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Figure 1. VideoCutLER is a simple unsupervised video instance segmentation method (UnVIS). We show the first competitive unsuper-
vised results on the challenging YouTubeVIS benchmark. Moreover, unlike most prior approaches, we demonstrate that UnVIS models can
be learned without relying on natural videos and optical flow estimates. Row 1: We propose VideoCutLER, a simple cut-synthesis-and-
learn pipeline that involves three main steps. Firstly, we generate pseudo-masks for multiple objects in an image using MaskCut [35]. Then,
we convert a random pair of images in the minibatch into a video with corresponding pseudo mask trajectories using ImageCut2Video.
Finally, we train an unsupervised video instance segmentation model using these mask trajectories. Row 2: Despite being trained only on
unlabeled images, at inference time VideoCutLER can be directly applied to unseen videos and can segment and track multiple instances
across time (Fig. 1a), even for small objects (Fig. 1b), objects that are absent in specific frames (Fig. 1c), and instances with high overlap
(Fig. 1d). Column 2: Our method surpasses the previous SOTA method OCLR [37] by a factor of 10 in terms of class-agnostic APvideo

50 .

Abstract

Existing approaches to unsupervised video instance seg-
mentation typically rely on motion estimates and experi-
ence difficulties tracking small or divergent motions. We
present VideoCutLER, a simple method for unsupervised
multi-instance video segmentation without using motion-
based learning signals like optical flow or training on natu-
ral videos. Our key insight is that using high-quality pseudo
masks and a simple video synthesis method for model train-
ing is surprisingly sufficient to enable the resulting video
model to effectively segment and track multiple instances
across video frames. We show the first competitive unsuper-
vised learning results on the challenging YouTubeVIS-2019
benchmark, achieving 50.7% APvideo

50 , surpassing the pre-
vious state-of-the-art by a large margin. VideoCutLER can
also serve as a strong pretrained model for supervised video
instance segmentation tasks, exceeding DINO by 15.9% on
YouTubeVIS-2019 in terms of APvideo.

1. Introduction

Video instance segmentation is vital for many computer vi-
sion applications, e.g. video surveillance, autonomous driv-
ing, and video editing, yet labeled videos are costly to ob-
tain. Hence, there is a pressing need to devise an unsuper-
vised video instance segmentation approach that can com-
prehend video content comprehensively and operate in gen-
eral domains without labels.

Prior work in this area typically relies on an optical flow
network as an off-the-shelf motion estimator [30, 37, 38].
Although optical flow can be informative in detecting pixel
motion between frames, it is not always a reliable tech-
nique, particularly in the presence of occlusions, motion
blur, complex motion patterns, changes in illuminations,
etc. As a result, models that heavily rely on optical flow
estimations may fail in several common scenarios. For ex-
ample, stationary or slowly moving objects may have flow
estimates similar to the background, causing them to be
omitted in the segmentation process (e.g., the parrot with
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Figure 2. Challenges encountered by the previous state-of-
the-art OCLR: Within the framework of OCLR [37], a method
that heavily relies on optical flows as model inputs, several dis-
tinct failure cases emerge. These include situations where the
method struggles to accurately segment both moving and static
objects (as demonstrated in Fig. 2a), struggles to effectively track
non-rigid objects as a coherent unit (Fig. 2b), encounters difficul-
ties in distinguishing overlapping instances (Fig. 2c), and fails to
maintain consistent predictions under varying illumination con-
ditions (Fig. 2d). Nonetheless, many of these challenges can be
effectively addressed through the application of our proposed ap-
proach, VideoCutLER, without being reliant on the optical estima-
tions used by various prior works [37, 38]. We present qualitative
comparisons using the YouTubeVIS dataset [39].

negligible motion is missed in Fig. 2a). Similarly, non-
rigid objects with non-consistent motions for several parts
have varying optical flows, leading to a failure in segment-
ing all parts cohesively as a unit if object motion is pre-
sumed constant (Fig. 2b). Also, objects with similar mo-
tion patterns and high overlap are complex for optic flow
methods to accurately distinguish between them, especially
in boundary regions (Fig. 2c). Finally, objects with illumi-
nation changes across frames can cause optical-flow based
models to produce non-consistent and blurred segmentation
masks (Fig. 2d). Given the limitations above, we advocate

for unsupervised video segmentation models which do not
depend on optical flow estimates. We propose a method to
train a video segmentation model by generating simple syn-
thetic videos from individual images, without relying on ex-
plicit motion estimates or requiring labeled natural videos.

Our method, VideoCutLER, is an unsupervised Video
instance segmentation model that employs a Cut-synthesis-
and-LEaRn pipeline (Fig. 1). First, given unlabeled images,
we extract pseudo-masks for multiple objects in an image
using MaskCut [35], leveraging a self-supervised DINO [4]
and a spectral clustering method Normalized Cuts [28] (de-
tails in Sec. 3.1). Second, given unlabeled images and their
pseudo-masks in a minibatch, we propose ImageCut2Video,
a surprisingly simple video synthesis scheme that generates
a video from those with corresponding pseudo mask trajec-
tories (details in Sec. 3.2). Finally, those mask trajectories
are used to train a video instance segmentation model, aim-
ing to perform object segmentation with temporal consis-
tency across video frames (details in Sec. 3.3).

We utilize VideoMask2Former [6] as our video instance
segmentation model, which operates by attending to the 3D
spatiotemporal features of our synthetic videos and generat-
ing 3D volume predictions of pseudo-mask trajectories us-
ing shared queries across frames. The shared queries across
frames enable the model to segment and track object in-
stances based on their appearance (feature) similarities.

Despite being learned from only unlabeled images
(and the temporally simple synthetic video sequences we
construct from them), VideoCutLER succeeds at multi-
instance video segmentation, achieving a new state-of-the-
art (SOTA) performance of 50.7% APvideo

50 on YouTubeVIS-
2019. This result surpasses the previous SOTA [37] by sub-
stantial margins of 45.9% (50.7% vs. 4.8%). This result
also considerably narrows the performance gap between su-
pervised and unsupervised learning, reducing it from 29.1%
to 11.0% in terms of the APvideo

50 .
Moreover, most prior works on self-supervised represen-

tation learning [4, 5, 11, 14, 33] are limited to providing
initializations only for the model backbones, with the re-
maining layers being randomly initialized. In contrast, our
pretraining strategy takes a more comprehensive approach
that allows all model weights to be pretrained, resulting
in a stronger pretrained model better suited for supervised
learning. As a result, our method outperforms DINO’s [4]
APvideo on YoutubeVIS-2019 by 15.9%.

Our work makes the following contributions: Insights:
We found that a simple video synthesis method yield sur-
prisingly effective results for training unsupervised multi-
instance video segmentation models. Importantly, this ef-
ficacy is achieved without the necessity of explicit mo-
tion estimates or the utilization of natural videos, a novel
aspect that has not been previously demonstrated in the
field. Methods: We propose a simple yet effective cut-
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CRW DINO OCLR Ours

Segment multiple objects ✓ ✗ ✓ ✓

Track objects across frames ✓ ✗ ✓ ✓

No need for optical flow ✓ ✓ ✗ ✓

No 1st-frame ground-truth ✗ ✗ ✓ ✓

No human labels at any stage ✗ ✗ ✓† ✓

Pretrained model for sup. learning ✗ ✗ ✗ ✓

Table 1. We compare previous methods on unsupervised instance
segmentation, including CRW [17], DINO [4], and OCLR [37],
with our VideoCutLER in term of key properties. Our Video-
CutLER is the only approach that fulfills all these desired prop-
erties. †: The optical flow estimator OCLR employs (RAFT [30])
is pretrained on both synthetic data and human-annotated data like
KITTI-2015 [18] and HD1K [19].

synthesize-and-learn pipeline VideoCutLER for learning
video instance segmentation models, given unlabeled im-
ages. Results: Our method shows the first successfully re-
sults on challenging unsupervised multi-instance video seg-
mentation benchmark YouTubeVIS, outperforming the pre-
vious SOTA model’s APvideo

50 by a large margin.

2. Related Work
Unsupervised video instance segmentation (VIS) re-
quires not only separating and tracking the main moving
foreground objects from the background, but also differ-
entiating between different instances, without any human
annotations [32]. Previous works [16, 21, 36, 38, 40] on
unsupervised video segmentation has primarily centered on
unsupervised video object segmentation (VOS), aiming to
detect all moving objects as the foreground and to generate a
pixel-level binary segmentation mask, regardless of whether
the scene contains a single instance or multiple instances.
Despite some works exploring unsupervised video instance
segmentation (VIS), many of these approaches have re-
sorted to either utilizing first frame annotations [4, 17, 22]
to propagate label information throughout the video frames
or leveraging supervised learning using large amounts of
external labeled data [25, 31, 41, 42]. Furthermore, prior
studies typically utilized optical flow networks that were
pretrained with human supervision using either synthetic
data or labeled natural videos [31, 37, 38, 40].

The properties deemed necessary for an unsupervised
learning method to excel in video instance segmentation
tasks are presented and discussed in Tab. 1. Our proposed
method, VideoCutLER, is the only approach that satisfies
all these properties, making it an effective and promising
solution for unsupervised video instance segmentation.
Unsupervised object discovery aims to automatically dis-
cover and segment objects in an image in an unsupervised
manner [16, 34–36]. LOST [29] and TokenCut [36] focus

on salient object detection and segmentation via leverag-
ing the patch features from a pretrained DINO [4] model.
For multi-object discovery, FreeSOLO [34] first gener-
ates object pseudo-masks for unlabeled images, then learns
an unsupervised instance segmentation model using these
pseudo-masks. CutLER [35] presents a straightforward cut-
and-learn pipeline for unsupervised detection and segmen-
tation of multiple instances. It has demonstrated promising
results on more than eleven different benchmarks, covering
a wide range of domains.

In contrast to previous approaches, our unsupervised
learning method focuses on simultaneously tracking objects
in a video sequence while identifying correspondences be-
tween instances across multiple frames.
Self-supervised representation learning generates its own
supervision signal by exploiting the implicit patterns or
structures present in the input data [3, 4, 14, 15]. Unlike
most previous self-supervised learning models, which still
require fine-tuning on labeled data to be operative on com-
plex computer vision tasks, such as detection and segmen-
tation, VideoCutLER can tackle these complex, challenging
tasks with purely unsupervised learning methods.

3. VideoCutLER

This section presents VideoCutLER, a simple cut-synthesis-
and-learn pipeline consisting of three main steps. First, we
generate pseudo-masks for multiple objects in an image us-
ing MaskCut (Sec. 3.1). Next, we convert a random pair of
images in the minibatch into a synthetic video with corre-
sponding pseudo mask trajectories using ImageCut2Video
(Sec. 3.2). Finally, we train an unsupervised video instance
segmentation (VIS) model using these mask trajectories. As
the model inputs do not contain explicit motion estimates, it
learns to track objects based on their appearance similarity
(Sec. 3.3). We will provide further details on each step in
the following sections.

3.1. Single-image unsupervised segmentation

We employ the MaskCut method, introduced in the Cut-
LER [35] method. MaskCut is an efficient spectral cluster-
ing approach for unsupervised image instance segmentation
and object detection and can discover multiple object masks
in a single image without human supervision. MaskCut
builds upon a self-supervised DINO model [2] with a back-
bone of ViT [10] and a cut-based clustering method Nor-
malized Cuts (NCut) [28]. MaskCut first generates a patch-
wise affinity matrix Wij =

KiKj

∥Ki∥2∥Kj∥2
using the ‘key’ fea-

tures Ki for patch i from DINO’s last attention layer. Sub-
sequently, the NCut algorithm [28] is employed on the affin-
ity matrix by solving a generalized eigenvalue problem

(D −W )x = λDx (1)
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where D is a diagonal matrix with d(i) =
∑

j Wij and x
is the eigenvector that corresponds to the second smallest
eigenvalue λ. Then, the foreground masks Ms can be ex-
tracted via bi-partitioning x, which segments a single ob-
ject within the image. To segment more than one instance,
MaskCut employs an iterative process that involves mask-
ing out the values in the affinity matrix using the extracted
foreground mask

W t
ij=

(Ki

∏t
s=1 M

s
ij)(Kj

∏t
s=1 M

s
ij)

∥Ki∥2∥Kj∥2
(2)

and repeating the NCut algorithm. MaskCut repeats this
process t times and sets t=3 by default.

Although MaskCut can effectively locate and segment
multiple objects in an image, it operates only on a single im-
age. When applied naively to a sequence, it lacks temporal
consistency in the instance segmentation masks produced
across video frames.

3.2. ImageCut2Video Synthesis for Training

We propose a learning-based approach to ensuring temporal
consistency in video segmentation masks, based on gener-
ating synthetic videos from pairs of individual images and
MaskCut masks. Surprisingly, we found that an extremely
simple synthetic video generation method yields sufficient
training data to learn a powerful video segmentation model
that can operate on videos with much greater complexity of
motion than is present in the training data.

Given unlabeled images in the minibatch and their
pseudo-masks, our ImageCut2Video method synthesizes
corresponding videos and pseudo-mask trajectories, thereby
allowing us to train the model in an unsupervised manner
while offering the necessary supervision for simultaneous
detection, segmentation, and tracking of objects in videos.

First, given an image and its corresponding pseudo-
masks in the mini-batch, we duplicate the image t times
and connect its MaskCut pseudo-masks to form the initial
trajectories. This synthetic video, however, only contains
static foreground objects. To generate additional trajecto-
ries with mobile objects, a second image is randomly se-
lected from the mini-batch, and its objects are cropped us-
ing its MaskCut pseudo-masks. These objects are then ran-
domly resized, repositioned, and augmented before being
pasted onto the first image. The resulting masks are con-
nected along the temporal dimension to generate additional
trajectories with mobile objects.

Specifically, given a target image I1, a random source
image I2 in the mini-batch and its corresponding set of bi-
nary pseudo-masks {M1

2 , ...,M
s
2}, we first apply a trans-

formation function T to resize and shift these pseudo-
masks randomly. This gives us a new set of pseudo-masks
{M̂1

2 , ..., M̂
s
2}, where M̂s

2 = T (Ms
2 ). Next, we synthesize

a video with t frames by duplicating image I1 for t times
and pasting the augmented masks onto I1 using:

It1=I1 ×Πs
i=1(1−M̂ i

2)+I2 × (1−Πs
i=1(1− M̂ i

2)) (3)

where × refers to element-wise multiplication.

3.3. Video Segmentation Model

During training, the resulting synthetic videos produced by
ImageCut2Video, comprising both mobile and stationary
objects, are employed as the inputs to train a video instance
segmentation model. The segmentation mask trajectories
corresponding to each object in the video serve as ‘ground-
truth’ annotations.

We utilize VideoMask2Former [6, 7] with a backbone
of ResNet50 [12] as our video instance segmentation (VIS)
model. It operates by attending to the 3D spatiotempo-
ral features of our synthetic videos and generating 3D vol-
ume predictions of pseudo-mask trajectories using shared
queries across frames. The shared queries across frames en-
able the model to segment and track object instances based
on their appearance (feature) similarities, making it a pow-
erful framework for analyzing video sequences.

4. Implementation Details
VideoCutLER. We first employ the MaskCut approach on
images preprocessed to a resolution of 480×480 pixels. We
then compute a patch-wise cosine similarity matrix using
the pretrained ViT-Base/8 DINO [4] model, which serves
as input to the MaskCut algorithm for initial segmentation
mask generation. We set t = 3, which is the maximum
number of masks per image. To refine the segmentation
masks, we employ a post-processing step using Conditional
Random Fields (CRFs) [20], which enforces smoothness
constraints and preserves object boundaries, resulting in im-
proved segmentation masks.

Next, we use ImageCut2Video to synthetic videos given
images and their pseudo-masks in a mini-batch. We found
that synthetic videos with two frames are sufficient to train
a video instance segmentation model; therefore, we use
s=2 by default. We randomly change the brightness, con-
trast, and rotation of the masks to create new variations
of pseudo-masks. Additionally, we randomly resize the
pseudo-masks (scale∈[0.8,1.0]), and shift their positions.
Training and test data. Our model is trained solely on
the unlabeled images from ImageNet [8], which comprises
approximately 1.3 million images. Without further fine-
tuning on any video datasets, we test our model’s zero-shot
unsupervised video instance segmentation performance on
four multi-instance video segmentation benchmarks, in-
cluding YouTubeVIS-2019 [39], YouTubeVIS-2021 [39],
DAVIS2017 [26], and DAVIS2017-Motion [26, 27].

YoutubeVIS-2019 and YouTube-VIS2021 contain 2,883
high-resolution YouTube videos (2,238 training videos and
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Methods
Training settings YouTubeVIS-2019 YouTubeVIS-2021

flow videos sup. AP50 AP75 AP APS APM APL AR10 AP50 AP75 AP APS APM APL AR10

MotionGroup∗ [38] ✓ ✓ ✗ 1.3 0.1 0.3 0.2 0.3 0.5 1.7 1.1 0.1 0.2 0.1 0.2 0.5 1.5
OCLR∗ [37] ✓ ✓ ✗† 4.8 0.4 1.3 0.0 1.2 5.5 11.0 4.4 0.3 1.2 0.1 1.6 7.1 9.6
CutLER‡ ✗ ✗ ✗ 37.5 14.6 17.1 3.3 13.9 27.6 30.4 29.2 10.4 12.8 3.1 12.8 27.8 22.6
VideoCutLER ✗ ✓⋇ ✗ 50.7 24.2 26.0 5.6 20.9 37.9 42.4 38.9 19.0 17.1 5.3 18.3 37.5 31.3
vs. prev. SOTA +12.8 +9.6 +8.9 +2.3 +7.0 +10.3 +12.0 +9.7 +8.6 +4.3 +2.2 +5.5 +9.7 +8.7

Table 2. Zero-shot unsupervised multi-instance video segmentation on YouTubeVIS-2019 and YouTubeVIS-2021. We report the
instance segmentation metrics (AP and AR) and training settings. ∗: reproduced MotionGroup [38] and OCLR [37] results with the
official code and checkpoints. †: the optical flow estimator OCLR employs (RAFT [30]) is pretrained on both synthetic data [1, 9] and
human-annotated data, such as KITTI-2015 [18] and HD1K [19]. ‡: We train a CutLER [35] model with Mask2Former as a detector on
ImageNet-1K, following CutLER’s official training recipe, and use it as a strong baseline. ⋇: VideoCutLER is trained on synthetic videos
generated using ImageNet. Sup and flow denote human supervision and optical flow information, respectively. We evaluate results on
YouTubeVIS’s train splits in a class-agnostic manner (note: we never train on YouTubeVIS).

302 validation videos) and 3,859 high-resolution YouTube
videos (2,985 training videos and 421 validation videos),
respectively. We evaluate the zero-shot unsupervised learn-
ing performance on their training splits in a class-agnostic
manner. For DAVIS-2017, we evaluate our model’s perfor-
mance on the 30 videos from its validation set.

Training settings. 1) Unsupervised Image Model Pre-
training: We first pretrain a Mask2Former [7] model with
a backbone of ResNet50 [12] on ImageNet using Mask-
Cut’s pseudo-masks. The model is optimized for 160k it-
erations, with a batch size of 16 and a learning rate of
0.00002. The learning rate is decayed by a factor of 20 at it-
eration 80,000. To prevent overfitting, a dropout layer with
a rate of 0.3 is added after the self-attention layers of trans-
former decoders. 2) Unsupervised Video Model Learn-
ing: We initialize the VideoMask2Former model [6] with
model weights from the previous stage, and then fine-tune
it on the synthetic videos we construct from ImageNet. We
train VideoCutLER on 8 A100 GPUs for 80k iterations, us-
ing the AdamW optimizer [24]. We set the initial learning
rate to 0.000005 and apply a learning rate multiplier of 0.1
to the backbone. A dropout layer with a rate of 0.3 is added
after the self-attention layers of transformer decoders.

Evaluation metric APvideo and ARvideo: The evaluation
metrics used in YouTubeVIS are Averaged Precision (AP)
and Averaged Recall (AR), which are similar to those used
in COCO [23]. The evaluation is specifically conducted at
10 intersection-over-union (IoU) thresholds ranging from
50% to 95% with a step of 5% [39]. However, unlike in
image instance segmentation, each instance in a video com-
prises a sequence of masks, so the IoU computation is per-
formed not only in the spatial domain, but also in the tem-
poral domain by summing the intersections at every single
frame over the unions at every single frame.

Evaluation metric J and F : For DAVIS [27], we report
results using their official evaluation metrics J&F , J and
F . The region measure (J ) [27] is the intersection-over-

union (IoU) score between the algorithm’s mask and the
ground-truth mask. The boundary measure (F) [27] is the
average precision of the boundary of the algorithm’s mask.
The evaluation metrics are computed separately for each in-
stance, and then the results are averaged over all instances
to get the final score. J&F is the mean of J and F .

5. Experiments
We evaluate the performance of VideoCutLER on sev-
eral video instance segmentation benchmarks. In Sec. 5.1,
we demonstrate that our approach can effectively perform
segmentation and tracking of multiple objects in videos,
even when trained on unlabeled ImageNet images with-
out any form of supervision. Our experimental results re-
veal that our method can drastically reduce the performance
gap between unsupervised and supervised learning meth-
ods for video instance discovery and tracking. Furthermore,
Sec. 5.2 demonstrates that fine-tuning VideoCutLER leads
to further performance gains in video instance segmenta-
tion, surpassing previous works such as DINO in both fully
supervised learning and semi-supervised learning tasks. In
Sec. 5.3, we conduct an ablation study to examine the im-
pact of key components and their hyperparameters on the
performance of our approach.

5.1. Unsupervised Zero-shot Evaluations

In this section, we evaluate the performance of our method
against previous state-of-the-art approaches on various
video instance segmentation benchmarks.
Evaluating unsupervised video instance segmentation
poses two main challenges. Firstly, as unsupervised learn-
ing methods train the model without semantic classes, the
class-aware video segmentation setup cannot be used di-
rectly for an evaluation. As a result, following previous
works, we evaluate video instance segmentation results in
a class-agnostic manner. Secondly, video instance segmen-
tation datasets often annotate only a subset of the objects
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Methods
Training settings DAVIS2017 DAVIS2017-Motion

flow videos sup. training data J&F J (Mean) F(Mean) J&F J (Mean) F(Mean)
MotionGroup (sup.) [38] ✓ ✓ ✗ IN-1K+synthetic - - - 39.5 44.9 34.2
Mask R-CNN (w/ flow)∗ [13, 37] ✓ ✓ ✗ IN-1K+synthetic - - - 50.3 50.4 50.2
OCLR (w/ flow)∗ [37] ✓ ✓ ✗ IN-1K+synthetic 39.6 38.2 41.1 55.1 54.5 55.7
VideoCutLER ✗ ✗ ✗ IN-1K 43.6 41.7 45.5 57.3 57.4 57.2
vs. prev. SOTA +4.0 +3.5 +4.4 +2.2 +2.9 +1.5

Table 3. Zero-shot unsupervised single/few-instance segmentation. VideoCutLER also outperforms the previous state-of-the-arts on
DAVIS2017 and DAVIS2017-Motion. Note: 12 out of 30 videos from DAVIS2017 and 26 out of 30 videos from DAVIS2017-Motion contain
only 1 moving instance. Additionally, DAVIS datasets focus solely on the performance of moving prominent objects, even in videos where
multiple objects are present. This disadvantages our model since it can segment both static and moving objects and has not been exposed
to any downstream videos during training. ∗: utilize optical flow predictions from RAFT [30], which is pretrained on external videos. All
methods are evaluated in a zero-shot manner, i.e. no fine-tuning on target videos.

in the video, which makes Average Recall (AR) a valuable
metric that does not penalize models for detecting novel
objects not labeled in the dataset [35]. Therefore, we re-
port both AR and AP for YouTubeVIS. Regarding DAVIS,
we use the official unsupervised learning metrics J , F , and
J&F . All these metrics assess the performance of unsuper-
vised video instance segmentation in a class-agnostic man-
ner. Sec. 4 lists more details on evaluation metrics.
Detailed comparisons on YouTubeVIS. Tab. 2 presents
a summary of the results for unsupervised zero-shot
video instance segmentation on the YouTubeVIS-2019 and
YouTubeVIS-2021 datasets. We compare our method’s re-
sults with the previous state-of-the-art methods OCLR [37]
and motion grouping [38]. We reproduce their results using
their official code and checkpoints to ensure fairness.

Although OCLR [37] is also trained on synthetic
videos, it relies on the off-the-shelf optical flow estimator
RAFT [30] to compute optical flows for RGB sequences.
It is worth noting that RAFT is pretrained on a combina-
tion of synthetic videos [1, 9] and human-annotated videos
such as KITTI-2015 [18] and HD1K [19]. Our approach,
VideoCutLER, despite not using any optical flow estima-
tions like many previous works on unsupervised video seg-
mentation, achieves over 10× higher AP50 and 18× higher
AP than OCLR [37] on YouTubeVIS-2019. Additionally,
we achieve over 30% higher recall. Furthermore, unlike the
previous state-of-the-art method OCLR [37], which exhibits
poor performance in segmenting small objects (with 0.0%
APS), our approach significantly outperforms it. Similar
performance gains can be observed on YouTubeVIS-2021.
Finally, the performance gains to CutLER [35] demon-
strates the effectiveness of VideoCutLER in training un-
supervised multi-instance video segmentation models, sur-
passing CutLER by over 12.8% on YouTubeVIS-2019.

In Fig. 3, we present qualitative visualizations illustrat-
ing the zero-shot unsupervised video instance segmentation
outcomes of VideoCutLER on YouTubeVIS dataset.
Detailed comparisons on DAVIS. To provide a compre-

Time

Figure 3. We present qualitative visualizations illustrating the
zero-shot unsupervised video instance segmentation outcomes
of VideoCutLER on YouTubeVIS dataset. It’s noteworthy that
VideoCutLER is solely pretrained on image dataset ImageNet-
1K, and its evaluation is conducted directly on the video dataset
YouTubeVIS (no further fine-tuning required). The visual results
provided effectively highlight that VideoCutLER is capable of
segmenting and tracking multiple instances, delivering consistent
tracking results across video frames, and successfully distinguish-
ing between various instances, even when significant overlapping
occurs. We show more demo results in appendix.

hensive evaluation and comparison with existing unsuper-
vised video instance segmentation approaches, we also as-
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Figure 4. We fine-tune VideoCutLER for semi-supervised video
instance segmentation on the YouTubeVIS-2019 dataset, using
different percentages of labeled training data. We evaluate the per-
formance of our method by reporting the average precision and
recall on the validation set of YouTubeVIS-2019. To establish
a strong baseline, we use the self-supervised DINO [4] model
and initialize the weights of VideoMask2Former with DINO. To
ensure a fair comparison, both baselines and VideoCutLER are
trained using the same schedule and recipe.

sess the performance of our model on the validation sets
of DAVIS-2017 and DAVIS2017-Motion [27, 37]. Note
that both DAVIS2017 and DAVIS2017-Motion datasets fo-
cus only on the performance of instance segmentation on
prominent moving objects, even in videos with multiple
objects. As a result, only a single or a few objects of in-
terest per video are annotated, which may not reflect the
challenges that arise when multiple objects are present.

Although the evaluation of DAVIS is an unfair assess-
ment for us since VideoCutLER is supposed to segment
both static and moving objects, whereas DAVIS focuses on
moving prominent objects, with only a single or a few mov-
ing objects of interest per video annotated. However, Tab. 3
shows that VideoCutLER yields approximinately 4% higher
J , F , and J&F . The additional results on DAVIS demon-
strate that VideoCutLER achieves superior performance not
only on static or minimally moving objects but also on dy-
namic objects, where prior methods relying on optical flow
estimates can benefit from additional cues.
Comparison of supervised and unsupervised learning
in object discovery and tracking abilities is presented in
Tab. 4. We train a supervised MaskTrack R-CNN [39]
model on the human-annotated training set of YouTubeVIS-
2019 dataset, and evaluate it in a class-agnostic manner
on the videos that are not shared between YouTubeVIS-
2019 and YouTubeVIS-2021 datasets [39]. Tab. 4 shows
that our VideoCutLER model significantly narrows the
gap between supervised learning and unsupervised learn-
ing methods in terms of the averaged precision AP50

(gaps: 29.1%→11.0%) and the averaged recall AR100

(gaps: 14.9%→3.2%), particularly for the AR100.

5.2. Label-Efficient and Fully-Supervised Learning

In this section, we investigate VideoCutLER as a pretrain-
ing approach for supervised video instance segmentation
models, and evaluate its effectiveness in label-efficient and
fully-supervised learning scenarios.
Setup. We use VideoMask2Former with a backbone of
ResNet50 for all experiments in this section unless other-
wise noted. For our experiments on semi-supervised learn-
ing, we randomly sample a subset of videos from the train-
ing split with different proportions of labeled videos. Af-
ter pretraining our VideoCutLER model on ImageNet, we
fine-tune the model on the YouTubeVIS-2019 [39] dataset
with its human annotations. For our experiments on the
fully-supervised learning task, we fine-tune the VideoCut-
LER model on all available labeled data from the training
sets of YouTubeVIS. For baselines, we initialize a Video-
Mask2Former model with a DINO [4] model pre-trained on
ImageNet and fine-tuned on labeled videos. Since DINO
has shown strong performance in detection and segmenta-
tion tasks, it serves as a strong baseline for our experiments.

For semi-supervised learning, both the baselines and our
models are trained for 2× schedule, with a learning rate of
0.0001 for all model weights, except for the final classifica-
tion layers, which use a learning rate of 0.0016. We train
the models using a batch size of 16 and 8 GPUs. For fully-
supervised learning, we use the 1× schedule and a learning
rate of 0.0002 for the final classification layers. We evalu-
ate their performance on the val split of the YouTubeVIS-
2019, and report results from its official evaluation server.
Data for fully-/semi-supervised VIS. We fine-tune the pre-
trained VideoCutLER model on all or a subset of the train-
ing split of YouTubeVIS-2019. We then evaluate the re-
sulting models on the validation set. To ensure a fair com-
parison, we use the same amount of human annotations to
train our model and baselines. Specifically, we initialize
the baselines with the DINO-pretrained model and fine-tune
them on the training set of the respective dataset. We eval-
uate the model performance on their validation sets and re-
port results from its official evaluation server.
Results. Most prior approaches on self-supervised rep-
resentation learning [4, 5, 11, 14, 33] are limited to pro-
viding initializations only for the model backbones, with
the remaining layers, such as Mask2Former’s decoders,
being randomly initialized. In contrast, VideoCutLER
takes a more comprehensive approach that allows all model
weights to be pretrained, resulting in a stronger pretrained
model better suited for supervised learning. As a result, as
shown in Fig. 4 and Tab. 5, our method outperforms these
prior works significantly, offering a strong pretrained model
for fully-/semi-supervised learning tasks.

In Fig. 4, it can be observed that VideoCutLER consis-
tently outperforms the strong baseline method DINO [4]
across all label-efficient learning settings with varying pro-
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Methods
Training settings YouTubeVIS-2021\YouTubeVIS-2019

flow videos sup. training data AP50 AP75 AP APS APM APL AR100

MaskTrack R-CNN∗ [39] ✓ ✓ ✓ IN-1K+YT2019 32.4 13.0 15.0 8.4 24.9 39.0 20.3
MaskTrack R-CNN∗ [39] ✓ ✓ ✓ IN-1K+COCO+YT2019 35.8 18.7 18.7 10.5 31.3 46.8 24.5
OCLR∗ [37] ✓ ✓ ✗ IN-1K+synthetic 3.3 0.2 1.0 0.3 2.7 7.5 5.4
VideoCutLER ✗ ✗ ✗ IN-1K 21.4 7.1 9.0 4.9 13.3 29.6 17.1
vs. prev. SOTA +18.1 +6.9 +8.0 +4.6 +10.6 +22.1 +11.7

Table 4. VideoCutLER greatly narrows the gap between fully-supervised learning and unsupervised learning for multi-instance video
segmentation. Results are evaluated in a class-agnostic manner on the relative complement of the set of videos from YouTubeVIS-2021
and the set of videos from YouTubeVIS-2019. ∗: reproduced results with the official code and checkpoints. IN-1K refers to ImageNet-1K.

Methods Architecture
YouTubeVIS-2019 YouTubeVIS-2021

AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

DINO [4] Mask2Former [6] 23.0 39.0 23.7 6.0 28.0 34.2 24.6 41.4 25.9 8.7 34.0 39.9
VideoCutLER Mask2Former [6] 38.9 56.7 43.3 22.1 43.1 51.8 33.4 53.8 36.3 15.7 40.9 54.8
vs. prev. SOTA +15.9 +17.7 +19.6 +16.1 +15.1 +17.6 +8.8 +12.4 +10.4 +7.0 +6.9 +14.9

Table 5. VideoCutLER can serve as a strong pretrained model for the supervised video instance segmentation task. The video segmen-
tation model, Mask2Former, is initialized with various pretrained models, i.e., DINO or VideoCutLER, and fine-tuned on the training set
with human annotations. We report the instance segmentation metrics and evaluate the model performance on the val splits.

Size → 180 360 480
APvideo

50 49.9 50.7 50.4

(a) Frame size.

# frames → CutLER† [35] 2 3 4
APvideo

50 37.5 49.8 50.7 50.4

(b) # frames.

Augmentations → none +bright +rotation +contrast +crop all
APvideo

50 47.8 48.1 48.9 48.3 48.7 50.7

(c) Data augmentations for ImageCut2Video.

Table 6. Ablations for VideoCutLER. We report video instance
segmentation result APvideo

50 on YoutubeVIS-2019. (a) We analyze
the impact of varying the size of video frames on training Video-
CutLER. (b) We evaluate the effect of the number of frames used
for training video instance segmentation models. (c) We inves-
tigate the contribution of several augmentation methods, includ-
ing brightness, rotation, contrast, and random cropping, which are
used as default during model training. Default settings are high-
lighted in gray.

portions of labeled YouTubeVIS-2019 videos. The most
significant performance gains are observed when 20% la-
beled data is provided, where VideoCutLER exceeds DINO
by over 12% in video instance segmentation precision AP50

and 13.2% in terms of video instance segmentation recall.
As demonstrated in Tab. 5, training the model with all

available labeled videos from YouTubeVIS yields consider-
able performance improvements, surpassing DINO in terms
of AP by more than 15.9% on YouTubeVIS-2019 and 8.8%
on YouTubeVIS-2021, respectively.

5.3. Ablation Study

Hyper-parameters and design choices. We present an ab-
lation study on several key hyper-parameters and design
choices of VideoCutLER in Tab. 6. First, we analyze the

frame t

Pr
ed

.
In
pu

t
Pr

ed
.

In
pu

t
Pr

ed
.

In
pu

t

frame t+1 frame t+2 frame t+3

Figure 5. We present qualitative results on videos covering a range
of out-of-domain sources, including sketches, 3D computer-
generated imagery (CGI), hybrid (CGI + realistic), etc. Our
approach, VideoCutLER, can produce high-quality segmentation
and tracking results for small objects that are often difficult to dis-
tinguish from the background, as well as for object sketches that
lack textual information.

impact of varying the size of video frames used for training
VideoCutLER. From Tab. 6a, we observe that the shortest
edge length of 240 pixels yields the best performance. Us-
ing a larger resolution does not always lead to better results.
Next, Tab. 6b shows the effect of the number of frames used
for training video instance segmentation models. We found
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that synthetic videos with three frames are optimal for learn-
ing an unsupervised video instance segmentation model. In-
creasing the number of frames does not result in a further
improved performance, aligning with the findings reported
in [6]. Furthermore, Tab. 6c investigates the contribution
of several augmentation methods, including brightness, ro-
tation, contrast, and random cropping, which are used as
default during model training. We found that compared to
ImageCut2Video without any data augmentations, adding
these augmentations can bring about 3% performance gains.
Generalizability. The qualitative results presented in Fig. 5
demonstrate that VideoCutLER can effectively perform
video instance segmentation and tracking on out-of-domain
data sources, e.g. sketches, 3D computer-generated imagery
(CGI), and hybrid videos that combine CGI and real videos.
These results showcase the generalizability of our model,
which can be applied to a broad range of videos beyond the
domains it was initially trained on, i.e., ImageNet.

6. Summary and Limitations
We presented a simple unsupervised approach to segment
multiple instances in a video. Our approach, VideoCut-
LER, does not require labels, and does not rely on motion-
based learning signals like optical flow. In fact, VideoCut-
LER does not need real videos for training as we synthesize
videos using natural images from the ImageNet-1K dataset.
Despite being simpler, VideoCutLER outperforms models
that use additional learning signals or video data, achiev-
ing 10× their performance on benchmarks like YouTube-
VIS. Additionally, VideoCutLER serves as a strong self-
supervised pretrained model for supervised video instance
segmentation. We hope that our approach enables both a
wide range of applications in video recognition, as well as
its simplicity enables easy future research.

Limitations: while VideoCutLER demonstrates its capa-
bility to achieve the state-of-the-art performance without re-
lying on optical flow estimations, potential further improve-
ments may be obtained by leveraging natural videos and in-
tegrating joint training with optical flow estimations. How-
ever, for the sake of maintaining simplicity, we have chosen
to defer these aspects to future research endeavors.
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A. Appendix

Time

Figure A.1. We present additional qualitative visualizations (Figures A1-A5) showcasing the zero-shot unsupervised video instance
segmentation results of VideoCutLER on YoutubeVIS. VideoCutLER is pretrained on image dataset ImageNet-1K and directly
evaluated on video dataset YouTubeVIS.
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Figure A.2. Additional qualitative visualizations.
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Figure A.3. Additional qualitative visualizations.
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Figure A.4. Additional qualitative visualizations.
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Figure A.5. Additional qualitative visualizations.

15


	. Introduction
	. Related Work
	. VideoCutLER
	. Single-image unsupervised segmentation
	. ImageCut2Video Synthesis for Training
	. Video Segmentation Model

	. Implementation Details
	. Experiments
	. Unsupervised Zero-shot Evaluations
	. Label-Efficient and Fully-Supervised Learning
	. Ablation Study

	. Summary and Limitations
	. Appendix

