UNIVERSITY OF CALIFORNIA AT BERKELEY **College of Engineering** Department of Electrical Engineering and Computer Sciences

EE105 Lab Experiments

Report 3: Bipolar Junction Transistor Characterization

Solutions

^{3.1 &}amp; 3.2 For each measurement of V_{BE} , V_{BC} , I_B , and I_C , fill in the corresponding entry in Table 1 and compute the resulting β and α .

Parameters	Forward Active	Saturation	Cutoff	Reverse Active
V_{BE}	0.6 V	$0.596 \mathrm{V}$	$-2.68 { m V}$	$-4.55~\mathrm{V}$
V_{BC}	$-1.72 \mathrm{V}$	$0.473~\mathrm{V}$	$-7.33 { m V}$	$0.492~\mathrm{V}$
I_B	2.2 nA	$3.2 \mathrm{nA}$	0 A	$3.5 \mathrm{nA}$
I_C	$0.5 \mathrm{mA}$	$0.363 \mathrm{mA}$	0 A	-0.0126 mA
β	227.27	N/A	N/A	-3.6
α	0.9956	N/A	N/A	0.7826

Table 1: Regions of operations and measurements

3.1.2 Measure V_{BE} and V_{BC} . What is the region of operation?

Forward active

$V_{BE} = 0.6 V$	7
$V_{BC} = -1.72 \text{ V}$	7

3.1.3 Measure I_B and compute β .

$$\beta = \frac{I_C}{I_B} = \frac{0.5 \text{ mA}}{2.2 \text{ nA}} = 227.27$$
$$\boxed{I_B = 2.2 \text{ nA}}$$

3.1.4 Calculate I_E using α and measure I_E . Do the results agree?

$$\alpha = \frac{\beta}{1+\beta} = \frac{227.27}{1+227.27} = 0.9956$$
(Calculated) $I_E = \frac{I_C}{\alpha} = 0.50221 \text{ mA}$
(Calculated) $I_E = 0.50221 \text{ mA}$
(Measured) $I_E = 0.5022 \text{ mA}$

3.1.5 Measure I_B and I_C with your fingers around the BJT. How do the values compare to the values without heating the BJT?

 I_C increases, but I_B stays the same.

$$I_B = 2.2 \text{ nA}$$
$$I_C = 0.5045 \text{ mA}$$

3.1.6 Explain, using the equation you know for collector current, how you'd expect I_C to vary with temperature. Does this agree with your experimental results? If not, explain why this might be the case. Hint: I_S depends on the intrinsic carrier concentration n_i and the diffusion coefficients D_n and D_p . Intuitively, how would n_i , D_n , and D_p change with temperature? How would I_S change with temperature as a result?

If you consider I_S a constant, as we have often done in this class, you may think it obvious that the collector current should decrease if T increases, since $I_C = I_S (e^{qV_{BE}/kT} - 1)$. However, I_S in fact depends on n_i , D_n , and D_p in the following way (for a general PN junction):

$$I_S = q n_i^2 A \left(\frac{D_p}{N_d W_n} + \frac{D_n}{N_a W_p} \right)$$

Intuitively, you should know that n_i increases with temperature (since more thermal energy allows more charge carriers to be intrinsically mobiler) and that D_n and D_p increase with temperature (diffusion is more rapid at higher temperatures). If you look up equations for these values, you'll find your intuition is correct, as $n_i \propto e^{-E_g/2kT}$, $D_n = \mu_n kT/q$, and $D_p = \mu_p kT/q$.

Thus, a reasonable explanation for why I_C increases with temperature is that the increase in I_S outweighs the decrease in $e^{qV/kT}$.

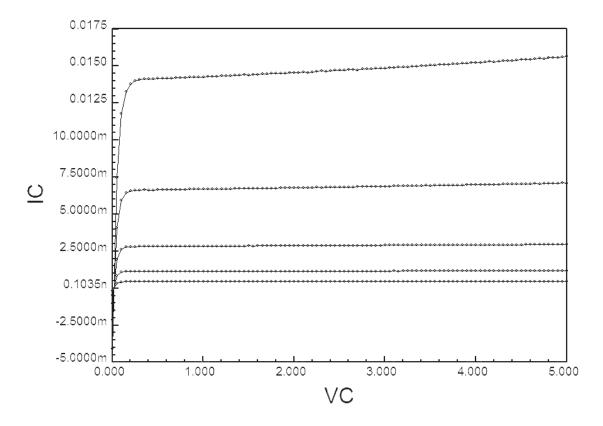
- 3.1.7 Does β agree with the value listed in the datasheet? If not, explain why you might see discrepancies. Discrepancies may come from fabrication variation, temperature dependence, and measurement error.
- 3.1.8 Set V_{BB} to 4 V and V_{CC} to 2 V. Measure I_B , I_C , V_{BE} , and V_{BC} . What is the region of operation? Saturation

$I_B = 3.2 \text{ nA}$
$I_C = 0.363 \text{ mA}$
$V_{BE} = 0.596 \text{ V}$
$V_{BC} = 0.473 \text{ V}$

3.1.9 Set V_{BB} to -3 V and V_{CC} to 5 V. Measure I_B , I_C , V_{BE} , and V_{BC} . What is the region of operation?

Cutoff

	$I_B = 0 \text{ A}$
	$I_C = 0 \text{ A}$
$V_{BE} = -2.68 \text{ V}$	
V_{BC} =	= -7.33 V


3.1.10 Swap the emitter and collector. Set V_{BB} to 4 V and keep V_{CC} at 5 V. Measure I_B , I_C , V_{BE} , and V_{BC} . What is the region of operation?

Reverse Active

$I_B = 3.5 \text{ nA}$		
$I_C = -0.0126 \text{ mA}$		
$V_{BE} = -4.55 \text{ V}$		
$V_{BC} = 0.492 \text{ V}$		

Use all of the data you've collected up to this point to fill out Table 1.

3.2.2 Attach the plot of the I-V curve to this worksheet. Label the two regions of operation and draw the boundary between them.

See Figure 1 for the BJT I-V curve.

Figure 1: I-V curves for a BJT.

3.2.3 Use the I-V curve to determine V_A .

 $V_A = I_{C,SAT} \cdot r_o$ $r_o = \frac{1}{\text{Slope in Forward Active}}$ $V_A = 173.077 \text{ V}$

3.2.4 Repeat your calculation of V_A for base voltages of 0.625 V, 0.65 V, 0.675 V, and 0.7 V (you can step the base voltage in ICS to get this data). Does V_A depend on V_B ? Why?

 V_A depends on V_B . V_A being constant with V_B is just an approximation. In reality, changing V_B (holding V_E constant) will change the quasi-neutral base width due to the change in depletion width in the base-emitter junction. Therefore, V_A , which captures the effect of the change in depletion width in the base-collector junction relative to the quasi-neutral base width, changes with V_B when V_E is

V_B	V_A
$0.600 \mathrm{V}$	$173.077~\mathrm{V}$
$0.625 \mathrm{~V}$	$145.987\mathrm{V}$
$0.650~\mathrm{V}$	111.111 V
$0.675~\mathrm{V}$	77.77 V
$0.700 \mathrm{V}$	$57.5 \mathrm{V}$

 Table 2: Early voltage calculations

held constant.

3.3.2 Attach the plot of the I-V curve to this worksheet. What semiconductor device does this I-V curve look like?

See Figure 2 for the I-V curve. This device looks like a diode.

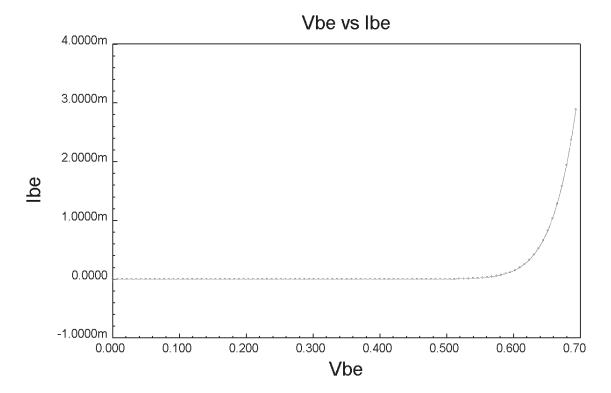
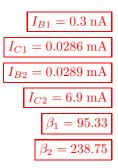



Figure 2: I-V characteristic of a diode-connected BJT.

3.4.2 Measure I_{B1} , I_{C1} , I_{B2} , and I_{C2} . Calculate β_1 and β_2 .

$$\beta_1 = \frac{I_{C1}}{I_{B1}} = \frac{0.0286 \text{ mA}}{0.3 \text{ nA}} = 95.33$$
$$\beta_2 = \frac{I_{C2}}{I_{B2}} = \frac{6.9 \text{ mA}}{0.0289 \text{ mA}} = 238.75$$

3.4.3 What is the overall current gain, β_{tot} ? Use the formula you derived in the prelab to calculate the total current gain from β_1 and β_2 and compare the calculation to your measurement.

(Calculated) $\beta_{tot} = \beta_2 (1 + \beta_1)$ = 238.75 \cdot (1 + 95.33) = 22998.79

Measurement error:

$$\frac{23000 - 22998.79}{22998.79} = 5.26 \times 10^{-5}$$

(Measured)
$$\beta_{tot} = 23000$$

(Calculated) $\beta_{tot} = 22998.79$