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1. Introduction

A substantial body of results on stochastic integration with respect to multipa-
rameter martingales now exists. Yet, as it stands, the theory is not entirely
satisfactory in a number of ways. In particular, the calculus for stochastic
integration, already complicated in two dimension, becomes prohibitively so in
higher dimensions. In retrospect, the source of the difficulty seems to be that
integration over n-dimensional volumes in n-space is only a very small part of
a complete theory of integration in n-space. What seems to be needed is a
theory of differential forms involving martingales and integration of such forms
on sets of appropriate dimensionality. To embark on a course to develop such
a theory is the objective of the work reported here.

The starting point of our approach to stochastic differential forms is similar
to that of Whitney [4] and forms are defined as function on chains or
functions parametrized by chains satisfying certain continuity conditions. While
the flat cochains defined by Whitney ([4], Ch. IX) have the representation

X(o)=|x(@)dt; n...nd1, (1.1)

g

we cannot expect such a representation to hold for any class of martingale
forms that includes the Wiener process and a different approach becomes
necessary. We intend to show in this paper that an exterior calculus for
martingale forms can be constructed without such a representation. In the
nonrandom case the exterior calculus is coordinate independent. However, in
the stochastic case there is an underlying information pattern, namely, the
subsigma fields, and as a result the stochastic calculus presented here is not
coordinate free. The situation is similar to those cases where boundary con-
ditions for physical systems yield a coordinate dependent formulation.

In the next section we define the subsigma fields involved, stochastic co-
chains and two norms for chains: namely, the mass norm and the flat norm of
Whitney, with a different and more appropriate norm being introduced later.
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Stochastic differential forms are introduced in Sect. 3, these are cochains sat-
isfying certain continuity properties. The exterior derivative of a cochain is
introduced by relating the value for the derivative on a rectangle to the value
of the original cochain on the boundary of the rectangle. Different classes of
martingale cochains and forms are introduced in Sect. 4. In Sect. 5 it is shown
that with a wide class of martingale cochains we can associate with each
martingale cochain a positive cochain which plays a role analogous to that of
the increasing function of a one parameter process. The notions of martingales
of path independent variations and martingales of orthogonal increments are
easily generalized to the multiparameter case via the positive cochain as-
sociated with martingales. The exterior product is considered in Sects. 6, 7, 8.
First, in Sect. 6, we deal with the exterior product ¢ AM where ¢ is a zero
cochain (i.e., a predictable integrand) and M is a martingale cochain which
plays the role of an integrator. The exterior product X AY of nonrandom
forms is discussed in Sect. 7. Since our assumptions on the forms X and Y are
not enough to have a representation of the form (1.1) for X and Y, we cannot
define X A Y through

X AY)o)={x@y@dt; A... Adt, Adtg A-ndi

Jry®

We introduce the exterior product by an approximation procedure that avoids
the local representations x(f) and y(t). The exterior product not only extends
the stochastic integrals of the second type that were introduced in [6], but is of
new and independent interest in the nonrandom case. This approach is fol-
lowed in Sect. 8 in introducing the exterior product of martingale forms. A
formula for the exterior derivative of the exterior product X A Y is discussed in
Sect. 9 and its relation to the Green formula of Cairoli and Walsh is pointed
out.

2. Preliminaries

Notation. Let R” denote the positive quadrant of R". We associate with R”,
the usual partial order
(t1rtpy oes b 2(sy, -.ns) i £z, foralli=1,2,...,n
(T t)> (805 .n8) if t;>s; foralli=1,2,...,n

and define
t As=(min(t,,s,), ..., min(t,, s,))

tvs=(max({y, sy}, -.., max(t,, s,)-

For a rectangle o, define t(0) and #(g) as the infimum and supremum of points
in ¢ respectively. i=(i,, i,, ..., i) is a subset of the integers from 1 to »n then i*
will denote the collection of all remaining integers between 1 and n, and [i]
will denote i put in increasing order. Similarly, ¢; denotes (¢, , ..., ;).
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Let (2, F,P) be a complete probability space and let {F, tcR”} be a
family of sub-o fields. Define )
Fi= V K
s:sj=tj

e.g, if n=3 and i=(1, 3) then F/= \ F, F,
>0

(ty, o, t3)"

We assume that F,

t1,6,t3)
satisfies the following assumptions (cf. [1]):

(F;) t>s=F,2F,

(F,) F, contains all the null sets of F

(F) F=()F,

(F) Vi, i, F! and F¥ are conditionally independent given F,.

Condition (F,) is a generalization of the corresponding condition of Cairoli
and Walsh [1].

Let a; denote a finite interval open to the left and closed to the right on the
t; axis. For i<j, a; Aa; will denote a possibly oriented 2-dimensional rectangle
with sides g; and a; and a; Aa;= —a; A a; will denote the same rectangle with a
negative orientation. In general, let 4, ,q; , ..., qa; denote intervals as above.
Then a; na;, n...nq; will denote an r dimensional rectangle with sides
a,,4;,, ...,a;. The orientation is positive if an even permutation of
(i, i, ...,3,) puts it into increasing order, and the orientation is negative
otherwise. We call such rectangles oriented r-rectangles and refer to [i] as the
direction of a; Aa, A...Aq, .

We note that the boundary d¢ of an oriented (r+1) rectangle ¢ is a
collection of oriented r-rectangles that overlap at most on boundaries. Sub-
division of an r-rectangle produces a collection of r-rectangles. It is useful to
denote such a collection by a sum ¢,+¢,+...+0,. Furthermore if ¢ is an
oriented r-rectangle it is useful to denote by —o the same rectangle with the

opposite orientation. It is therefore useful to introduce linear combinations

A=Y o0, 2.1)
k=1

where o, are real numbers taking values in {—1, 1} and o, are oriented r-
rectangles. We shall call any sum of the form (2.1) an r-chain.

Let X (o) be a real-valued random function defined on (@, F, P) and param-
etrized by oriented r-rectangles such that

(a) X (o) is defined for every oriented r-rectangle o

m

(b) X(6)= —X(—0) and for disjoint rectangles X ( Y ok> =Y X(o)
K= 1 k=1
(©) X(o) is Fz,, adapted.
We can extend X to all rectangular r-chains by linearity and X so extended is
appropriately termed a random r-cochain.
In the next section a further extension of X that depends on whether it
satisfies some continuity conditions will be considered. For this purpose the
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notion of convergence of chains is necessary. Let |o| denote the r-dimensional
volume of the oriented rectangle ¢ with {g|=1 for r=0. For 4 defined by (2.1)
with disjoint a,, k=1, ..., n, the mass of a chain A is defined as

FIEDNEARIEAR
k

Turning to another norm, let {4,, m=1,2,...} be a sequence of r chaims, we
shall say that the sequence is a Cauchy sequence if either
[4,—A4, — 0

m, k— o
or, if for every m, k there is an r+1 chain B, , such that B, , =4, —A4, and

B 0.

\ m’k|m,;}+m

Note that for the convergence of an n-chain in R* only the first type of
convergence makes sense, while for the convergence of a 1-chain in R? to a

curve the second type of convergence is necessary. Therefore, it is useful to
define the flat norm |A|~ for an r-chain in R” by ([4], p. 154)

|A|~ =inf{|A —0B|+|B|} (2.2)

where the infimum is over all r+1 chains B. It is shown in [4] that |4
+B|” £|A|” +|B}~ and {A|” =0 if and only if A=¢. Hence, |+|” is a norm.
Furthermore, |+|~ satisfies: (see [4])

|0A4]™ 21417 £[4]. 2.3)

Note that for r=n, |A|™ =|A4}|. For r=0 and A4 a point in R”, |4|~ =1. For the
case where A is the difference of two points, s and ¢, |4~ =min (2, |(s, t)]).

3. Stochastic Differential Forms

Intuitively we would like to write a random r-cochain X (o) as an integral over
o
X(o)=|X

where the integrand X is a “stochastic differential r-form”. If we are to include
such processes as the Wiener process and white noise in the theory, then the
random differential forms are necessarily generalized processes (i.e., random
currents). Ito defined random currents a long time ago [2], however his
approach is incomplete for our purposes because it is limited to linear oper-
ations. Exterior products X A Y, where X, Y are random currents have not been
defined in [2]. As will be seen in later sections, to define such exterior products
is to define stochastic integrals (of different varieties) on R”, .
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One possibility is to define a stochastic differential r-form as the formal
integrand of a stochastic r-cochain that is continuous in probability with
respect to the flat norm defined in the previous section, i.e.,

X(4,)-%>0  whenever |4,|"—0 as m— oo. (3.1)

Similarly a random differential form is said to be an L, form or a g-integrable
form if

E|X{A) <o (3.2
and

E|X(4,)1—0 (3.2)"

whenever [A4,,|” —0. In (3.1) and (3.2) we extend the definition of X to limits of
chains under the flat norm by adjoining X (4 ).
As an example let # be “Gaussian white noise” on R? defined as follows:

(a) n(o) is a Gaussian random function parametrized by oriented 2-rec-
tangles ¢ on R2
(b) En(0)=0
(¢) En(o)n(c)=u(@na’) if o and ¢’ are similarly oriented
= — u(6Na’) otherwise

where ¢ denotes ¢ without orientation and u denotes the Lebesgue measure.
The white noise # is a random rectangular 2-cochain. Since En?(c)=|cl, (3.2) is
satisfied.

A Wiener process {W,, reR?} is defined by

Wi=n(A,)

where A, is the rectangle {s: 0<s<t}. Wiener process is a 0-cochain satisfying
(3.2). Furthermore, suppose that ¢ is an oriented l-rectangle [(o,, a,), (f,, %,)],
then

AW (00)=W,

Bi,az VVOCL,M

E(dW(@0)*=0,(B,—0,)

and {o|=p, —,. Hence (3.2)" is verified for horizontal 1-rectangles.
Continuing with our example, suppose that we define an oriented l-cochain
as follows:

for o=((ay, 1,), (B, 1)) set X (o) =W, . ~W, .
for o=((t, op), (£, B,)] set X, (5)=0.
Since the only l-rectangles in R2 are horizontal and vertical line segments, X

is well defined as a random cochain. For a 2-rectangle ¢ defined by the vertices
(g, a)s (B, 00), By, By). (o, f5), oy <a,, B, <f,, and anticlockwise orientation

Xl(aa)Z(%xsaz—_Vthlsaz)_(Wx,ﬂz_VVal,Bz) (33)

and EX}(0o)=|o| so that X, satisfies (3.2). We can similarly define a vertical
cochain X, and we shall see that X, +X, can be viewed as dW ie., the
exterior derivative of the O-cochain W,.
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It turns out that convergence in the flat norm is not convenient for

martingale forms and exterior products. For this reason we introduce the
K

following type of convergence: Let 4 be a r-chain and let A= Zak o, where
o,e{—1,0,1} and the o, are disjoint rectangles. Set

K
HX(A)H(1)=Sup Z log | - E| X (0,)]
k=1

K
where the supremum is over all representations of 4 as Z o, g, with o, disjoint
(and over all K). Similarly,

/2
X (4)] gy =sup ( Y E(X(ak))Z)

where the supremum is the same as for the definition of [|*],. Obviously,
[[* 1y satisfies the triangle inequality:

XA+ YAy = I X (A )+ 1Y (D)
So does | |5, and the proof of this is as follows

X (A)+ Y(A)| 5y =sup(E Y. (0, X (o) + 2, Y(5,)?)!?
<sup(E((3 o X2 (0 )2+ (X o Y2(a,))' 13?12
<sup {EY2Y o2 X2(6) + EY2 Y a2 Y2(0,)}

where the last inequality follows by the Minkowski inequality. Consequently,
for A fixed, | X (4), with g=1 or 2 is a norm.

Definition. X will be said to be a X, cochain, g=1 or 2, if
1X (40 @ 0

whenever |A, | —0 as m— .

For example, if EX?%(6)<C-|o| for every r-rectangle o then X is a X,
cochain. The notion of X, cochains is not sufficient to extend a cochain X to
manifolds, this will be done later after dX, the exterior derivative of X, is
defined.

As in the non-random case, an advantage of working with differential forms
rather than with linear functionals or generalized functions is a conceptual one.
The non-random differential forms are defined locally so that exterior differen-
tials and exterior products of forms make sense. Exterior products, in particu-
lar, lead to a nonlinear analysis of cochains. We intend to present a similar
stochastic-calculus approach in the stochastic “generalized” case by defining
the operations on the corresponding random cochains. '

Remark. As we have defined them, random differential r-forms are random
currents of Ito [2], but not every Ito current is an r-form in our sense. While
linear operations are definable on all random currents, nonlinear operations
(e.g., exterior products) are not. The r-forms that we have defined have the
right degree of localization to allow exterior products to be defined.
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If X is a regular (nongeneralized) differential form, then X can be repre-
sented as

X,=Y o) dey (3.4)
[}

where the differentials dt, =dt; Adt, A...adt, provide a local coordinate
system. For a random current such a representation is in general not possible,
but a useful representation similar to this one still exists. For a random
cochain X, define X|; as the cochain such that for every rectangle o

Xy(0)=X(g) if ¢ has the direction [i]

=0 otherwise (3.3)
Then for any rectangular chain A
X(4)= [Z]: Xy(4) (3.6)
and if X is a random differential form so is X;. Hence we can write
X=3 X, (3.7)

[i]

and this is the equivalent of (3.4) for random differential forms.
Next, we define the exterior derivative dX of a random r-cochain X (via the
Stokes theorem) as follows. Set

dX(A)=X(6A4) (3.8)

for all oriented (r+1) chains A. An equivalent definition for the exterior
derivative is the following. Define d, X|; for rectangles o as

d, X(0)=dX (o) if kis not in [i] and ¢ has direction [k, [i]]

. (3.9
=0 otherwise
Then we can write
de=deXm (3.10)
i
and
dX=deX. (3.8
k

Let 9, (0), &5 (o) denote the upper and lower boundaries of ¢ in the k direction
(07 (0)=0, (o) if k is not in the direction of ¢)

(d, X)(0) =X (97 (9)) — X (0 (0))- 3.9y

The exterior derivative of a stochastic differential form as defined by (3.1) and
(3.2) is also a stochastic differential form of the same type, this follows directly
from the definition of dX and the fact that [0A4|™ <|A4]".

We turn now to the definition of X, forms, g=1, 2.
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Definition. A4 cochain X will be said to be a X, form if both X and dX are X,
cochains. Note that in general || X(0B)||,,+ 14X (B)|,- Also note that if X is a
X, form so is dX since ddX =0, and that every X, n-cochain is also a X, n-form.

For example, if EX?(0)<c|o]| for every r-rectangle ¢ and EX?(dt)<c|z| for
every (r+1) rectangle 7 then X is a X, form. If for every r-chain 4

EX*(A)<clAl”
then

EX?*(A)<clAl,
since |A|~ £|A| and E(dX (B))*=E(X(0B))*<c|0B|~ <c|B|" <c|B|, X is a X,
form.

Consider a Wiener process W,, teR2. Take ¢, and ¢, to be the horizontal
and vertical 1-rectangles

o=, 1)t +a, )], g =(ty, 1), (¢4, 1, + b))
oriented from the left (from below) to the right (to above). We have
dy W) =W, y0,—W
d, W(o,)= el A

11,2

d Wi(o,)=d, W(c,)=0.

1, t2

Now, take a positively oriented 2-rectangle o with r=(¢,,t,) and t=(t,+a,t,
+b). Its boundary ¢o is given by:

do={0,, —0,,(t;+a,t,),(t,+a,t,+b)], —((t;,t,+b),(t,+a,t,+b)].
Hence
d(dl W)(G)‘_‘(Vth-{-a, ta T Vth, tz)_(pI/l1+a1, ta+b Vth, 12+b) (3 11)
= —n(a) '
and
d(d, W)(o)=n(o). (3.12)

We can interpret (3.11) and (3.12) as follows

d(d,W)=d,d, W+d,d, W
d(d,W)=d, d, W+d, d, W

with d, d, W=d,d, W=0,d,d, W=—d,d, Wand d,d, W=d,, W=#. Observe
that
ddW=dd, W+d, W)=d,d  W+d,d, W=0

as it should be.

Remark. Note that the Hodge star operator * is a linear operator defined on
all Ito random currents. Hence *X is well defined as an Ito random current {or
any r-cochain X considered as an Ito random current. However, *X is not
necessarily a cochain (equivalently a differential form) and for many interesting
cases it i1s not. For example, let # be an n-cochain representing Gaussian white
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noise, for *x to be a O-cochain it must be a continuous random function.
However
n(o)={xndt, ndt, n... ndt,
G
so that xx can not be a continuous random function and hence is not a 0-
cochain,

4. Martingale Cochains and Forms

For an oriented r-rectangle ¢, denote by f(o) its infimum point and i(g) its
maximum point. Recall that a random r-cochain was defined to be adapted i.c.,
X (o) is F;,, adapted for every r-rectangle o; also, recall the notation

Fi= \/ F,
S:Sj=1}
For n=r>1 and a fixed integer k, 1 <k<n, a random r-cochain M is said to
be a k-martingale r-cochain if for every r rectangle o with direction [o]
containing k, E|M{c)| < oo and
E[M(o)| F*

(o)

1=0. (4.1)

Note that if [¢] does not contain k, then o lies in the (n—1) hyperplane {s: s,
=1} and
E[M(0)|F},]=M(s) as.

It follows immediately from the definition that if M is a k-martingale then M,
is also a k-martingale for all [i] (cf. (3.5)). M is said to be a martingale if it is a
k-martingale for every k, 1 <k<n. (Note that if M is a martingale then My, is
also a martingale.) M is said to be a weak martingale r-cochain if E[M (o) < o0
and

E[M(o)|F,,]=0. (42)

Since F}oF, for every k, any k-martingale is a weak martingale.

For zero cochains we define the martingale property in terms of its exterior
derivatives. A zero cochain M is said to be an i-martingale if it is bounded in
L, and d;M is an i-martingale cochain. (Note that by definition d; M is zero
except on 1-rectangles with direction i. Hence d; M is a martingale if and only
if it is an i-martingale.) A zero cochain M is said to be a martingale cochain if
d; M is a martingale for all iZn,

If M is a martingale zero cochain then d, ...d;, M is a martingale r-cochain.
If M is a k-martingale then dMj; is a k-martingale for any [i] for which ke[i]
but dM need not be k-martingale. The relationship between the martingale
properties of M and those of dM are as follows:

(a) M is a k-martingale=dMy;, is a k-martingale for every [i] such that
keli].

(b) M is a k-martingale and d, M is a k martingale=>dM is a k-martingale.

(b’) M is a martingale and d, M is a k martingale for every k=dM is a
martingale.
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Note that by itself the condition “d, M =k-martingale for every k” implies that
dM is a weak martingale but not necessarily a martingale, and if M is a
martingale then dM is a weak martingale.

In both [1] and [6], a 2-parameter martingale is defined as a random
function {M,, telR2} such that

t>s=EM,|F)=M, as.

Such a process is a O-form in our sense characterized by the property that dM
is a martingale 1-form.

Cairoli and Walsh have defined 1 and 2 martingales for R in [1] and it is
interesting to compare their definition with ours. Let M be a 0-form and let ¢
be a 2-rectangle {a, <t=<b,, a,<t,<h,}. Denoting

AM(G):Mbl,b2+M Mﬂlbe—M

ai, az by, az’

Cairoli and Walsh define M to be a 1-martingale if

E(4M(0)|F,, ,)=0

1s O

for all 2-rectangles ¢ and a 2-martingale if
E[AM(0)|F,, ,,]1=0

for all 2-rectangles g. Now, AM can be viewed as a 2-form derived from M as
follows:

AM =d(d,M)= —d(d, M)=d, d, M.

Thus, M is a k-martingale, (k=1 or k=2), in the sense of Cairoli and Walsh if
and only if d, d, M is a k martingale 2-form in the sense of this paper.
Assume now that d, M is a 2-martingale 1-form in our sense. Then since
AM =d(d, M), we have by (3.6)
AM(o)=(d, M)(0).

Note that d, M is zero on horizontal l-rectangles so that
AM(o)=d, M((ay, b;)T(ay, by)+(ay, b)) (ay, by))
and d, M being 2-martingale 1-form implies

E(AM(c)|F_ )=0

so that M is a 2-martingale in the sense of Cairoli and Walsh. Similarly d, M
being a 1-martingale in our sense implies that M is a 1-martingale in the sense
of Cairoli and Walsh. Since dM =d;M on 1 rectangles in the i-direction, we
may summarize the above: M is an i-martingale in the sense of Cairoli and
Walsh if dM is an i-martingale in the sense of this paper. The relationship
among the various definitions can be displayed as follows:
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This Paper C-W [1]

dM =martingale 1-cochain <=—=M =L, martingale

|

dM =k martingale l-cochain

U

d,d, M =k martingale 2-cochain <———==M = L, k martingale

We conclude the definitions of the martingale cochains with a definition of
strong martingale r-cochains. Let ¢ be a rectangle and let [o] denote the
orientation of ¢. An r-cochain X will be said to be a strong martingale form if
for all r-rectangles o, E|X (0)} < oo and

E(X(0) |k\[/ ]F_’;(,,)) =0.

Note that for r=1 every martingale cochain is strong and for n=r=2 this
reduces to the definition of [1].

Finally, every martingale cochain of the different types defined here will be
said to be a X', martingale cochain and a X, martingale form of the same type
if in addition it is a X, cochain or form respectively.

5. Positive Cochains and Forms Associated with Martingale Forms

A differential form or cochain X will be said to be positive if X (o) is non-
negative for every positively oriented rectangle o.

Proposition 5.1. Let M be a X, martingale r-cochain, 1 <r <n. Then there exists
a X, r-cochain {M) which is positive and satisfies

E(M?(0)~{M>(0)|F,)=0 G.h

Jor every positively oriented rectangle o.

Remarks. (a) Note that relation (5.1) is for rectangles only and for the case
where A4 is a chain and r <n we may well have

EM?*(A)+ E{M>(A).
However (5.1) implies that
IM (A%, = IKM (Al 1)-

(b) For the case r=n it will follow from the proof that EM*(c)=E{(M)>(0)
for rectangles o. Since M is a martingale form, it follows that EM?(A4)
=E{M>(A) for any chain A.
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(¢) Note that [X(A4)|,, is a convenient norm for square integrable mar-
tingale cochains since for AnB=¢ we have

IX(AUB)IIG) =1 X (DIE) + X B,

Before turning to the proof consider the following example. Let # and £ be
two independent white Gaussian noises on R?%, and let Y and Z be the two
zero forms induced by # and ¢ respectively: d,d, Y=, d,d, Z=¢ Let U be
the l-form U=dY=d,Y+d,Y then the l-form (U)=t,dt,+t,dt, satisfies
(5.1). Let V=d,Y+d,Z then {V)=t,dt,+t,dt,={U), note however that U
and V are 1-forms with different probabilistic properties since

dU=d(dY)=0 while dV=d,d,Y+d,d,Z=+0.

In one dimension, Gaussian martingales are characterized by their quadratic
variations. This example shows that this is not the case for Gaussian mar-
tingale one forms in R".

Proof. The proof will be divided into several parts. Parts (b) and (c) of the
proof follow Cairoli and Walsh [1] (cf. also pp. 21, 22 of [3]).

(a) Note that it suffices to prove the existence of a positive cochain (M)
satisfying (5.1) since the assumption that M is a martingale X, cochain implies
that the cochain (M) is a ¥, cochain.

(b) Let M be X, martingale n-cochain in R” . Let R, denote the rectangle
generated by 0 and ¢, teR”, (ie, R,={y: 0=<y<t}) and let m, denote the zero
cochain m,=M(R,). We shall also use m(o) to denote the n-cochain M(o). Let
¢,=m? and let ¢(o) denote ¢p(0)=(d, d,...d, ¢)(0).

Lemma 5.2. (i) m, is a one parameter martingale on every increasing path in R" .
Consequently ¢, is a (one parameter) submartingale on every increasing path in
R". (i) For every rectangle o

E(¢(0) | F ;) =E(M(0))* | Fyq)- (5.2)
F ), «a>0, is a one

Proof of Lemma. () Note that (m, ., . .. F 1.0 .

parameter martingale in the parameter o. Consequently m, is a one parameter
martingale on every increasing path since t>s implies that ¢ can be reached
from s along a stepped path ie., one that is a chain. Hence, m, is a martingale
along such stepped paths which proves (i). Turning to (ii), we note that for a

given ¢
M(o)=Y, 6;m,

where 7; denotes the vertices of ¢ and 0, is +1 or — . Therefore
E(¢(0)| F;(a)) =E Z (6; mt2! I F;(a))

=E Z (9, M5y My, | Fz(ﬂ))

= E(m?(a) M(a)| Fg(a))
=E(M?(0)|Fy,) + E(M3,) — M(0)) M(0) | F, )
=E(M?(0)] F_t(a))

which proves (i).
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(c) As in part (b), let M be an L, martingale n-form and ¢,=m’. Let ¢
=(ty, 5, ..., 1,) and consider ¢, ,, ., as a function of ¢, 0<0=¢,. By Lem-
ma 52 ¢y, ., is a l-parameter submartingale and therefore by the Doob-
Meyer decomposition ¢,=¢™ +y., where ! is a l-parameter martingale in
the t, direction relative to (F,), (or by the F-4 property, relative to (le)z1)= and
¢7 is the predictable function of bounded variation in the ¢, direction relative
to (F,),, or (F}),,. Therefore, for «>0,

:Tll+oc, (2 ey n _¢;r11’ tay e, t“=1im Z E(d)e,-ﬂ, 2y s bn _¢9i, tos s | F, i 00, s oo) (53)
r

where 0, denote the points of a partition of the ¢, axis and the limit is as the
partition is refined. Consider now the behavior of ¢ in the ¢, direction (¢
=ty ., t,):

s ly

E((rbgl [P U S :[11, (24 ooy by | Fz)
'_‘E{lim Z E(¢0i+ 1y t24de e, -¢9,-, (TR A,
12

- ¢oi+ Ly B2y oees tn+ ¢ei, [ 2T ! F iy 12, e, tn) J Ft} (5-4)

where §; and the limit is as in (5.3). It follows from (5.4) and part (ii) of Lemma
5.2 that ¢ is a submartingale in the ¢, direction. Let ¢ denote the dual
predictable function of bounded variation appearing in the Doob-Meyer de-
composition of ¢, in the ¢; direction and consider (¢™);2, then

(@™ — ¢

i a one parameter martingale in the ¢, direction. Furthermore (¢™)™ is a
submartingale in the ¢; direction. Repeating, we construct

A?:qﬁt

Ar =

aZ=(ory

A= () )™
where, as before, A is a submartingale in the k+1 direction. Then AF—A*"1 is

a one parameter martingale in the k direction. Let 4, be a partition of R",
then

A=1im ¥ E(¢(4,)F,,,) (5.5)

where the limit denotes a proper sequence of refinements of the partitions (first
in the ¢, direction, then in the 7, direction etc.).
Let B" denote the cochain B"(g)=(d, d, ...d, A"}{o) or

B(0)=1im Y E(¢(4,00)|F, ).

Then B" is a positive cochain and since A*T!—A* is a one parameter mar-
tingale in the k+ 1 direction

E(M?(0)~B"(0) | F,,) =0
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therefore we may set B"={M) which proves (5.1) for the case r=n. Note that
as in the two parameter case, uniqueness is not assured by this argument since
(5.5) may depend on the order in which the limit in (5.5) is taken.

(d) Let M=M;, be a X, r-martingale cochain in R". Consider [i]*, fix t;
=a; for all je[il*, o;=0 and denote S,={t:t;=a;, je[i]*}. Then, since M(o)
= M;(0) is zero whenever the direction of ¢ is different from [i], we can map
(Mj(0), t(0)eS,) on R’ . Applying part (¢} to R, yields (M) =<{My>y
which satisfies (5.1).

Consider now M, and M, [i]+[j] and ¢,, o, r-rectangles. Let k be a
direction included in [i] but not in [j]. Then, by F-4

E(M[i](GI)M[j](O-Z)Ith((a'l))zo' (5.6)

Consequently, setting
(My=3) {Myp (5.7)
Il
yields (5.1).

Remark. Note that for r<n, because of the F-4 property as defined in Sect. 2

E(M?*(0)|F,)=E(M?*(0)|Fi7}) (5:8)

where [o] is the direction of g. Consequently, {M> can be constructed by
conditioning with respect to Fier instead of conditioning with respect to

Homk o
F, ..o Where o, are elements of the partitions.

For a pair of X, martingale r-cochains M and N, (M, N) is defined by
polarization
(M, N>=3((M+N>—<(M—N>).

Lemma 5.3. (M, N>=0 iff:
E(M(c)N(0)|F,,)=0 (5.9)
for all r-rectangles o.

The proof follows directly from the construction of (M.
Lemma 54. If M is a X, martingale r-form (1<r<n—1) and d,M is a mar-
tingale cochain for all k, 1 Sk <n then whenever k,+k,
{d,,M,d,,M>=0 (5.10)

and consequently

<dM>=k<_;1 (d, M. (5.11)

Proof. Let t{e,)=1t(0,), [6,]1F[0,] where both ¢, and o, are r-rectangles then
as in (5.8)
E(M(c,)M(c,)|F,,,)=0. (5.12)

Now, d, M(6)=0, if k¢[a]; for ke[o]
d, M(0) =M (0 (o)~ 3y (o).
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It follows from (5.12), since d, M is a martingale cochain that
E(d,, M(0)d,,M(0)|F,,)=0

and (5.10) follows from the previous lemma.
We conclude this section with a discussion of martingales of path inde-
pendent variation and martingales of orthogonal increments [10].

Definitions. (a) A X, martingale r-form 1 <r<n—1 will be said to be of closed
variation if {M is a closed cochain i.e., d{M» =0,

(b) A X, martingale r-form M, 1<r=<n—1 will be said to be of orthogonal
increments if dM is a martingale form and

AM > =d{M>.

Lemma 5.5. If M is of orthogonal increments and M is of the form dm where m
is an (r — 1) martingale cochain then M is of closed variation.

Proof, d{M>=<(dM> ={ddm>=0.

Lemma 5.6. If M is a X, martingale r-form 1 <r<n—1 and d M is a strong
martingale X, (r+1) form for 1 <k <n, then M is of orthogonal increments.

Proof. 1t follows directly from the definition of strong martingales given in the
previous section and the proof of Proposition 5.1 that {d, M»=d,{M} and the
rest follows from Lemma 5.4.

6. Exterior Products I

If X and Y are ordinary r, and r, ordinary differential forms then their
exterior product is well defined as an (r, +r,) form X A Y. Our goal is to extend
this definition to X, cochains and forms. We begin by observing that if X is a
2, n-cochain (which in this case (r=n) is the same as being a X, n-form) and ¢
is a bounded function ¢,, teR”, then

(A X)(o)=] X

is an n—2X; cochain defined by an ordinary Lebesque integral that can be
expressed in a more convenient form as

| ¢, X (dv).
Similarly if M is a ¥, martingale n-cochain and ¢ is predictable then

(¢ A M)(0)={ ¢, M(d1)

is nothing but a stochastic integral as has been defined in the literature
[6, 1,9]. Therefore if ¢,, teIR”, is predictable and

E [ ¢2{M>(dt)< oo
R2
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then ¢ A M is the unique X, martingale n-cochain such that

(@AM, M)=¢p A {M)

and for every rectangle ¢
E((¢ A M)(0))*=E(¢* A {M>) (o).

For the case where X is an r-cochain we set, first

PAX= % oA Xy
and proceed to define ¢ A X|;;. Let o be a rectangle with direction [i]. By
mapping the r-hyperplane which includes o onto R’, we reduce the case of ¢
A X5 where X is an r-cochain in R’ to the case of integrating ¢ with respect
to an r-cochain in IR’,. Therefore by the previous result, if ¢,, teR” 1s
predictable and M is a ¥, martingale r-form satisfying

E¢* A {MD>(0)< 0

for all rectangles o, then ¢ A M is a well defined X, martingale r-cochain such
that
COAM, My=¢ A<M

and for every rectangle ¢
E{(¢> A<M))(0)} =E((¢ A M)(0))*.

Note that the result states that ¢ A M is a X, martingale r-cochain, not r-form,
and further assumptions on ¢ and M are necessary to assure that ¢ A M is an
r-form. This will be discussed in Sect. 9.

To further motivate the exterior product, first consider a Wiener process W
and a Gaussian white noise # on IR%. For a O-form ¢, ¢ An is just the
stochastic integral

(@ An)o)=] ¢,n(dy).

For the 1-forms d, W and d, W we should have

A Wnad W=d,WAd,W=0
and
(@, W Ady W)o)=—(d, W nd, W)(o)= | n(dd)n(dr)
tvt'es
when the last integral is a stochastic integral of second type as introduced in
[6]. If X is a ordinary 1-form
X=¢,dt,
then we should have
XAd W=0

(X AdWYo)= [ ¢ din(dr)

{tvteo
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where the last integral is a mixed integral as defined in [1] and [7]. If ¢ and ¥
are O-forms then ¢ Ad, W4y nd, W is a 1-form and for suitable paths I' in
R?
(Ad, W+ ad, W)(F)=j‘(¢61 W+yd, W)
r

where the last quantity is the path integral introduced in [1].

7. Exterior Product II

In this section we consider the exterior product X A Y of nonrandom r; and r,
cochains, which are continuous in the sense that they are 2, cochains. The
case of stochastic integration will be considered in the next section.

Let X and Y denote nonrandom X, r, and r, cochains respectively and
assume that 1 <r, r,<n, r;+r,<n. Let

X=Z Xy Y=Z Y[j]'
[il Ii]

We require X AY to be an r, +r, form with representation
XAY=Y 0(i;j k) XA Yy, (7.1)
where d(i; j, k) =1 if (j, k) is a permutation of [i] and zero otherwise. In short,

(X AY)y= Y 0G5,k XA Y, (7.2)

131, Tk}
Therefore, in order to define X A Y we only need to consider (X A Y){a) where
X=Xy, Y=Y, for some fixed [j] and [k] such that [j] and [k] are disjoint,
and ¢ is an r; +r, rectangle with direction [i]=[[j], [k]]. Suppose X =X

L
Y, were ordinary or flat differential forms satisfying

X@d)=oa(t)dt; rdt, n...ndt;,

Y(d)=p@)du, ~... nd1y .
Then obviously

(X AY)o)=¢[a@) p)de; ... ndt, ndty Ao ndl, (7.3)

where ¢=+1 or —1 according to whether ([j], [k]) is an even or odd per-
mutation of [i].

Let [o] denote the direction of the rectangle o. Let X, Y, be r, and r,
forms respectively. Given an (r; +r,) rectangle o, if ¢ can be factored into the
product of one rectangle of direction [i] and another rectangle of direction [j]
then we denote the first factor by ¢ and the second factor by ¢'¥ (so that ¢
="V Ad?). If ¢ cannot be factored in the [i] and [j] directions, set ¥ =@,
¥ =§. Now, let

U 0., =R (7.4)
q
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denote the dyadic partition of R” into n-cubes of volume (27™)" each. Set

(X AY),(0)= Z X{(onb,, q)‘”) Y((on0,, q)(z’). (7.5)
Define, now
(X AY)o)= lim (X A Y)(0),, (7.6)

provided the limit exists for all finite o. Note that in the case where X, Y are
ordinary forms, (X A Y)(o) of (7.6) is related to (7.3) via approximating the
integrands «(t), f(t) by piecewise constant integrands.

Lemma 7.1. If ¢ is piecewise constant and X A 'Y exists then
PAXA)=(pAX)AY=X A(D AY).

The proof follows directly from (7.5).

We conclude this section with a general condition for the existence of the
exterior product. Let X =X;;, Y=Y, be as before, define the cartesian product
of X and Y on R?" as follows, for any rectangle p in R*" set j=p° x p* where
p“ is the rectangle obtained by projecting p on the first n coordinates and p° is
obtained by projecting p on the last n coordinates. From p% p° we derive
rectangles p, and p, in R" as follows, p,(p,) is the rectangle obtained by
deleting the last (first) n-coordinates of the points of p*(5°). Now define

(X xY)(P)=X(p,) Y(py)- (7.7)

Having defined the “lifting” of X, Y (in R") to X x Y in IR?", consider now
the “contraction” of an r-cochain in R?" into cochain in R" as follows. Let ¢
be an r-rectangle in R" defined by (t,¢+c) where ¢t and ¢ are n-vectors and
only r components of ¢ are strictly positive, the others being zero. Let 7T,(s)
denote the r-rectangle in R?” defined by ((z, t), (t +c, t)) where (¢, t;) denotes
the concatenation of the n-tuples ¢, and t;. Similarly let T (o) denote the r-
rectangle in R?" defined by ((z, 2), (¢, t+¢)). Now, let oy and oy, be r; and r,
rectangles in IR", set

T(og5 % opg) = T, (0359 X Ty (o) (7.8)

If Z is an (r, +r,) cochain in R?", then define Z, the “contraction” of Z, as the
(¥, +7,) cochain in IR” obtained by the pullback

Z(J[j] X Opyg)= Z(Ta(o'[j]) X Tb(o'[k]))-
Proposition 7.2.
T,,= ) T((o X o) N0, o) (7.9)
q
is a Cauchy sequence in the flat norm in R>" and there exists a sequence of (r,

+r,+1) cochains B, in R*" such that (t,,,—1,)S0B, and ) |B,[—0 as
m— 00. p=m
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Proof. Consider an (r; +r,) rectangle ¢ in R” with sides of length 2°™ and
starting at the origin. Let o =0y;; X gy, then N6, ;=o0. Set

1(0)=T,(o15) x T, (o)

Q(z(e)=1{J (6N, )

q

and

We want to evaluate |t{(g)=Q(t(g))|~ It will, however, be convenient to aug-
ment t(c) as follows. Let 1 be a g-rectangle in R2", r<2n, let [u] be the
direction of this rectangle and let « be a coordinate direction not in [u]. Let
77 denote the (g + 1) rectangle generated by decreasing 7 in the o direction, i.e.,
the shadow of 7 in the « direction or:

=ttt Al by s s t,) 0SAZ L and (¢4, 15, ..., £,,)ET)

Note that 1< dr*, comparing each rectangle part of Q*(z(s)) with a corre-
sponding part of t%+ yields

[T*(0) = Q" (x(o)I =]t (o) - 27™ (7.10)
Therefore

[2(0) = Qo)™ =[6(z7 () — Q" (z (o)~
=t (0) = Q" ((o)I”
Zlt™(0) = Q7 (o))l
<lt(g)|-27" (7.11)

where for a k-rectangle A, |A4| denotes the k dimensional volume of A. The first
inequality in (7.11) follows from the triangle inequality (t=dt™), the next two
inequalities follow from the properties of the flat norm and the last inequality
follows from (7.10). Consequently, since |t(o)|=|Q(z(0)), 7,, is a Cauchy se-

guence in the flat norm. Setting B, =t/ , —t}, it follows from (7.10) that

Y B, —0 as m— co.

m

Proposition 7.3. Let X and Y be r, and r, cochains in R*, r, +r,<n. If X x Y is
continuous in the flat norm in R*" then X A Y exists and is also continuous in the
flat norm.

Proof. Note that (X A Y)(0)),, as defined by (7.5) can be written as
(X AY)(0),=(X xY)(z,) (7.12)

where 7,, i3 as defined by (7.9) and the existence and continuity of the limit as
m— oo now follows directly from the assumptions X x Y is a form and from
Proposition (7.2).

Remark. The construction of X AY via X x Y and (7.12) can be generalized in
different directions e.g.,

(a) In order to construct X x Y it is not necessary to require that r, +r,<n
all that is necessary is that r,, 7, <n.
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(b) Let ¢ be a zero form on R?". Then we can construct the (r, +7,) form
Z=¢ A(X xY) in R?", and from Z we can construct a (r; +r,) form in R* as
was done for Z=X x Y. This will be a natural extension of the integral of the
second kind of [6].

8. Exterior Product III

Let X, Y be L, r; and r, stochastic cochains respectively, r, +7, <n. We define
X AY to be the L, limit of (7.5) provided that the limit exists for all chains.
The exterior product X A Y thus defined is a cochain. We shall be particularly
interested in the case where X and Y are martingale forms and X A Y is a form.

Proposition 8.1. Let X, Y be martingale r, and r, forms respectively, (r, +r,)=<n,
satisfying for every rectangle ¢
E'?(X(0)*<Klo|, E'(dX(0))*=K|sl,

E"(Y(o)*<Klol, EY*@Y(o)*<K]ol. &1

Then the L, limit of (7.5) exists and X AY is a X, martingale (r, +7,) form.

Proof. Note that without loss of generality we may assume that all rectangles
are included in the unit cube and X =X ;;, Y=1Y};,. We first prove the results of
the proposition by an approach similar to the one given in the previous
section. The existence of the L, limit of (7.6) will also be proved by a direct
calculation.

We construct now an (r; +r,) cochain Z in R2" as follows. Recall that X
x Y was constructed by defining for rectangles

(X xY)(p)=X(p,) Y(p)

we want to construct Z to be as X x Y, ie.,

Z(p)=X(p,) Y(py)

only if t(p,)=1(p,) “and zero otherwise” namely, if t(p,)*1(p,) and j does not
include any rectangle p’ for which t(p})=1t(p;) then set

Z(p)=0.

Otherwise stated, let §,, , denote a dyadic partition of R*"((") 0, ,=R>"). Let

q
(o3 9% (af’lfiq)b denote the rectangles formed by the [i] and [j] intervals of
length 27™ starting at 1:(67,", o and (), (), their projection on R”, . Set

X(og; Vo Yo%y, i 2o 9, =1(073i ),

82
0, otherwise 82)

Z((og; )" x (a7 :{

Z can be extended by linearity to be defined on chains in R*". Note that for t,,
as defined by (7.9) Z(1,,)=(X x Y)(1,,) =((X A Y)(0)),,- Consequently, in view of
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Proposition 7.2, in order to prove the existence of X AY it suffices to prove
that Z is a X, ry+r, form in R Let of, k=1,2,...,K be disjoint r,
rectangles in R" and let of; be disjoint r, rectangles in " . Let t(c¥) =1t(d)

then
K

Z(U T, (o7 x Ty(ogy) = Z (o) ¥ (o53)) (8.3)

and
Hz(kkj E(Uﬁ]) X E(Uﬁ']))”é)

= L B30y Y2(oly)
<Z EYAHX (o) - EY2(Y*(a()

=K Z |G[i]| : |O'[j]|- (8.4)
k

In particular, HZ(U)H(ZZ)§ Clo| for every rectangles ¢ and Z is a £, cochain in
R2"
Remark. If we introduce the filtration in R2"

G F (8.5)

(ta,tp) ~ " tavip

then Z becomes an (r, +r,) martingale cochain in R?".

Turning to dZ, it follows from (8.3) that dZ is the sum of products of X
with dY and dX with Y. dX,dY (and dZ) need not be martingales but a direct
modification of the arguments of (8.4) yields that for every rectangle ©

HdZ(T)HééCITI

which proves that dZ is also a %, cochain. Therefore, by Proposition (7.2), X
AYisaZX, form.

A direct of the existence of the limit (7.6) without using Proposition 7.2 and
£ will now be given. Consider the q in 0, , defined by (7.4), this is the address
of each n-cube in the m-th partition. Assume that for any given m, g is
represented as an n-tuple of numbers g=(q;,q,, ..., q,). Each g, is a binary
fraction with m binary digits after the “decimal” point denoting the p-th
coordinate of ¢(6,, ,). Let [¢], denote the following modification of ¢: for each
g, for which pe[i], if the last digit (to the right) is a one modify it into a zero.
All other entries of g, remain uncharged. Similarly, [¢], is the same modifica-
tion of g for pe[j]. With the notation we can write I,, and I, ; as follows:

I +1 = Z X((Uﬂ6m+ 1, q)(l)) ° }]((O'F‘qu}.qs q)(Z)); (86)
L= X(6n8,1, 1)) Y601 1)), (8.7)

Note that g, has (m+ 1) binary digits in both (8.6) and (8.7). Set
Lygy=3ab, I,=%ap,
q q
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where o, §,, a,, b, are as defined by (8.6) and (8.7). We want to prove that I,
is a Cauchy sequence in L,. Note first that for g+u

Ea f,a,b,=0
for the following reasons. Let
' t'=1(6n0,, 1 0"
tz =_l(0(\9m+ L[q]z)u)
)(1)

3
r=tlonb,,

t4 =—t(6m0m+ 1, u)(Z)

and
=ttvie?;, =13t

Then t*=t(end,,,, ,) and t*+t° Let p be a direction such that pels] and
such that (), <(t"), then

E(x,B,a,b,)=E{a,b,E(x,B,| F&)} =0.

If such a direction does not exist, let p be a direction for which (),> (t”)p.
Then
E(x, B,a,b,)=E{a, ﬁq E(a,b,|FE)}=0.
Therefore,
E(l,yy _Im)2 =E Z(“q bq—th ﬁq)z
q

=EZ(aquq—ocqbq—l—fxqba—rxqﬁq)2
q

S2EY bl(a,—a) +2EY o} (b,~B,). (8.8)

Consider now a term in the first sum of (8.8)

E(bXa,—2))=E{Y(0n0,,, )®N - [X(6n0,, 1 )"
—X (00 ) VT (8.9)

Let k be a direction in (610, ; )*] and let ¢ denote t((6 0, ; )*), then
Ebl(a,—a)* SE'? by E'*(a,—a,)*. (8.10)
Therefore, by the assumptions and Lemma 7.2
Eb2(a,—a,)? SK?r 27+ VEitnasD)
Similarly, for a term in the second sum of (8.8) we have by similar arguments
EaZ(b,— ) Sry K? 27t Dbt d),
Substituting (8.10), (8.11) into (8.8) yields
EY3(I,, =1, <K, 2" m+02,

Consequently I, is a Cauchy sequence.
From the proof of Proposition 8.1 it also follows that:
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Proposition 8.2. Under the assumptions of Proposition 8.1, {(X> An{Y ) exists and
(X ANYy=LX>A{Y>. (8.12)

Proof. If M,, m=1,2,... is a sequence of X, r-martingale cochains and
M,—M in L, then M is an L, martingale cochain and (M, >(c)— (M) (o) for
every rectangle o. Applying this to (X A Y), of (7.5) yields (8.12).

In Sect. 3 of [8], it is shown that stochastic integration in the plane
provides a class of measure transformations that preserves the Markovian
property for a Gaussian process. The results on exterior product up to this
point extend this result of [8] to parameter space of any finite dimension.

9. A Differentiation Formula

In the non random case it is well known that
AXAY)=dX AY+(—1)"" X AdY.

This will, in general, not be true for the stochastic case. Let X and Y be
respectively r, and r, X, martingale forms. Assume that dX AY and X AdY
are well defined, and further assume that dX and dY are also X, martingale
forms. Define the (r, +r,+1) form [X, Y] by

AX AY)=dX AY+(—1)' X AdY+[X, Y] 9.1)

we will call [X, Y] the cross variation between X and Y. (Incidentally, we have
not defined the exterior product between two zero cochains ¢ and ¥ but if we
set ¢ Ay =¢y then (9.1) reduces to the Ito formula). Some simple properties of
[X, Y] can be derived directly from (9.1) as follows. Because X A Y=(—1)""2(Y
A X), we have

[Y, X]=(-1)""[X, Y] 9-2)
and it also follows that for r; odd X A X =0. Hence, for r, odd

AX AX)=dX AX —X AdX+[X, X]
=0+[X, X]=0

and [X, X]=0 for r, odd. For r, even we have
AX AX)=2X AdX+[X, X].
Finally, note that dd(X A Y)=0 whence it follows from 9.1 that
dlX, Y]+[dX, Y]+(—1)"[X,dY]=0
for X =Y and r, even it reads

d[X, X]+2[X,dX]=0.
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We conjecture now that if either d, X (or 4, Y) is a strong martingale form
for every k then [ X, Y]=0. The heuristic arguments for this are as follows:

AX AY)D)=(X A Y)(07)
=lim(X A Y),(¢7)

where (X AY),, is as defined by (7.5). Therefore
d (X AY)NE)=lim(X AY), (0" —07)

where 7 is an (r, +r,+1) rectangle t=0¢" x1, and t, is an interval in the k
direction, ¢~ is therefore the lower face of 7 in the k direction and o% is the
upper face of 7 is the k direction. Now, (X AY), is of the form of a sum of
products X(o7)- Y(o3) and therefore d(X A Y),, will be of the form of sums of
terms of the following type

X(o7) Y(o3)—X(o7) Y(o3)
=X(a7)(Y(63)—Y(07))+(X(o7)—X(o7)) Y(03)
=X(o7)(Y(03)—Y(o3))+(X(07)— X(07)) Y(o7)

+(X(e7)=X(@7)(Y(03)—Y(o7))

with t(g,)=t(c,) and (X AY), will be the sum of the three types of terms of
the last equation. The sum of the terms of the first type will yield {—1)"'(X A
dY) as m— oo, the sum of the terms of the second type will yield (dX A Y) as
m— oo and the sum of the terms of the last type will yield [ X, Y] as m— co.
The [X, Y] term is therefore very similar to the cross quadratic variation of
continuous one-parameter martingales. [n the one parameter case

—M,)*|F,)

tit+i 1

lim Y (M M, =limy E((M,
and what we conjecture is that the same is true in the present case; namely, we

assume that we may replace the terms limit of terms of the form
X (@)= X(eT)(¥(o3)~Y(07))
by the limit of terms of the form
E{(X(o7)~X(o7)(Y(63)—Y(07)) | Fj, )}

which vanishes if either d, X or d, Y is a strong martingale.

As an application of (9.1) consider the case where ¢ is a X, martingale zero
form and M is a 2, martingale one form. Note that our definition of a strong
martingale implies that every martingale 1-form is strong therefore [¢, M]=0
and '

digAM)y=d¢ AM+¢ AdM

which for R2 is the Green formula of Cairoli and Walsh [1].
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