HW #2
Due September 26 (Monday) in class

1. Consider the following laser:
 Wavelength = 1.55 μm
 Optical power = 1 mW
 Optical beam size = 1 μm x 1 μm (assume uniform intensity distribution)
 Refractive index of the laser media = 3.4
 a. Find the photon flux of the laser beam inside the laser media (number of photons per cm² per second).
 b. Find the photon flux in air (assume 100% of the laser power is transmitted to air).

2. A “quantum box” has a dimension of 10 nm x 10 nm x 10 nm.
 a. Find its ground state (n = 1) and first excited energy (n = 2). Express your answers in eV.
 b. Find the spatial wavefunction, φ(x, y, z), for each state.
 c. Using the dipole approximation, calculate the matrix element |[̂e · ̂μ]₀²| corresponding to the transition 1 → 2 when the quantum box is illuminated by a laser beam with energy equal to the difference between these two states and polarization in ̂x.
 d. Assume the n = 1 state is completely filled, and the n = 2 state is completely empty. What is the net upward transition rate for the quantum box (in 1/sec) when it is illuminated by a laser beam with an intensity of 1 W/cm²? Assume the refractive index of the media is 3.5.
 e. For a media with 10¹⁸ quantum boxes per cm³, what is the absorption coefficient of the media?