of CCs according to their weights possible. Since, we are interested in the overall running time for \(n_b \) batches, we can see that the above lemma simply boils down to the following:

Corollary 2. For any number of cores \(P = \Omega\left(\frac{n}{\Delta_L}\right) \), computing the stochastic updates of the allocated connected component for all sampled graphs (i.e., batches) \(G_u^i, \ldots, G_u^{n_b} \) can be performed in time \(O\left(\frac{E_u \log^2 n}{P} \cdot \kappa\right) \).
Table 3: Details of datasets used in our experiments.

<table>
<thead>
<tr>
<th>Dataset</th>
<th># datapoints</th>
<th># features</th>
<th>Density (average number of features per datapoint)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBLP</td>
<td>5,425,964</td>
<td>5,425,964</td>
<td>3.1880</td>
<td>Authorship network of 1.4M authors and 4M publications, with 8.65M edges.</td>
</tr>
<tr>
<td>MovieLens</td>
<td>~10M</td>
<td>82,250</td>
<td>200</td>
<td>10M movie ratings from 71,568 users for 10,682 movies.</td>
</tr>
</tbody>
</table>

Table 4: Stepsizes and batch sizes for the various learning tasks in our evaluation. We selected stepsizes that maximize convergence without diverging. We also chose batch sizes to maximize performance of CYCLADES.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Algorithm</th>
<th>Dataset</th>
<th>NH2010 Stepsize</th>
<th>DBLP Stepsize</th>
<th>Batch Size</th>
<th>Average # of connected components</th>
<th>Average size of connected components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least squares</td>
<td>SAGA</td>
<td>NH2010</td>
<td>1×10^{-14}</td>
<td>3×10^{-14}</td>
<td>1,000</td>
<td>792.98</td>
<td>1.257</td>
</tr>
<tr>
<td>Graph eigen</td>
<td>SVRG</td>
<td>NH2010</td>
<td>1×10^{-5}</td>
<td>1×10^{-4}</td>
<td>10,000</td>
<td>792.98</td>
<td>1.257</td>
</tr>
<tr>
<td>Graph eigen</td>
<td>SVRG</td>
<td>DBLP</td>
<td>1×10^{-5}</td>
<td>1×10^{-4}</td>
<td>10,000</td>
<td>9410.34</td>
<td>1.062</td>
</tr>
<tr>
<td>Matrix comp</td>
<td>SGD</td>
<td>MovieLens</td>
<td>5×10^{-5}</td>
<td>1×10^{-5}</td>
<td>5,000</td>
<td>1663.73</td>
<td>3.004</td>
</tr>
<tr>
<td>Word embed</td>
<td>Weighted SGD</td>
<td>EN-Wiki</td>
<td>1×10^{-10}</td>
<td>1×10^{-10}</td>
<td>4,250</td>
<td>2571.51</td>
<td>1.653</td>
</tr>
</tbody>
</table>

F Evaluation — Long version

F.1 Implementation and Setup

Our experiments were conducted on a machine with 72 CPUs (Intel(R) Xeon(R) CPU E7-8870 v3, 2.10 GHz) on 4 NUMA nodes, each with 18 CPUs, and 1TB of memory. We ran both CYCLADES and HOGWILD! with 1, 4, 8, 16 and 18 threads pinned to CPUs on a single NUMA node (i.e., the maximum physical number of cores possible, for a single node), so that we can avoid well-known cache coherence and scaling issues across different nodes [24]. We note that distributing threads across NUMA nodes significantly increased running times for both CYCLADES and HOGWILD!, but was relatively worse for HOGWILD!. We believe this is due to the poorer locality of HOGWILD!, which results in more cross-node communication. In this paper, we exclusively focus our study and experiments on parallelization within a single NUMA node, and leave cross-NUMA node parallelization for future work, while referring the interested reader to a recent study of the various tradeoffs of ML algorithms on NUMA aware architectures [24].

In Table 3 we list some details of the datasets that we use in our experiments. The stepsizes and batch sizes used for each problem are listed in Table 4, along with dataset and problem details. In general, we chose the stepsizes to maximize convergence without diverging. Batch sizes were picked to optimize performance for CYCLADES.

F.2 Learning tasks and algorithmic setup

Least squares via SAGA

The first problem we consider is least squares:

$$
\min_{x} \frac{1}{n} \|Ax - b\|_2^2 = \min_{x} \frac{1}{n} \sum_{i=1}^{n} (a_i^T x - b_i)^2
$$

which we will solve using the SAGA algorithm [7], an incremental gradient algorithm with faster than SGD rates on convex, or strongly convex functions. In SAGA, we initialize $g_i = \nabla f_i(x_0)$ and iterate the following two steps

$$
x_{k+1} = x_k - \gamma \cdot \left(\nabla f_{s_k}(x_k) - g_{s_k} + \frac{1}{n} \sum_{i=1}^{n} g_i \right)
$$

$$
g_{s_k} = \nabla f_{s_k}(x_k).
$$
where \(f_i(x) = (a_i^T x - b_i)^2 \) and \(\nabla f_i(x) = 2 (a_i^T x - b_i) a_i \). In the above iteration it is useful to observe that the updates can be performed in a sparse and "lazy" way. That is for any updates where the sampled gradients \(\nabla f_{i,s} \) have non-overlapping support, we can still run them in parallel, and apply the vector of gradient sums at the end of a batch "lazily". We explain the details of the lazy updates in Appendix A.1. This requires computing the number of skipped gradient sum updates, say they were \(\tau_j \) of them for each lazily updated coordinate \(j \), which may be negative in HOGWILD! due to re-ordering of updates. We thresholded \(\tau_j \) when needed in the HOGWILD! implementation, as this produced better convergence for HOGWILD! Unlike other experiments, we used different stepsizes \(\gamma \) for CYCLADES and HOGWILD!, as HOGWILD! would often diverge with larger stepsizes. The stepsizes chosen for each were the largest such that the algorithms did not diverge. We used the DBLP and NH2010 datasets for this experiment, and set \(A \) as the adjacency matrix of each graph. For NH2010, the values of \(b \) were set to population living in the Census Block. For DBLP we used synthetic values: we set \(b = Ax + 0.1\tilde{z} \), where \(\tilde{x} \) and \(\tilde{z} \) were generated randomly. The SAGA algorithm was run for up to 500 epochs for each dataset.

Graph eigenvector via SVRG

Given an adjacency matrix \(A \), the top eigenvector of \(A^T A \) is useful in several applications such as spectral clustering, principle component analysis, and others. In a recent work, [10] proposes an algorithm for computing the top eigenvector of \(A^T A \) by running intermediate SVRG steps to approximate the shift-and-invert iteration. Specifically, at each step SVRG is used to solve

\[
\min_{x} \frac{1}{2} x^T (\lambda I - A^T A) x - b^T x = \min_{x} \sum_{i=1}^{n} \left(\frac{1}{2} x^T \left(\frac{\lambda}{n} I - a_i a_i^T \right) x - \frac{1}{n} b^T x \right).
\]

According to [10], if we initialize \(y = x_0 \) and assume \(\|a_i\| = 1 \), we have to iterate the following updates

\[
x_{k+1} = x_k - \gamma \cdot n \cdot (\nabla f_{s_k}(x_k) - \nabla f_{s_k}(y)) + \gamma \cdot \nabla f(y)
\]

where after every \(T \) iterations we update \(y = x_k \), and the stochastic gradients are of the form \(\nabla f_i(x) = (\frac{\lambda}{n} I - a_i a_i^T) x - \frac{1}{n} b \).

We apply CYCLADES to SVRG with dense linear gradients (see App. A.1) for parallelizing this problem, which uses lazy updates to avoid dense operations on the entire model \(x \). This requires computing the number of skipped updates, \(\tau_j \), for each lazily updated coordinate, which may be negative in HOGWILD! due to re-ordering of updates. In our HOGWILD! implementation, we thresholded the bookkeeping variable \(\tau_j \) (described in App. A.1), as we found that this produced faster convergence. The rows of \(A \) are normalized by their \(\ell_2 \)-norm, so that we may apply the SVRG algorithm of [10] with uniform sampling. Two graph datasets were used in this experiment. The first, DBLP (http://snap.stanford.edu/data) is an authorship network consisting of 1.4M authors and 4M publications, with 8.65M edges. The second, NH2010 (http://cise.ufl.edu/research/sparse/matrices/DIMACS10/nh2010.html) is a weighted topological graph of 49 Census Blocks in New Hampshire, with an edge between adjacent blocks, for a total of 234K edges. We ran SVRG for 50 and 100 epochs for NH2010 and DBLP respectively.

Matrix completion via SGD

In the matrix completion problem, we are given a partially observed \(n \times m \) matrix \(M \), and wish to factorize it as \(M \approx UV \) where \(U \) and \(V \) are low rank matrices with dimensions \(n \times r \) and \(r \times m \) respectively. This may be achieved by optimizing

\[
\min_{U,V} \sum_{(i,j) \in \Omega} (M_{i,j} - U_{i,:} V_{:,j})^2
\]

where \(\Omega \) is the set of observed entries, which can be approximated by SGD on the observed samples. The objective can also be regularized as:

\[
\min_{U,V} \sum_{(i,j) \in \Omega} (M_{i,j} - U_{i,:} V_{:,j})^2 + \frac{\lambda}{2} (\|U\|_F^2 + \|V\|_F^2) = \min_{U,V} \sum_{(i,j) \in \Omega} \left((M_{i,j} - U_{i,:} V_{:,j})^2 + \frac{\lambda}{2} (\|U\|_F^2 + \|V\|_F^2) \right).
\]

The regularized objective can be optimized by weighted SGD, which samples \((i,j) \in \Omega \) and updates

\[
U_{i',:} \left\{ \begin{array}{ll} (1 - \gamma \lambda) U_{i',:} - \gamma \cdot |\Omega| \cdot 2 (U_{i, :} V_{:, j} - M_{i,j}) V_{:, j}^T & \text{if } i = i' \\
(1 - \gamma \lambda) U_{i',:} & \text{otherwise} \end{array} \right.
\]

\[
V_{:, j} \left\{ \begin{array}{ll} (1 - \gamma \lambda) V_{:, j} - \gamma \cdot |\Omega| \cdot 2 (U_{i, :} V_{:, j} - M_{i,j}) U_{i, :}^T & \text{if } j = j' \\
(1 - \gamma \lambda) V_{:, j} & \text{otherwise} \end{array} \right.
\]

\[
\gamma = \frac{\lambda}{\omega_d \lambda + \alpha + 2} \left(\left\langle \sum_{i,j \in \Omega} (M_{i,j} - U_{i,:} V_{:,j}) \right\rangle \right)^2
\]
and analogously for $V_{i,j}$. In our experiments, we chose a rank of $r = 100$, and ran SGD and weighted SGD for 200 epochs. We used the MovieLens 10M dataset containing 10M ratings for 10,000 movies by 72,000 users.

Word embedding via SGD Semantic word embeddings aim to represent the meaning of a word w via a vector $v_w \in \mathbb{R}^r$. In a recent work by [2], the authors propose using a generative model, and solving for the MLE which is equivalent to:

$$\min_{\{v_w\}, C} \sum_{w,w'} A_{w,w'} (\log(A_{w,w'})) - \|v_w + v_{w'}\|^2_2 - C)^2,$$

where $A_{w,w'}$ is the number of times words w and w' co-occur within τ words in the corpus. In our experiments we set $\tau = 10$ following the suggested recipe of the aforementioned paper. We can approximate the solution to the above problem by SGD: we can repeatedly sample entries $A_{w,w'}$ from A and update the corresponding vectors $v_w, v_{w'}$. In this case the update is of the form as:

$$v_w = v_w + 4\gamma A_{w,w'} (\log(A_{w,w'})) - \|v_w + v_{w'}\|^2_2 - C)(v_w + v_{w'})$$

and identically for $v_{w'}$. Then, at the end of each full pass over the data, we update the constant C by its locally optimal value, which can be calculated in closed form:

$$C \leftarrow \frac{\sum_{w,w'} A_{w,w'} (\log(A_{w,w'})) - \|v_w + v_{w'}\|^2_2}{\sum_{w,w'} A_{w,w'}}.$$

In our experiments, we optimized for a word embedding of dimension $r = 100$, and tested on a 80MB subset of the English Wikipedia dump available at http://mattmahoney.net/dc/text.html. The dataset contains 213K words and A has 20M non-zero entries. For our experiments, we run SGD for 200 epochs.

F.3 Speedup and Convergence Results

In this subsection, we present the bulk of our experimental findings.

![Graphs showing speedup and convergence results](image)

(a) Least Squares, DBLP, (b) Graph Eig., NH2010, (c) Mat. Comp., 10M, l_2, (d) Word2Vec, EN-Wiki, SAGA, SVRG, SGD

Figure 8: Convergence of CYCLADES and HOGWILD! in terms of overall running time with 1, 8, 16, 18 threads. CYCLADES is initially slower, but ultimately reaches convergence faster than HOGWILD!.

![Graphs showing speedup results](image)

(a) Least squares, DBLP, (b) Graph Eig., NH2010, (c) Mat. Comp., 10M, l_2, (d) Word2Vec, EN-Wiki, SAGA, SVRG, SGD

Figure 9: Speedup of CYCLADES and HOGWILD! versus number of threads. On multiple threads, CYCLADES always reaches ϵ objective faster than HOGWILD!. In some cases CYCLADES is faster than HOGWILD! even on 1 thread, due to better cache locality. In Figs. 9(a) and 4(b), CYCLADES exhibits significant gains, since HOGWILD! suffers from asynchrony noise for which we had to use comparatively smaller stepsizes to prevent divergence.
Least squares When running SAGA for least squares, we found that YCLADES! was divergent with the large stepsizes that we were using for CYCLADES (Fig. 10). Thus, in the multi-thread setting, we were only able to use smaller stepsizes for YCLADES!, which resulted in slower convergence than CYCLADES, as seen in Fig. 8(a). The effects of a smaller stepsize for YCLADES! are also manifested in terms of speedups in Fig. 9(a), since YCLADES! takes a longer time to converge to an ϵ objective value.

Graph eigenvector The convergence of SVRG for graph eigenvectors is shown in Fig. 8(b). CYCLADES starts off slower than YCLADES!, but always produces results equivalent to the convergence on a single thread. Conversely, YCLADES! does not exhibit the same behavior on multiple threads as it does serially—in fact, the error due to asynchrony causes YCLADES! to converge slower on multiple threads. This effect is clearly seen on Figs. 9(b), where YCLADES! fails to converge faster than the serial counterpart, and CYCLADES attains a significantly better speedup on 16 threads.

Matrix completion and word embeddings Figures 8(c) and 8(d) show the convergence for the matrix completion and word embeddings problems. CYCLADES is initially slower than YCLADES! due to the overhead of computing connected components. However, due to better cache locality and convergence properties, CYCLADES is able to reach a lower objective value in less time than YCLADES!. In fact, we observe that CYCLADES is faster than YCLADES! when both are run serially, demonstrating that the gains from (temporal) cache locality outweigh the coordination overhead of CYCLADES. These results are reflected in the speedups of CYCLADES and YCLADES! (Figs. 9(c) and 9(d)). CYCLADES consistently achieves a better speedup $(9 - 10 \times$ on 18 threads) compared to that of YCLADES! $(7 - 9 \times$ on 18 threads).

F.4 Runtime Breakdown

Partitioning and allocation costs The cost of partitioning and allocation for CYCLADES is given in Table 5, relatively to the time that YCLADES! takes to complete one epoch of stochastic updates (i.e., a single pass over the dataset). For matrix completion and the graph eigenvector problem, on 18 threads, CYCLADES takes the equivalent of 4-6 epochs of HOGWILD! to complete its partitioning, as the problem is either very sparse or the updates are expensive. For solving least squares using SAGA and word embeddings using SGD, the cost of partitioning is equivalent to 11-14 epochs of HOGWILD! on 18 threads. However, we point out that partitioning and allocation is a one-time cost which becomes cheaper with more stochastic update epochs. Additionally, we note that this cost can become amortized quickly due to the extra experiments one has to run for hyperparameter tuning, since the graph partitioning is identical across different stepsizes one might want to test.

![Figure 10: Convergence of CYCLADES and YCLADES! on least squares using SAGA, with 16 threads, on DBLP dataset. YCLADES! diverges with $\gamma > 10^{-5}$; thus, we were only able to use a smaller step size $\gamma = 10^{-2}$ for HOGWILD! on multiple threads. For HOGWILD! on 1 thread (and CYCLADES on any number of threads), we could use a larger stepsize of $\gamma = 3 \times 10^{-4}$.](image)

<table>
<thead>
<tr>
<th># threads</th>
<th>Least Squares SAGA NH2010</th>
<th>Least Squares SAGA DBLP</th>
<th>Graph Eig. SVRG NH2010</th>
<th>Graph Eig. SVRG DBLP</th>
<th>Mat. Comp. SGD MovieLens</th>
<th>Mat. Comp. Weighted SGD MovieLens</th>
<th>Word2Vec SGD</th>
<th>EN-Wiki</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.1255</td>
<td>1.0969</td>
<td>1.2244</td>
<td>1.2237</td>
<td>1.7637</td>
<td>1.7589</td>
<td>1.3299</td>
<td>1.2509</td>
</tr>
<tr>
<td>16</td>
<td>1.1357</td>
<td>1.1351</td>
<td>1.2364</td>
<td>1.2367</td>
<td>1.7584</td>
<td>1.7559</td>
<td>1.3255</td>
<td>1.2509</td>
</tr>
<tr>
<td>18</td>
<td>1.1580</td>
<td>1.1729</td>
<td>1.2563</td>
<td>1.2567</td>
<td>1.7525</td>
<td>1.7525</td>
<td>1.3250</td>
<td>1.2509</td>
</tr>
</tbody>
</table>

Table 5: Cost of partitioning and allocation. The table shows the ratio of the time that CYCLADES consumes for partition and allocation over the time that HOGWILD! takes for 1 full pass over the dataset. On 18 threads, CYCLADES takes between 4-14 HOGWILD! epochs to perform partitioning. Note however, this computational effort is only required once per dataset.

Stochastic updates running time When performing stochastic updates, CYCLADES has better cache locality and coherence, but requires synchronization after each batch. Table 6 shows the time...
for each method to complete a single pass over the dataset, only with respect to stochastic updates (i.e., here we factor out the partitioning time). In most cases, CYCLADES is faster than HOGWILD!.

In the cases where CYCLADES is not faster, the overheads of synchronizing outweigh the gains from better cache locality and coherency. However, in some of these cases, synchronization can help by preventing errors due to asynchrony that lead to worse convergence, thus allowing CYCLADES to use larger stepsizes and maximize convergence speed.

<table>
<thead>
<tr>
<th># threads</th>
<th>Mat. Comp.</th>
<th>Mat. Comp.</th>
<th>Word2Vec</th>
<th>Graph Eig.</th>
<th>Graph Eig.</th>
<th>Least Squares</th>
<th>Least Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SGD</td>
<td>ℓ₂-SGD</td>
<td>EN-Wiki</td>
<td>SVRG</td>
<td>SVRG</td>
<td>SAGA</td>
<td>SAGA</td>
</tr>
<tr>
<td></td>
<td>Cyc Hog</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>1.01</td>
<td>1.39</td>
<td>2.38</td>
<td>1.59</td>
<td>1.59</td>
<td>1.59</td>
</tr>
<tr>
<td>8</td>
<td>0.57</td>
<td>0.68</td>
<td>0.74</td>
<td>1.61</td>
<td>1.89</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>16</td>
<td>0.35</td>
<td>0.40</td>
<td>0.48</td>
<td>0.93</td>
<td>1.11</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>18</td>
<td>0.32</td>
<td>0.36</td>
<td>0.37</td>
<td>0.86</td>
<td>1.03</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 6: Time, in seconds, to complete one epoch (i.e., full pass of stochastic updates over the data) by CYCLADES and HOGWILD!. Lower times are highlighted in boldface. CYCLADES is usually faster than HOGWILD!, due to its better cache locality and coherence properties.

F.5 Diminishing stepsizes

In the previous experiments we used constant stepsizes. Here, we investigate the behavior of CYCLADES and HOGWILD! in the regime where we decrease the stepsize after each epoch. In particular, we ran the matrix completion experiments with SGD (with and without regularization), where we multiplicatively updated the stepsize by 0.95 after each epoch. The convergence and speedup plots are given in Figure 11. CYCLADES is able to achieve a speedup of up to $6 - 7 \times$ on 16 - 18 threads. On the other hand, HOGWILD! is performing worse comparatively to its performance with constant stepsizes (Figure 9(c)). The difference is more significant on regularized SGD, where we have to perform lazy updates (Appendix A.1), and HOGWILD! fails to achieve the same optimum as CYCLADES with multiple threads. Thus, on 18 threads, HOGWILD! obtains a maximum speedup of 3.5x, whereas CYCLADES attains a speedup of 6.5x.

![Figure 11: Convergence and speedups for SGD and weighted SGD with diminishing stepsizes for the matrix completion on the MovieLens dataset. In this case, CYCLADES outperforms HOGWILD! by achieving up to 6-7x speedup, when HOGWILD! achieves at most 5x speedup for 16-18 threads. For the weighted SGD algorithm, we used lazy updates (Appendix A.1), in which case HOGWILD! on multiple threads gets to a worse optimum.](image)

F.6 Binary Classification and Dense Coordinates

In addition to the above experiments, here we explore settings where CYCLADES is expected to perform poorly due to the inherent density of updates (i.e., for data sets with dense features). In particular, we test CYCLADES on a classification problem for text based data, where a few features appear in most data points. Specifically, we run classification for the URL dataset [15], which contains ~ 2.4M URLs, labeled as either benign or malicious, and 3.2M features, including bag-of-words representation of tokens in the URL.

![Figure 12: Filtering of features in URL dataset. with a total of 3,230,442 features before filtering. The maximum percentage of features filtered is less than 0.05%.](image)
For this classification task, we used a logistic regression model, trained using SGD. By its power-law nature, the dataset consists of a small number of extremely dense features which occur in nearly all updates. Since CYCLADES explicitly avoids all conflicts, for these dense cases it will have a schedule of SGD updates that leads to poor speedups. However, we observe that most conflicts are caused by a small percentage of the densest features. If these features are removed from the dataset, CYCLADES is able to obtain much better speedups. To that end, we ran CYCLADES and HOGWILD! after filtering the densest 0.016% to 0.048% of features. The number of features that are filtered are shown in Table 12.

Full results of the experiment are presented in Figure 13.

G Complete Experiment Results

In this section, we present the remaining experimental results that were left out for brevity from our main experimental section. In Figures 14 and 15, we show the convergence behaviour of our algorithms, as a function of the overall time, and then as a function of the time that it takes to perform only the stochastic updates (i.e., in Fig. 15 we factor out the graph partitioning, and allocation time). In Figure 16, we provide the complete set of speedup results for all algorithms and data sets we tested, in terms of the number of cores. In Figure 17, we provide the speedups in terms of the the computation of the stochastic updates, as a function of the number of cores. Then, in Figures 18 – 21, we present the convergence, and speedups of the overal computation, and then of the stochastic updates part, for our dense feature URL data set. Finally, in Figure 22 we show the divergent behavior of HOGWILD! for the least square experiments with SAGA, on the NH2010 and DBLP datasets. Our overall observations here are similar to the main text. One additional note to make is that when we take a closer look to the figures relative to the times and speedups of the stochastic updates part of CYCLADES (i.e., when we factor out the time of the graph partitioning part), we see that CYCLADES is able to perform stochastic updates faster than HOGWILD! due to its superior spatial and temporal access locality patterns. If the coordination overheads for CYCLADES are excluded, we are able to improve speedups, in some cases by up to 20-70% (Table 7). This suggests that by further optimizing the computation of connected components, we can hope for better overall speedups of CYCLADES.
<table>
<thead>
<tr>
<th></th>
<th>Mat. Comp. SGD MovieLens</th>
<th>Mat. comp ℓ2-SGD MovieLens</th>
<th>Word2Vec SGD EN-Wiki</th>
<th>Graph Eig. SVRG NH2010</th>
<th>Graph Eig. SVRG DBLP</th>
<th>Least Squares SAGA NH2010</th>
<th>Least Squares SAGA DBLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Speedup</td>
<td>8.8010</td>
<td>7.6876</td>
<td>10.4299</td>
<td>2.9134</td>
<td>4.7927</td>
<td>4.4790</td>
<td>4.6405</td>
</tr>
<tr>
<td>Speedup of Updates</td>
<td>9.0453</td>
<td>7.9226</td>
<td>11.4610</td>
<td>3.4802</td>
<td>5.5533</td>
<td>4.6998</td>
<td>8.1133</td>
</tr>
<tr>
<td>% change</td>
<td>-2.7759%</td>
<td>-3.0880%</td>
<td>9.8866%</td>
<td>19.4551%</td>
<td>15.8718%</td>
<td>4.9285%</td>
<td>4.8408%</td>
</tr>
</tbody>
</table>

Table 7: Speedups of CYCLADES at 16 threads. Two versions speedups are given for each problem: (1) with the overall running time, including the coordination overheads, and (2) using only the running time for stochastic updates. Speedups using only stochastic updates are up to 20% better, which suggests we could potentially observe larger speedups by further optimizing the computation of connected components.

![Graphs](image-url)

Figure 14: Convergence of CYCLADES and HOGWILD! on various problems, using 1, 8, 16 threads, in terms of overall running time. CYCLADES is initially slower, but ultimately reaches convergence faster than HOGWILD!.
Cyclades, 1 threads
HogWild!, 1 threads
Cyclades, 8 threads
HogWild!, 8 threads
Cyclades, 18 threads
HogWild!, 18 threads

Figure 15: Convergence of Cyclades and HogWild! on various problems, using 1, 8, 16 threads, in terms of running time for stochastic updates.
Figure 16: Speedup of CYCLADES and HOGWILD! on various problems, using 1, 4, 8, 16 threads, in terms of overall running time. On multiple threads, CYCLADES always reaches ϵ objective faster than HOGWILD!. In some cases (16(a), 16(e), 16(g)), CYCLADES is faster than HOGWILD! on even 1 thread, as CYCLADES has better cache locality.
Figure 17: Speedup of CYCLADES and HOGWILD! on various problems, using 1, 4, 8, 16 threads, in terms of running time for stochastic updates.
Figure 18: Convergence of CYCLADES and HOGWILD! on the malicious URL detection problem, using 1, 4, 8, 16 threads, in terms of overall running time, for different percentage of features filtered.

Figure 19: Convergence of CYCLADES and HOGWILD! on the malicious URL detection problem, in terms of running time for stochastic updates, for different percentage of features filtered.
Figure 20: Speedup of CYCLADES and HOGWILD! on the malicious URL detection problem, using 1, 4, 8, 16 threads, in terms of overall running time, for different percentage of features filtered.

Figure 21: Speedup of CYCLADES and HOGWILD! on the malicious URL detection problem, in terms of running time for stochastic updates, for different percentage of features filtered.
Figure 22: Convergence of CYCLADES and HOGWILD! on least squares using SAGA, with 16 threads, on the NH2010 and DBLP datasets. CYCLADES was able to converge using larger stepsizes, but HOGWILD! often diverged with the same large stepsize. Thus, we were only able to use smaller stepsizes for HOGWILD! in the multi-threaded setting.