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1. Introduction 

A substantial body of results on stochastic integration with respect to multipa- 
rameter martingales now exists. Yet, as it stands, the theory is not entirely 
satisfactory in a number of ways. In particular, the calculus for stochastic 
integration, already complicated in two dimension, becomes prohibitively so in 
higher dimensions. In retrospect, the source of the difficulty seems to be that 
integration over n-dimensional volumes in n-space is only a very small part of 
a complete theory of integration in n-space. What seems to be needed is a 
theory of differential forms involving martingales and integration of such forms 
on sets of appropriate dimensionality. To embark on a course to develop such 
a theory is the objective of the work reported here. 

The starting point of our approach to stochastic differential forms is similar 
to that of Whitney [4] and forms are defined as function on chains or 
functions parametrized by chains satisfying certain continuity conditions. While 
the flat cochains defined by Whitney ([4], Ch. IX) have the representation 

x(~)= j" x(t)dt~ A... A dt~ (1.1) 
~r 

we cannot expect such a representation to hold for any class of martingale 
forms that includes the Wiener process and a different approach becomes 
necessary. We intend to show in this paper that an exterior calculus for 
martingale forms can be constructed without such a representation. In the 
nonrandom case the exterior calculus is coordinate independent. However, in 
the stochastic case there is an underlying information pattern, namely, the 
subsigma fields, and as a result the stochastic calculus presented here is not 
coordinate free. The situation is similar to those cases where boundary con- 
ditions for physical systems yield a coordinate dependent formulation. 

In the next section we define the subsigma fields involved, stochastic co- 
chains and two norms for chains: namely, the mass norm and the flat norm of 
Whitney, with a different and more appropriate norm being introduced later. 
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Stochastic differential forms are introduced in Sect. 3, these are cochains sat- 
isfying certain continuity properties. The exterior derivative of a cochain is 
introduced by relating the value for the derivative on a rectangle to the value 
of the original cochain on the boundary of the rectangle. Different classes of 
martingale cochains and forms are introduced in Sect. 4. In Sect. 5 it is shown 
that with a wide class of martingale cochains we can associate with each 
martingale cochain a positive cochain which plays a role analogous to that of 
the increasing function of a one parameter  process. The notions of martingales 
of path independent variations and martingales of orthogonal increments are 
easily generalized to the mult iparameter  case via the positive cochain as- 
sociated with martingales. The exterior product is considered in Sects. 6, 7, 8. 
First, in Sect. 6, we deal with the exterior product  q5 A M where q5 is a zero 
cochain (i.e., a predictable integrand) and M is a martingale cochain which 
plays the role of an integrator. The exterior product X A  Y of nonrandom 
forms is discussed in Sect. 7. Since our assumptions on the forms X and Y are 
not enough to have a representation of the form (1.1) for X and Y,, we cannot 
define X A Y through 

( X  A Y)(a)  = ~ x(t)  y(t)  dti~ A . . .  A dtir ' A dtj l  A . . .  A dtjr 2. 
f f  

We introduce the exterior product  by an approximation procedure that avoids 
the local representations x(t)  and y(t). The exterior product not only extends 
the stochastic integrals of the second type that were introduced in [6], but is of 
new and independent interest in the nonrandom case. This approach is fol- 
lowed in Sect. 8 in introducing the exterior product of martingale forms. A 
formula for the exterior derivative of the exterior product  X A Y is discussed in 
Sect. 9 and its relation to the Green formula of Cairoli and Walsh is pointed 
out. 

2. Preliminaries 

Notation. Let ~ denote the positive quadrant  of IR n. We associate with IR~ 
the usual partial order 

(t~,  t2 . . . . .  t , )>=(s~ ,  . . . ,  s , )  

(t~, . . . ,  t,) > ( s l  . . . . .  s ,)  

and define 

if t i > s  ~ for all i=1 , 2 ,  . . . , n  

if t~>s~ for all i=1 , 2 ,  ..., n 

t A S = (rain (tl, sl) . . . . .  min (t,, s,)) 

t v s = (max  (&, s 0, .. . ,  max( t , ,  s,)). 

For a rectangle or, define t(a) and ~(a) as the infimum and supremum of points 
in cr respectively, i =( i l ,  i2 . . . . .  it) is a subset of the integers from 1 to n then i* 
will denote the collection of all remaining integers between 1 and n, and [i] 
will denote i put in increasing order. Similarly, t i denotes (ti,, . . . ,  ti). 
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Let  ( t ? , F , P )  be a comple te  p robabi l i ty  space and let {Ft, t~lR~_ } be a 
family of sub-a  fields. Define 

F~-- V F s 
s : s i = t i 

e.g., if n = 3  and i = ( 1 , 3 )  then F~= V F~tl,0, t3~=F(t . . . .  ~3~" We assume that  F t 
0 > 0  

satisfies the following assumpt ions  (cf. [11): 

(El) t > s ~ F t - - - F s  

(F2) F t contains all the null sets of  F 

(Fa) Ft = (~ Fs 
t < $  

(F4) V t, i, Fr and Fr are condi t ional ly  independent  given F t. 

Condi t ion  (F4) is a general izat ion of the cor responding  condi t ion of Cairoli  
and Walsh  [11. 

Let  a~ denote  a finite interval  open to the left and  closed to the right on the 
tj axis. Fo r  i < j ,  a i/x aj will denote  a possibly or iented 2-dimensional  rectangle 
with sides ai and aj and aj A a~ = - a i A aj will denote  the same rectangle with a 
negat ive orientat ion.  In general,  let aii, a~2, . . . ,  air denote  intervals as above.  
Then  a~,/xa~ /x.../xa~r will denote  an r d imensional  rectangle with sides 
a~l,ai2, . . . , a~ .  The  or ienta t ion  is posit ive if an even pe rmuta t ion  of 
(i 1, i 2 . . . . .  i~) puts it into increasing order,  and  the or ienta t ion is negat ive 
otherwise. We call such rectangles oriented r-rectangles and refer to [i] as the 
direction of a h/x a ~ / ,  . . . /x a~r. 

We note  that  the b o u n d a r y  0~ of an or iented ( r + l )  rectangle a is a 
collection of or iented r-rectangles that  over lap  at mos t  on boundaries .  Sub- 
division of an r-rectangle produces  a collection of r-rectangles.  It  is useful to 
denote  such a collection by a sum a~ + a 2 q-.. .  + a  m. F u r t h e r m o r e  if ~ is an 
oriented r-rectangle it is useful to denote  by - a  the same  rectangle with the 
oppos i te  orientat ion.  It  is therefore useful to in t roduce linear combina t ions  

A = ~, c~ k a k (2.1) 
k=l 

where c~ k are real numbers  taking values in { - I ,  1} and ~k are or iented r- 
rectangles. We shall call any sum of the form (2.1) an r-chain. 

Let X ( a )  be a real-valued r a n d o m  funct ion defined on (Q, F, P) and pa r am-  
etrized by or iented r-rectangles such that  

(a) X(a)  is defined for every or iented r-rectangle a 

(b) X ( ~ ) =  - X ( - a )  and for disjoint rectangles X ~, ak 
k - - 1  = 

(c) X(o-) is FT(~) adapted.  

We can extend X to all rec tangular  r-chains by l ineari ty and  X so extended is 
appropr ia te ly  te rmed a random r-cochain. 

In  the next section a further extension of X that  depends on whether  it 
satisfies some cont inui ty  condit ions will be considered. Fo r  this purpose  the 
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not ion of convergence of chains is necessary. Let  [al denote  the r -d imensional  
vo lume of the or iented rectangle  a with Io-I=l  for r = 0 .  Fo r  A defined by (2.1) 
with disjoint ak, k = 1, . . . ,  n, the mass of a chain A is defined as 

I a ] = ~  IGt" I~kl 
k 

Turning  to another  norm,  let {Am, m =  1, 2, ...} be a sequence of r chaims, we 
shall say that  the sequence is a Cauchy sequence if either 

Iam-  Akl ~ 0 
m~ k - *  oo  

or, if for every m, k there is an r +  1 chain B.,, k such that  3B,., k = A , . - A k  and 

[Bm, klm,~o~ O" 

Note  that  for the convergence  of an n-chain in IR", only the first type of 
convergence  makes  sense, while for the convergence  of a 1-chain in N z  to a 
curve the second type of convergence  is necessary. Therefore,  it is useful to 
define thef lat  norm IA[ ~ for an r-chain in ~ "  by ([4], p. 154) 

IAI-  : inf { I A -  3BI + IBI} (2.2) 

where the inf imum is over  all r + l  chains B. It  is shown in [4] that  [A 
+BI~<IAI~+IBI  ~ and M I ~ = 0  if and only if A=~b. Hence,  I"[- is a norm. 
Fur the rmore ,  I 'l ~ satisfies" (see [43) 

Ic~A[ ~ ~ iAI- ~ [AI. (2.3) 

Note  that  for r=n, iA[ ~ : l A I .  For  r = 0  and A a point  in N n, [A[ ~ =1.  For  the 
case where A is the difference of two points,  s and t, [AI ~ = m i n  (2, I(s, t)l). 

3. Stochastic Differential Forms 

Intuit ively we. would like to write a r a n d o m  r-cochain X(a)  as an integral over 
O" 

x ( o ) :  S x 

where the in tegrand X is a "s tochas t ic  differential r - form".  If we are to include 
such processes as the Wiener  process and white noise in the theory, then the 
r a n d o m  differential forms are necessarily general ized processes (i.e., r a n d o m  
currents). I to defined r a n d o m  currents  a long t ime ago [2], however  his 
app roach  is incomple te  for our  purposes  because it is l imited to linear oper-  
ations. Exter ior  p roducts  X/x Y, where X, Y are r a n d o m  currents  have not  been 
defined in [2]. As will be seen in later  sections, to define such exterior products  
is to define s tochast ic  integrals (of different varieties) on 111%. 
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One possibil i ty is to define a s tochast ic  differential r - form as the formal  
in tegrand of a s tochast ic  r -cochain  that  is cont inuous  in probabi l i ty  with 
respect  to the flat no rm defined in the previous  section, i.e., 

X ( A , , ) ~ O  whenever  i A m [ - ~ 0  as m--,oo. (3.1) 

Similarly a r a n d o m  differential form is said to be an Lq form or a q-integrable 
form if 

g IX(A)I q < oc (3.2)' 
and 

EIX(Zm)lq--,O (3.2)" 

whenever  IAml---,0.  In (3.1) and  (3.2) we extend the definition of X to limits of 
chains under  the flat n o r m  by adjoining X(A~). 

As an example  let q be " G a u s s i a n  white noise"  on IR2+ defined as follows: 

(a) r/(o-) is a Gauss ian  r a n d o m  funct ion pa rame t r i zed  by or iented 2-rec- 
tangles a on N2+ 

(b) Et/(~r) = 0 
(c) E~(a)  r /(~r ')=/z(Sc~')  if a and a '  are similarly oriented 

= - /~  (~ n ~') otherwise 

where ~ denotes  a wi thout  or ienta t ion  and # denotes the Lebesgue measure.  
The  white noise t / is  a r a n d o m  rectangular  2-cochain. Since E~/2(o-)= IGI, (3.2) is 
satisfied. 

A Wiener  process {W, t~]R2+} is defined by 

w, = ~ (A,) 

where A t is the rectangle {s: O<_s<_t}. Wiener  process is a 0-cochain satisfying 
(3.2). Fur the rmore ,  suppose  that  cr is an or iented 1-rectangle [(al ,  ~2), (]31, ~2)], 
then 

d W(0 ~) = % . . . .  - W~ . . . .  

E(d W(• a)) 2 = ~2 (/~1 - ~1) 

and [al = fll - ul. Hence  (3.2)" is verified for hor izonta l  1-rectangles. 
Cont inuing with our  example,  suppose that  we define an oriented l -cochain  

as follows: 

for a = ( ( a l ,  t2) , (ill, t2)] set X l ( a  ) = VV~I" t: - W~I. ,: 

for a = ( ( t z ,  a2),(tz, f12)] set Xl(o-)=O. 

Since the only 1-rectangles in 1112+ are hor izontal  and vertical line segments,  X I 
is well defined as a r a n d o m  cochain. For  a 2-rectangle a defined by the vertices 
(cq, c~2), (ill, cQ~), (ill, f12), (cq, f12), ~1 < a 2 ,  fil <fi2,  and ant ic lockwise or ienta t ion 

X 1 (~r . . . .  - -  W ~  . . . .  )--(Will, p: -- W~,, ~)  (3.3) 

and ESf(~3cr)=lo" I so that  X 1 satisfies (3.2). We can similarly define a vertical 
cochain X 2 and  we shall see that  X I + X  2 can be viewed as dW i.e., the 
exterior derivat ive of  the 0-cochain W~. 
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It turns out that convergence in the flat norm is not convenient for 
martingale forms and exterior products. For  this reason we introduce the 

K 

following type of convergence: Let A be a r-chain and let A = ~ c~ kCr k where 
CCk~ { -- I, 0, 1} and the ~k are disjoint rectangles. Set 1 

K 

[IX(A)II(1)=sup ~ [~ glx(c~k)l 
k = l  

K 

where the supremum is over all representations of A as ~ cr k a k with a k disjoint 
(and over all K). Similarly, 1 

/ K ~1/2 

[IX (A)H<2) : sup (k~la~ E ( X  (ak)) 2 ) 

where the supremum is the same as for the definition of II'll(1). Obviously, 
I1" hi(l)satisfies the triangle inequality: 

][ X(A)  + Y(A)II(1) =< [I X (A)II(1) + II Y(A)II(1). 

So does l/�9 It(N), and the proof  of this is as follows 

]l X (A) + Y(A)11 (2)= sup (E ~ (c~ k X (ak) + % Y(ak)) 2) 1/2 
x~(~,)) 1/~ + ( 2  ~'~ __< sup (E((y~ ~k 

<____sup {E 1/2 2 2 k Y2(ak)}  

where the last inequality follows by the Minkowski inequality. Consequently, 
for A fixed, lIX(A)ll(q) with q = l  or 2 is a norm. 

Definition. X will be said to be a Z q cochain, q = 1 or 2, i f  

IIX(A~)ll(~)~O 
whenever IAml--,0 as m ~  oo. 

For example, if EX2(cr)<C.IaI  for every r-rectangle a then X is a Z 2 
cochain. The notion of s cochains is not sufficient to extend a cochain X to 
manifolds, this will be done later after dX,  the exterior derivative of X, is 
defined. 

As in the non-random case, an advantage of working with differential forms 
rather than with linear functionals or generalized functions is a conceptual one. 
The non-random differential forms are defined locally so that exterior differen- 
tials and exterior products of forms make sense. Exterior products, in particu- 
lar, lead to a nonlinear analysis of cochains. We intend to present a similar 
stochastic-calculus approach in the stochastic "generalized" case by defining 
the operations on the corresponding random cochains. 

Remark. As we have defined them, random differential r-forms are random 
currents of Ito I-2], but not every Ito current is an r-form in our sense. While 
linear operations are definable on all random currents, nonlinear operations 
(e.g., exterior products) are not. The r-forms that we have defined have the 
right degree of localization to allow exterior products to be defined. 
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If X is a regular  (nongeneral ized) differential form, then X can be repre- 
sented as 

Xt = Z cr dt[i] (3.4) 
[i] 

where the differentials dttia=dti/xdti2A... Adq,, prov ide  a local coordinate  
system. Fo r  a r a n d o m  current  such a representa t ion  is in general  not  possible, 
but  a useful representa t ion  similar  to this one still exists. F o r  a r a n d o m  
cochain X, define X[i J as the cochain such that  for every rectangle o- 

X t l ] ( o ) = X ( o  ) if rr has the direct ion [i] 
(3.5) 

= 0 otherwise 

Then for any rec tangular  chain A 

X(A) = Y, Xt~j(A) (3.6) 

and if X is a r a n d o m  differential form so is Xti 1. Hence  we can write 

X = ~ Xtl I (3.7) 
[il 

and this is the equivalent  of  (3.4) for r a n d o m  differential forms. 
Next,  we define the exter ior  derivat ive dX of a r a n d o m  r-cochain X (via the 

Stokes theorem) as follows. Set 

dX (A)= X (~3 A) (3.8) 

for all or iented ( r + l )  chains A. An equivalent  definition for the exterior 
derivative is the following. Define d k Xt~ 1 for rectangles a as 

d k Xtil(rr) =dXtl](rr ) if k is not in [i] and o has direct ion [k, [ i ] ]  
(3.9) 

= 0 otherwise 

Then  we can write 

and 

d k X = ~, d k Xtl I (3.10) 
Ill 

d X  = y,  d~ x .  (3.8y 
k 

Let  O~-(a), 8~-(cr)denote the upper  and lower boundar ies  of a in the k direction 
(8+ (~)= 8~L(a) if k is not in the direct ion of a) 

(d,, X )  (o9 = X (a + (,r)) - x (G-  (,~)). (3.9)' 

The exterior der ivanve  of a s tochast ic  differential form as defined by (3.1) and 
(3.2) is also a s tochast ic  differential form of the same  type, this follows directly 
f rom the definition of  dX and the fact that  JOAJ~__< JAJ-. 

We turn now to the definition of Xq forms, q = 1, 2. 
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Definition. A cochain X will be said to be a Iq form if both X and d X  are Sq 
cochains. Note that in general IIX(~B)lliq)4= IIdX(B)ll(qr Also note that if X is a 
!,q form so is d X  since ddX=O,  and that every Zq n-cochain is also a Zq n-form. 

For example, if EX2 (a) < c l al for every r-rectangle a and E X  2(~3 z) < c I z[ for 
every (r + 1) rectangle z then X is a N 2 form. If for every r-chain A 

EXa(A)<c lA[  ~ 
then 

EX2(A)<=c[A[, 

since tAI- <lZl  and E(dX(B))Z=E(X(~B))2<cI3BI  - <c lBI -  -<_clBI, S is a S= 
form. 

Consider a Wiener process Wt, t~l~z+. Take a 1 and a 2 to be the horizontal 
and vertical 1-rectangles 

ffl =((t l '  t2)' (tl +a,  t2)], a2 =((t i, t2),(t i, t z+b)]  

oriented from the left (from below) to the right (to above). We have 

dl W(~I)= w,~ +o, ,2 -  w,,, ,2 

d~ W(a9 = W., ,2+b- W,,, ,~ 

d~ W(a9 = d :  W(al)=0.  

Now, take a positively oriented 2-rectangle cr with t = ( t l ,  t2) and f = ( t l + a  , t 2 
+b). Its boundary ~a is given by: 

Oa={a i, - a 2 , ( ( t i + a ,  t2) ,( t i+a, t2+b)], - ( ( t i ,  t 2+b) , ( t i+a ,  t2+b)]. 

Hence 

d(d~ W)(a)= (Wtl+a ' t2-  Wt,, t2)- (Wt~+.l, t2+b-- rl/Vt t, t2+b) (3.11) 
= -~(~)  

and 
d(d 2 W)(a) = r/(a). (3.12) 

We can interpret (3.11) and (3.12) as follows 

d(d i W ) = d  id  t W + d  2d i W 

d(d 2 W ) = d  i d i W + d  l d 2 W 

with d i d  i W = d 2 d  2 W=0,  d2d i W =  - d  1 d 2 W and d 1 d 2 W=d12 W=rl. Observe 
that 

d d W = d ( d  i W + d  2 W ) = d  2d 1 W + d  id  2 W = 0  

as it should be. 

Remark. Note that the Hodge star operator �9 is a linear operator defined on 
all Ito random currents. Hence *X is well defined as an Ito random current for 
any r-cochain X considered as an Ito random current. However, , X  is not 
necessarily a eochain (equivalently a differential form) and for many interesting 
cases it is not. For  example, let t/ be an n-cochain representing Gaussian white 
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noise, for ,r/  to be a 0-cochain it mus t  be a cont inuous  r a n d o m  function. 
Howeve r  

r / ( ~ ) = ~ , q d t  1 A dt 2/x .../xdt~ 
cr 

so that  , q  can not be a cont inuous  r a n d o m  function and hence is not  a 0- 
cochain. 

4. Martingale Cochains and Forms 

For  an or iented r-rectangle a, denote  by _t(a) its in f imum point  and {(a) its 
m a x i m u m  point.  Recall  that  a r a n d o m  r-cochain was defined to be adap ted  i.e., 
X(o-) is F~(~) adap ted  for every r-rectangle o-; also, recall the no ta t ion  

V L. 
s :  s i ~  t i 

For  n-> r_> 1 and a fixed integer k, 1 _< k_<n, a r a n d o m  r-cochain M is said to 
be a k-mar t ingale  r -cochain  if for every r rectangle cr with direction [~] 
containing k, E ]M(o-)j < oo and 

E [M(o-)l ~(~)] = 0. (4.1) 

Note  that  if [ a ]  does not  contain  k, then o- lies in the ( n - l )  hyperp lane  {s: s k 
=tk} and  

It follows immedia te ly  f rom the definition that  if M is a k-mart ingale  then M[i 1 
is also a k-mar t ingale  for all [i] (cf. (3.5)). M is said to be a mar t inga le  if it is a 
Mmart ingale  for every k, 1 < k_< n. (Note  that  if M is a mar t ingale  then Mu~ is 
also a mart ingale.)  M is said to be a weak mar t inga le  r-cochain if ElM(a)1 < oo 
and 

E [M(cr) I ~ ( ~ ]  = 0. (4.2) 

Since F~ ~ F t for every k, any  k-mar t ingale  is a weak mart ingale.  
For  zero cochains we define the mar t inga le  p rope r ty  in terms of its exterior 

derivatives. A zero cochain M is said to be an / -mart ingale  if it is bounded  in 
L 1 and d~M is an / -mart ingale  cochain. (Note  that  by definition d~M is zero 
except on 1-rectangles with direct ion i. Hence  d~M is a mar t ingale  if and only 
if it is an /-martingale.)  A zero cochain M is said to be a mar t inga le  cochain if 
dim is a mar t inga le  for all i<n. 

If  M is a mar t ingale  zero cochain then d~. . .  d~ M is a mar t inga le  r-cochain.  
If M is a k-mar t ingale  then dM~i ~ is a k-mar t ingale  for any [i] for which k~[ i ]  
but dM need not  be k-mart ingale.  The  relat ionship between the mar t ingale  
proper t ies  of M and those of dM are as follows: 

(a) M is a k-martingale~dM~i~ is a k-mar t ingale  for every [i] such that  

(b) M is a k-mar t ingale  and dkM is a k m a r t i n g a l e ~ d M  is a k-mart ingale.  
(b') M is a mar t inga le  and  dkM is a k mar t inga le  for every k ~ d M  is a 

mart ingale.  
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Note  that  by itself the condit ion "dkM =k-mar t inga le  for every k" implies that 
d M  is a weak mart ingale  but not  necessarily a martingale,  and if M is a 
mart ingale then d M  is a weak martingale.  

In both  [1] and [-63, a 2-parameter  mart ingale is defined as a r andom 
function {mr, t ~ R  2 } such that  

t > s ~ E ( M t l F s ) = M  ~ a.s. 

Such a process is a 0-form in our sense characterized by the proper ty  that d M  
is a mart ingale 1-form. 

Cairoli  and Walsh have defined 1 and 2 martingales for N 2 in [1] and it is 
interesting to compare  their definition with ours. Let M be a 0-form and let a 
be a 2-rectangle {a 1 < t < b l, a 2 < t 2 <__ b2}. Denot ing  

A M ( f ) =  Mbl.b2-}- M . . . . .  -- Mal,b2-- Mb . . . .  " 

Cairoli  and Walsh define M to be a 1-martingale if 

E(d M(a)  l F~, oo) = 0 

for all 2-rectangles a and a 2-mart ingale if 

E[AM(a)  IF . . . .  3 - - 0  

for all 2-rectangles a. Now,  A M  can be viewed as a 2-form derived from M as 
follows: 

A M = d ( d  2 M ) =  - d ( d  I M ) = d ,  d 2 M. 

Thus, M is a k-martingale,  ( k=  1 or k=2) ,  in the sense of Cairoli  and Walsh if 
and only if d I d 2 M is a k mart ingale  2-form in the sense of  this paper. 

Assume now that  d 2 M is a 2-mart ingale 1-form in our  sense. Then since 
A M = d ( d  2 M), we have by (3.6) 

A M(a)  = (d 2 M)(~ a). 

No te  that  d 2 M is zero on horizontal  1-rectangles so that  

A M (a)=d2 M ((a2, bl)T(a2, b2) + (al, b2)$(a2, b0)  

and d z M being 2-mart ingale 1-form implies 

E ( A M ( a ) [ F  . . . .  ) - -0  

so that  M is a 2-mart ingale in the sense of  Cairoli  and Walsh. Similarly d I M 
being a 1-martingale in our  sense implies that  M is a i -mart ingale  in the sense 
of Cairoli  and Walsh. Since d M = d i M  on 1 rectangles in the /-direction, we 
may summarize  the above:  M is an /-martingale in the sense of Cairoli  and 
Walsh if d M  is an /-martingale in the sense of this paper. The relationship 
among  the various definitions can be displayed as follows: 
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dM=mart ingale  1-cochain < 

d M  = k martingale 1-cochain 

d 1 d 2 M = k mart ingale 2-cochain -: 

:-M = L 2 mart ingale 

"-M = L 2 k mart ingale 

We conclude the definitions of the mart ingale cochains with a definition of  
strong mart ingale r-cochains. Let a be a rectangle and let [a ]  denote the 
or ientat ion of a. An r-cochain X will be said to be a strong mart ingale form if 
for all r-rectangles a, E[X(a)[ < oo and 

E(X(o-)I V ~ - F ~ )  - O. 

No te  that  for r = l  every mart ingale cochain is s t rong and for n = r = 2  this 
reduces to the definition of  [1]. 

Finally, every mart ingale cochain of the different types defined here will be 
said to be a 2; 2 mart ingale cochain and a S 2 mart ingale form of the same type 
if in addi t ion it is a 2; 2 cochain or form respectively. 

5. Positive Cochains and Forms Associated with Martingale Forms 

A differential form or cochain  X will be said to be positive if X(a) is non- 
negative for every positively oriented rectangle a. 

Proposition 5.1. Let M be a X 2 martingale r-cochain, 1 <_r<_n. Then there exists 
a Z 1 r-cochain ( M )  which is positive and satisfies 

E(M2(a) - ( M ) ( a ) I  F_t(o))=0 (5.1) 

for every positively oriented rectangle a. 

Remarks. (a) Note  that relation (5.1) is for rectangles only and for the case 
where A is a chain and r < n we may  well have 

EMZ(A) :~ E (M)(A) .  

However  (5.1) implies that  

][ M(A)jl~2)= I[ (M)(A)Ji(1). 

(b) For  the case r=n  it will follow from the p roof  that E M 2 ( a ) = E ( M ) ( ~ )  
for rectangles or. Since M is a mart ingale form, it follows that  EM2(A) 
= E ( M ) ( A )  for any chain A. 
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(c) Note that HX(A)][(2) is a convenient norm for square integrable mar- 
tingale cochains since for Ac~B=S we have 

IIX (A ~ B)II~2) = IlX (a)ll ~2) + I[X(B)[l~2). 

Before turning to the proof consider the following example. Let t/ and ~ be 
two independent white Gaussian noises on IR2+, and let Y and Z be the two 
zero forms induced by r/ and ~ respectively: d2d 1Y=t  h d 2 d l Z =  ~. Let U be 
the 1-form U = d Y = d l Y + d e Y  then the 1-form ( U ) = t z d t ~ + t l d t  2 satisfies 
(5.1). Let V=d 1Y+d2Z  then ( V ) = t 2 d t l + t l d t z = ( U ) ,  note however that U 
and V are 1-forms with different probabilistic properties since 

dU=d(dY)=O while dV=decl ~ Y+dldzZ~=O. 

In one dimension, Gaussian martingales are characterized by their quadratic 
variations. This example shows that this is not the case for Gaussian mar- 
tingale one forms in IR n. 

Proof. The proof will be divided into several parts. Parts (b) and (c) of the 
proof follow Cairoli and Walsh [1] (cf. also pp. 21, 22 of [3]). 

(a) Note that it suffices to prove the existence of a positive cochain ( M )  
satisfying (5.1) since the assumption that M is a martingale X 2 cochain implies 
that the cochain ( M )  is a X 1 cochain. 

(b) Let M be X 2 martingale n-cochain in IR+. Let R t denote the rectangle 
generated by 0 and t, t~N~_, (i.e., Rt={y:  0_<y=t}) and let m t denote the zero 
cochain mt=M(Rt). We shall also use m(cr) to denote the n-cochain M(a). Let 
S,=m~ and let S(a) denote S(a)=(d 1 d 2 ... d, S)(a). 

L e m m a  5.2. (i) m t is a one parameter martingale on every increasing path in ~+ .  
Consequently St is a (one parameter) submartingale on every increasing path in 
IR n. (ii) For every rectangle a 

E(S(a) I ~(o))--E ((M(a))2 1F,(~)). (5.2) 

Proof of Lemma. (i) Note that (mtl+~,, ~ ..... t,,Ft~+~,t ...... J ,  c~>0, is a one 
parameter martingale in the parameter e. Consequently mt is a one parameter 
martingale on every increasing path since t>s  implies that t can be reached 
from s along a stepped path i.e., one that is a chain. Hence, m t is a martingale 
along such stepped paths which proves (i). Turning to (ii), we note that for a 
given a 

M(a) = 2 81 m~ 
i 

where t~ denotes the vertices of a and b~ is + 1 or - 1. Therefore 

E(S(a) [ Ft( ,))=E ~, (8i m~ I Ft(,)) 
i 

= E ~ (8 i mt(~) mr, I ~(~)) 
i 

= E(rnT(~ ) M(~)I~(~)) 

= E(M2(a) IF,(~)) + E((mT(~)- M(a)) M(a) [ Ft(~)) 

=E(M2(a)  ] Ft(~)) 

which proves (i). 
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(c) As in par t  (b), let M be a n  L 2 mart inga le  n-form and ~bt=mt 2. Let  t 
=(t~,  t 2 . . . . .  t,) and consider  ~b(0, t ...... ~,) as a funct ion of 0, O < O < t a .  By Lem-  
m a  5.2 d o , ,  . . . . . .  ~, is a 1 -paramete r  submar t inga le  and therefore by the D o o b -  
Meyer  decompos i t ion  ~bt=~bT 1 + o r  1, where Ot 1 is a 1 -parameter  mar t inga le  in 
the t~ direct ion relative to (F~),~ (or by the F-4 proper ty ,  relative to (F,~),I), and 
~b71 is the predic table  function of bounded  var ia t ion in the tt direction relative 
to (Ft)t, or  (F~)~ . Therefore,  for a > 0, 

g l  - -  qb~I~ t = l im ~ E(qb o . . . .  t . . . . . .  t .  - ~ o , , t  ...... ~. IF0 ~o) (5.3) ~ t l  q-O;, t 2 ,  . . . ,  t n  , t 2 ,  . . . ,  n . i ,  CX3, . . . ,  
i 

where 0 i denote  the points  of a par t i t ion  of the t 1 axis and the limit is as the 
par t i t ion is refined. Consider  now the behav ior  of  ~b~ 1 in the t 2 direction (t 

= t l ,  . . . , tn ) :  

. . . . . .  . . . . . .  I E )  

= E {lira ~, E(cbo . . . .  ~2+ . . . . . .  ~ - 0 o .  ~2+ . . . . . .  t,, 
i 

- ~oi +1, t2 . . . . .  t .  + 0 o . , 2  . . . . .  t~ 1Fo~,t . . . . . .  t~)] Ft} (5.4) 

where 0 i and the limit is as in (5.3). It follows f rom (5.4) and par t  (ii) of L e m m a  
5.2 that  qS~' is a submar t inga le  in the t 2 direction. Let  ~ b~t denote  the dual 
predictable  funct ion of bounded  var ia t ion appear ing  in the D o o b - M e y e r  de- 

/'C1 g 2  compos i t ion  of qS, in the t i direct ion and consider (q5)~ , then 

is a one p a r a m e t e r  mar t inga le  in the t 2 direction. F u r t h e r m o r e  (qS~) ~ is a 
submar t inga le  in the t 3 direction. Repeat ing,  we construct  

where, as before, At k is a submar t inga le  in the k + 1 direction. Then  /1 k - ~ l  k- z is 
" ~ t  " - t  

a one pa rame te r  mar t inga le  in the k direction. Let  Aq be a par t i t ion of IR+ 
then 

A" = l i ra  ~ E ( $ ( A q )  I F , ~ , ) )  (5.5) 
q 

where the limit denotes a p rope r  sequence of ref inements of the par t i t ions  (first 
in the t~ direction, then in the t 2 direction etc.). 

Let  B" denote  the cochain B " ( a ) = ( d ~  d 2 ... d , A " ) ( a )  or 

B" (o) = lira ~ E (q~ (A o u a) I Ft(zr 
q 

Then  B" is a posit ive cochain and since A k + I - - A  k is a one p a r a m e t e r  mar -  
t ingale in the k + 1 direct ion 

E (M 2 (a) - B n (a)  1 E!(a )) = 0 
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therefore we may set B " = ( M )  which proves (5.1) for the case r=n.  Note that 
as in the two parameter case, uniqueness is not assured by this argument since 
(5.5) may depend on the order in which the limit in (5.5) is taken. 

(d) Let M = M t u  be a 2; 2 r-martingale cochain in ~".  Consider [i]*, fix tj 
=~j for all j~[i]*, a j > 0  and denote S~={t: t j = ~ ,  j~[i]*}. Then, since M(a) 
=Mru(a ) is zero whenever the direction of a is different from [i], we can map 
(ram(a), t_(a)eS=) on N+.  Applying part (c) to N.+, yields (mm)=(Mti~)tu 
which satisfies (5.1). 

Consider now Mti j and Mtja, [i] =#[j] and a, ,  (7 2 r-rectangles. Let k be a 
direction included in [i] but not in [j]. Then, by F-4 

Consequently, setting 

E(M[i](al) M[j](a2) [ Fkt_(~,)) = 0 .  (5.6) 

( M )  = 2 (M[ i ] )  (5.7) 
[il 

yields (5.1). 

Remark. Note that for r < n, because of the F-4 property as defined in Sect. 2 

E(MZ(a) I Ft_(,~)) = E(MZ(a) ] wr'~l. ,(,),a (5.8) 

where [a] is the direction of a. Consequently, ( M )  can be constructed by 
conditioning with respect to FE-mkl instead of conditioning with respect to l !(~rmk) 
F t(~=~ ) where amk are elements of the partitions. 

For a pair of Z 2 martingale r-cochains M and N, (M, N)  is defined by 
polarization 

(M, N ) = � 8 8  + N ) - ( M - N ) ) .  

Lemma 5.3. (M, N)  = 0 iff: 

E(M(a) N(a)I ~(~)) -0  (5.9) 

for all r-rectangles a. 

The proof follows directly from the construction of (M) .  

Lemma 5.4. I f  M is a Z 2 martingale r-form ( l < r < n - 1 )  and dkM is a mar- 
tingale cochain for all k, 1 <<_kEn then whenever k 1 q=k 2 

(dk, M, dk2 M )  =0  (5.10) 

and consequently 

( d M ) =  Z (dkM)"  (5.11) 
k=l  

Proof. Let t_(a,)=t_(a2), [a l ]  =# [%] where both a,  and a 2 are r-rectangles then 
as in (5.8) 

E(M(a, )  M(a2)I Fn~,) ) =0. (5.12) 

Now, dkM(a)=O, if k~[a] ;  for k~[a] 

dg M (a) = M (Qk + (a) -- g~ (a)). 
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It follows from (5.12), since d k M is a martingale cochain that 

E(d~l M(~) d~ M(~)t ~(~))= o 

and (5.10) follows from the previous lemma. 
We conclude this section with a discussion of martingales of path inde- 

pendent variation and martingales of orthogonal increments [10]. 

Definitions. (a) A z~ 2 martingale r-form 1 <r <-n--1 will be said to be of closed 
variation if ( M )  is a closed cochain i.e., d ( M )  =0. 

(b) A 272 martingale r-form M, l <_r<_n-1 will be said to be of orthogonal 
increments if dM is a martingale form and 

( d M )  = d ( M ) .  

Lemma 5.5. I f  M is of orthogonal increments and M is of the form dm where m 
is an ( r - 1 )  martingale cochain then M is of closed variation. 

Proof d ( M )  = ( d M )  = (ddm> = O. 

Lemma 5.6. I f  M is a 272 martingale r-form l < r < n - 1  and dkM is a strong 
martingale X 2 (r + 1) form for 1 <_ k <- n, then M is of orthogonal increments. 

Proof. It follows directly from the definition of strong martingales given in the 
previous section and the proof of Proposition 5.1 that ( d k M )  =dk (M ) and the 
rest follows from Lemma 5.4. 

6. Exterior Products I 

If X and Y are ordinary r~ and r 2 ordinary differential forms then their 
exterior product is well defined as an (r I +r2) form X/x Y. Our goal is to extend 
this definition to Zq eochains and forms. We begin by observing that if X is a 
Xz n-cochain (which in this case (r=n)  is the same as being a Z 1 n-form) and ~b 
is a bounded function q~t, telR+ then 

a 

is an n - Z  1 cochain defined by an ordinary Lebesque integral that can be 
expressed in a more convenient form as 

~@X(dt). 

Similarly if M is a 27 2 martingale n-cochain and ~b is predictable then 

(c~ /x M)(a) = ~ ~t M(dt) 
(7 

is nothing but a stochastic integral as has been defined in the literature 
[6, 1, 9]. Therefore if qSt, t e ~ +  is predictable and 
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then 4) A M is the unique ~2 mart ingale n-cochain such that  

(4) A M, M> = ~ A ( M )  

and for every rectangle a 

E((4) A M)(a)) 2 = E(4) 2 A <M)l(~r). 

For the case where X is an r-cochain we set, first 

4) A X= ~ 4) ,\ XEI, 
ill 

and proceed to define ~ A X[i ]. Let a be a rectangle with direction Ill. By 
mapping the r-hyperplane which includes a onto ~ ,  we reduce the case of 4) 
A X[i ] where X is an r-cochain in ]R+ to the case of integrating 4) with respect 
to an r-cochain in ]R+. Therefore by the previous result, if 4)t, te]R+ is 
predictable and M is a Z 2 martingale r-form satisfying 

E4) ~ A <M)(o) < oo 

for all rectangles (~, then 4)A M is a well defined X 2 mart ingale r-cochain such 
that  

<4) A M, M )  = 4) A ( M )  

and for every rectangle 

E {(4)2 A (M>)(o-)} = E((4) A M)(o-)) 2. 

Note  that  the result states that  4) A M is a X 2 mart ingale r-cochain, not  r-form, 
and further assumptions on 4) and M are necessary t o  assure that  4) A M is an 
r-form. This will be discussed in Sect. 9. 

To further mot ivate  the exterior product ,  first consider a Wiener process W 
and a Gaussian white noise t/ on IR2+. For  a 0-form 4), 4) At/ is just the 
stochastic integral 

(4) A t/)(~) = 14), t/(d0. 

For the l-forms d I W and d 2 W we should have 

d, W A d  1 W---d 2 WAd2 W = 0  
and 

(d 1 W A d 2 W)(a) = - (d 2 W A d 1 W)(a) = ~ t/(dt) t/(dt') 
t v t ' ~  

when the last integral is a stochastic integral of  second type as int roduced in 
[6]. If  X is a ordinary 1-form 

X=4) td t l  
then we should have 

X Adl W=O 

(X Ad 2 W)(a)= .I @tdtt/(dt') 
(t v t ' ) ~ a  



Multiparameter Martingale Differential Forms 445 

where the last integral is a mixed integral as defined in [1] and 1,71. If @ and ~/ 
are 0-forms then @ Ada W+O A d 2 W is a 1-form and for suitable paths F in 

@ A d, w +  4, A d~ w)(r) =.[ (4)& w +  O& w) 
F 

where the last quantity is the path integral introduced in [13. 

7. Exter ior  Product  II 

In this section we consider the exterior product X A Y of nonrandom r, and r 2 
cochains, which are continuous in the sense that they are 2; 2 cochains. The 
case of stochastic integration will be considered in the next section. 

Let X and Y denote nonrandom S 1 r I and r 2 cochains respectively and 
assume that l < r l ,  r 2<n,  r~ + r  2<n. Let 

[i] [j] 

We require X A Y to be an r~ + r  2 form with representation 

X A Y= ~, cS(i; j, k) Xtjl A Ytkl (7.1) 

where 6(i; j, k) = 1 if (j, k) is a permutation of ri] and zero otherwise. In short, 

(X A Y)til= ~ cS(i;j, k) XUl A r[k]" (7.2) 
[j], [k] 

Therefore, in order to define X A Y we only need to consider (X A Y)(a) where 
X = X u l ,  Y= Ytk] for some fixed [j] and [k] such that [j] and [k] are disjoint, 
and cr is an r l + r  2 rectangle with direction [- i]=[[j] ,  l-k]]. Suppose X = X u l ,  
Y~kl were ordinary or flat differential forms satisfying 

X ( d t )  = ~(t) dtjx A dr;2 A ... A dr;r, 

Y ( d t ) =  fi(t) dtk~ A ... A d &  . 

Then obviously 

( X  A Y)(cr) = e  S c~(t) [J(t) d t j l  A ... /x dr;,. A d&~ A ... A d tk ,  (7.3) 
ff 

where e=  +1 or - 1  according to whether (rj], [k]) is an even or odd per- 
mutation of [i]. 

Let [a] denote the direction of the rectangle ~. Let Xtl 1, Ym be r~ and r z 
forms respectively. Given an (r~ +r2) rectangle a, if a can be factored into the 
product of one rectangle of direction [i] and another rectangle of direction [j] 
then we denote the first factor by M ~) and the second factor by a (2) (so that a 
=O'(1)AO'(2)).  If a cannot be factored in the [i] and [j] directions, set a(1~=0, 
a(2~=~. Now, let 

U O~,q = IR+ (7.4) 
q 
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denote the dyadic partition of I(~_ into n-cubes of volume (2-~)" each. Set 

(x  A y),,(~)= ~ x(( ,~o, , ,  ~)(~)) Y((~r~o,,, ~)(~)). 
q 

Define, now 

(7.5) 

Proposition 7.2. 

Z_ % j  I x %~)=  Z ( T & @  x T~(%,~)). 

zm = ~ T((a[j] x a[k]) n 0m, q) (7.9) 
q 

is a Cauchy sequence in the f ia t  norm in ~,2, and there exists a sequence of  (r~ 

+ r 2 + l  ) coehains B m in R{ a" such that (%,+l-~m)cc_8Bz and ~ IB~l--+0 as 
I:n - -~  o o .  I.t= m 

(X A Y)(a)= lira ((X A Y)(a)) m (7.6) 
?tl~ oo 

provided the limit exists for all finite o-. Note that in the case where X, Y are 
ordinary forms, (X/x Y)(~) of (7.6) is related to (7.3) via approximating the 
integrands c~(t), fi(t) by piecewise constant integrands. 

Lemma 7.1. I f  0 is piecewise constant and X A Y exists then 

4 A (x  A Y) -- @ ,~ x ) / ,  Y=  x A (4)/, Y). 

The proof follows directly from (7.5). 
We conclude this section with a general condition for the existence of the 

exterior product. Let X = X[i ], Y= Y~j] be as before, define the cartesian product 
of X and Y on IR 2n as follows, for any rectangle/5 in ~_2n set 15=15" x 15b where 
15" is the rectangle obtained by projecting t5 on the first n coordinates and 15b is 
obtained by projecting 15 on the last n coordinates. From 15", 15b we derive 
rectangles pQ and Pb in IR" as follows, P,(Pb) is the rectangle obtained by 
deleting the last (first) n-coordinates of the points of 15,(fib). Now define 

(X  x Y)(15) = X(p , )  Y(Pb). (7,7) 

Having defined the "lifting" of X, Y (in IR") to X x Y in IR 2", consider now 
the "contraction" of an r-cochain in N2, into cochain in IR" as follows. Let a 
be an r-rectangle in IR" defined by (t, t+c)  where t and c are n-vectors and 
only r components of c are strictly positive, the others being zero. Let T,(a) 
denote the r-rectangle in ~ 2 n  defined by ((t, t ) , ( t+c ,  t)) where (t~, 0) denotes 
the concatenation of the n-tuples t~ and t~. Similarly let Tb(a ) denote the r- 
rectangle in IR 2" defined by ((t, t), (t, t+c)).  Now, let a[j I and a[k ] be r 1 and r 2 
rectangles in IR', set 

T(crEj ] x r T~((rUl) x Tb(Cr~kl). (7.8) 

tf Z is an (r 1 +rz) cochain in 1R z", then define Z, the "contraction" of Z, as the 
(r 1 +r2) cochain in IR" obtained by the pullback 
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Proof. Consider  an ( r l+ r2 )  rectangle r in IR n with sides of length 2 -m and 
starting at the origin. Let o-=~Ej I x 0-tkl, then aC~Om, o = ~ .  Set 

z((r) = T,(~r~jl) x Tb(crtkl) 
and 

Q(z(~7)) = ~ Z(~T C~Om+ 1, q)" 
q 

We want  to evaluate I~(a)=Q(z(a))l  ~. It will, however, be convenient  to aug- 
ment  z(o-) as follows. Let ~ be a q-rectangle in IR: ' ,  r < 2 n ,  let [~] be the 
direction of this rectangle and let ~ be a coordinate  direction not  in ~ J .  Let 
z + denote the (q+  1) rectangle generated by decreasing z in the c~ direction, i.e., 
the shadow of z in the ~ direction or: 

~+ ={( t  1, t 2 . . . .  , t~_ 1, 2t~, t~+ 1, ..., t2n): 0_<2_<1 and (tl, t 2 . . . .  , t2,)Er }. 

Note  that  r~c?z  +, compar ing  each rectangle part  of  Q+(z(a)) with a corre- 
sponding part  of z + yields 

Im + ( G ) -  Q + (z (r < I~(~)l " 2-m" (7.10) 
Therefore 

I v(o-) - Q ('c(a))l ~ < I O(z + (o-)) - c~Q + ('c(a))l- 

< Iz+(o-)-  Q+('c(G))[ ~ 

< I'c+ ( a ) -  Q + ('c(a))l 

< lz(~)1 .2- '~  (7.11) 

where for a k-rectangle A, IAI denotes the k dimensional  volume of A. The first 
inequality in (7.11) follows from the triangle inequality ( r c ~ r + ) ,  the next two 
inequalities follow from the properties of the flat no rm and the last inequality 
follows from (7.10). Consequently,  since Iz(G)l=lQ(~(o-))l, ~,. is a Cauchy  se- 
quence in the flat norm. Setting B,,--~m+l + -%,+ it follows f rom (7.10) that  
~o 

Bm-+O as m--+ oo. 
m 

Proposit ion 7.3. Let  X and Y be r I and r 2 cochains in IR', rl +r2 <n. I f  X x Y is 
continuous in the f ia t  norm in IR 2" then X /~  Y exists and is also continuous in the 
f ia t  norm. 

Proof. Note  that  ((X A Y)(o))m as defined by (7.5) can be written as 

((X/x Y)(o)) m = ( X  x Y)(rm) (7.12) 

where z,~ is as defined by (7.9) and the existence and continui ty of the limit as 
m ~  oo now follows directly f rom the assumptions X x Y is a form and from 
Proposi t ion (7.2). 

Remark.  The construct ion of  X/x Y via X x Y and (7.12) can be generalized in 
different directions e.g., 

(a) In order  to construct  X x Y it is not  necessary to require that r I -~-r 2 --~ n 

all that  is necessary is that  r~, r 2 < n. 
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(b) Let q5 be a zero form o n 1 (  2n. Then we can construct the (r~ +r2) form 
Z = q5/x (X x Y) in I (  2", and from Z we can construct a (q + r2) form in 1(" as 
was done for Z = X  x Y. This will be a natural extension of the integral of the 
second kind of [-6]. 

8. Exterior Product III 

Let X, Y be Lq r 1 and r 2 stochastic cochains respectively, r 1 +r2<n.  We define 
X/x Y to be the Lq limit of (7.5) provided that the limit exists for all chains. 
The exterior product  X/x Y thus defined is a cochain. We shall be particularly 
interested in the case where X and Y are martingale forms and X/~ Y is a form. 

Proposition 8.1. Let X, Y be martingale r 1 and r 2 forms respectively, (r 1 + r2)~n,  
satisfying for every rectangle a 

E~/2(X(a))4<K)rl ,  Ei /Z(dX(a))4<Klal ,  
(8.1) 

E1/2(Y(a))g<K[~r], E1/2(dY(~r))4<Kl~r]. 

Then the L 2 limit of (7.5) exists and X/x  Y is a S 2 martingale (q  +r2) form. 

Proof. Note that without loss of generality we may assume that all rectangles 
are included in the unit cube and X =X[~1, Y= Ym' We first prove the results of 
the proposit ion by an approach similar to the one given in the previous 
section. The existence of the L 2 limit of (7.6) will also be proved by a direct 
calculation. 

We construct now an (r I +r2) cochain Z in IR 2" as follows. Recall that X 
x Y was constructed by defining for rectangles 

(X x Y)(~)=X(p,)  Y(Pb) 

we want to construct Z to be as X x Y, i.e., 

Z(#) = X (pa) . Y(Pb) 

only if t(pa)-=t(pb)"and zero otherwise" namely, if t_(pa)#t_(pb) and t 3 does not 
include any rectangle/3' for which t_(p'a)=!(p~) then set 

z(p)=0. 

Otherwise stated, let O".q denote a dyadic partition of 1(2n((~ O,,,,q=1(2n). Let 
q 

rn, q~a a[i ~ ) ,  (a~i~)b denote the rectangles formed by the [i] and l-j] intervals of 
length 2 - "  starting at Z(O~, q) and ( )~, ( )b their projection on 1(+. Set 

( m q m, q - -  rr G 
Y(~ )b, if t(a[i ] )~--3(atjlq)b (8.2) m, X(%1 L" m, q 

Z((O.[im], q)a X (O'[j] q)) ~ ~ 0 ,  otherwise 

Z can be extended by linearity to be defined on chains in N 2n. Note that for %, 
as defined by (7.9) Z(zm)=(X x Y)(z")=((X/x Y)(cr)) m. Consequently, in view of 
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Proposition 7.2, in order to prove the existence of X/x Y it suffices to prove 
that Z is a 272 r i 4 - r 2  form in _~+IR 2". Let c~j,k k = l ,  2, . . . , K  be disjoint r I 
rectangles in N" and let a~j I be disjoint r 2 rectangles in N ; .  Let _t(a~)=_t(a~) 
then 

K 
Z ( U  Ta(fT~i]) X Tb(O-~j]) ) : E X((7~i]) Y(a~iJ) (8.3) 

k k=l 

and 

In particular, 
1~+ .. 

Remark. If we introduce the filtration in IR2+" 

G(to, tb) = Ft~ v tb 

then Z becomes an (r 1 +r2) martingale cochain in N~'. 

k 

= F, E(x~(o~,) - r~(~'~)} 
k 

=< Z E'~ (x~ (~O)  E'~(r~(~j~)) 
k 

__<K Z I~1. I~j~l. (8.4) 
k 

Z(a)]J~2)< CIa] for every rectangles a and Z is a 272 cochain in 

(8.5) 

Turning to dZ, it follows from (8.3) that dZ is the sum of products of X 
with d Y and d X  with Y dX, d Y (and dZ) need not be martingales but a direct 
modification of the arguments of (8.4) yields that for every rectangle z 

II d/(z)l[ (22)<c [Tt 

which proves that dZ is also a s cochain. Therefore, by Proposition (7.2), X 
/~ Y is a 272 form. 

A direct of the existence of the limit (7.6) without using Proposition 7.2 and 
Z will now be given. Consider the q in 0", q defined by (7.4), this is the address 
of each n-cube in the m-th partition. Assume that for any given m, q is 
represented as an n-tuple of numbers q=(ql ,  q2, ..., q,). Each qp is a binary 
fraction with m binary digits after the "decimal" point denoting the p-th 
coordinate of !(0,,, q). Let [q]l denote the following modification of q" for each 
qp for which p6[i], if the last digit (to the right) is a one modify it into a zero. 
All other entries of qp remain uncharged. Similarly, [q]2 is the same modifica- 
tion of q for p~[j]. With the notation we can write I m and Ira+ 1 as follows: 

I"+ 1 = ~ X ( ( a ~  0"+ ~, q)(1)). Y((~r~O"+q, q)(z)), (8.6) 
q 

I m = ~, X((~rc~ Om+ 1, [qh)(1)) " Y((cr~ 0m+ 1, [qh)(2)) �9 (8.7) 
q 

Note that qp has (m+ 1) binary digits in both (8.6) and (8,7). Set 

I m + , = Z a q b  q, Im=E~q f l  q 
q q 
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where eq, fit, at, bq are as defined by (8.6) and (8.7). We want to prove that  I~ 
is a Cauchy sequence in L 2. No te  first that  for q 4= u 

E~qflqaubu=O 

for the following reasons. Let  

and 

Therefore,  

t 1 =~(0" 0 Ore+ 1, [q]l) (1) 

t 2 =t_(O" (-50m+ 1, [q12 )(2) 

t 3 =_t(a c~ 0m+ ~, .)(~) 

t 4 =  t_ ((7 ("~Om+ l, u) (2) 

t a = t l v t 2 ;  t b = t 3 v t  ~. 

Then t~=t_(ac~Om+i,q) and ta4=t b. Let  p be a direct ion such that  pe[o-] and 
such that  (t~)p < (tb)p then 

E(eq flq G b,,) = E {a u b. E(eq flq [ Fg.)} = 0. 

If such a direction does not  exist, let p be a direction for w h i c h  (ta)p>(tb)p. 
Then 

E(eq flq a. b.) = E {c~q flq E(a. b. I FtVb)} = 0. 

E(Im+ 1 - I r a )  2 = E ~ (aq b q - aq rio) 2 
q 

= E ~ (aq b q -  c~q bq + c~q b. - eq fiq)e 
q 

< 2E ~ bg (a t - ~q)2 + 2E ~, eg (b t - fit) 2. (8.8) 
q q 

Consider now a term in the first sum of (8.8) 

E(bZq (a t _ aq)2) = E {(Y((a ~ 0m+ 1, t)(2))) 2" [X((a  c~ 0m+ 1, q)")) 

- X ( ( a ~  Ore+ 1, Eqh)(1)] 2" (8.9) 

Let  k be a direction in (ac~Om+ 1, t) (2/] and let _t denote  _t((ac~0m+ 1, q)(2)), then 

Eb~ (a t - c~t)2 < E 1:2 b~ E 1/2 (a t - et) 4. (8.10) 

Therefore,  by the assumptions and L e m m a  7.2 

Eb2(a t_  ~q)2 < K  2 rl 2-(,,+ 1)o.1+~+ 1) 

Similarly, for a term in the second sum of (8.8) we have by similar arguments 

Eo~2(bq_ fiq)2 ,~ r2  K 2 2-tin+ 1)(rl + r2+  1), 

Substituting (8.10), (8.11) into (8.8) yields 

E1/Z(lm+ 1 -- Ira) 2 ~ K 1 2-(m+ 1)/2. 

Consequent ly  I m is a Cauchy sequence. 
F r o m  the proof  of Proposi t ion 8.1 it also follows that:  
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Proposition 8.Z Under the assumptions of Proposition 8.1, ( X )  A ( Y) exists and 

< X A  Y > = < X >  A (Y>. (8.12) 

Proof If M,,, r e = l ,  2, ... is a sequence of 2 2 r-mart ingale cochains and 
M ~ M  in L 2 then M is an L 2 mart ingale cochain and (M,~)(cr)--,(M)(a) for 
every rectangle or. Applying this to (X A Y)m of (7.5) yields (8.12). 

In Sect. 3 of [8], it is shown that  stochastic integrat ion in the plane 
provides a class of measure t ransformations that  preserves the Markov ian  
proper ty  for a Gaussian process. The results on exterior p roduc t  up to this 
point  extend this result of [8] to parameter  space of any finite dimension. 

9. A Differentiation Formula 

In the non r a n d o m  case it is well known that  

d(X A Y ) = d X  A Y+(--I)~I X A dY  

This will, in general, not  be true for the stochastic case. Let X and Y be 
respectively r 1 and r 2 Z 2 mart ingale  forms. Assume that  dX A Y and X A dY 
are well defined, and further assume that  dX and d Y are also S 2 mart ingale 
forms. Define the (r 1 + r e + 1) form [X, Y] by 

d(X A Y ) = d X  A Y+(--1)r 'X  A d Y + [ X ,  Y] (9.1) 

we will call IX, Y] the cross variat ion between X and Y (Incidentally, we have 
not  defined the exterior p roduc t  between two zero cochains @ and ~ but if we 
set ~ A ~ = q 5 r  then (9.1) reduces to the I to formula). Some simple properties of 
[X, Y] can be derived directly f rom (9.1) as follows. Because X A Y=(--1)rxr2(Y 
A X), we have 

[Y,, X]  = ( -  1) . . . .  [X, Y] (9.2) 

and it also follows that  for r 1 odd X A X =0 .  Hence, for r 1 odd 

d(X A X ) = d X  A X - X  A dX  +[X, X] 

= 0 +  [x, x3 =0 

and IX,  X]  = 0 for r 1 odd. For  r 1 even we have 

d(X A X) = 2 X  A dX + IX, X]. 

Finally, note that  dd(X A Y ) = 0  whence it follows from 9.1 that 

d[X, Y]+[dX,  Y] + ( - 1 ) r ' [ X ,  d Y ] = 0  

for X = Y and r I even it reads 

d IX, X] + 2 IX, dX] = O. 
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We conjecture now that if either dkX (or d k Y) is a strong martingale form 
for every k then IX, Y] = 0. The heuristic arguments for this are as follows: 

d(X A Y)(T)=(X A Y)(Oz) 

=l im(X/~  Y)m(0r) 

where (X A Y)m is as defined by (7.5). Therefore 

(d k (X/x Y))(r) = lira (X A Y)~ (~? + - 0 - )  

where r is an (r 1 + r  2 + 1) rectangle -c=~r-x  rk and z k is an interval in the k 
direction, o-- is therefore the lower face of z in the k direction and r is the 
upper face of z is the k direction. Now, (X A Y)m is of the form of a sum of 
products X(r  Y(a~) and therefore d(X A Y)~ will be of the form of sums of 
terms of the following type 

x(oT) Y(~2) -x (~7)  Y(~;) 
= x ( ~ i ~ ) ( r ( ~ 2 ) -  Y(~i-)) + ( x ( ~ )  - x ( ~ 7 ) )  Y(~;) 
= x ( ~ ) ( Y ( ~ ) -  Y(~;))+ ( x ( ~ - ) -  x(~-))  Y(~;) 

+ (x(r ~) - x(~?))(y(~ib - Y(r 

with t(ax)=_t(a2) and (X A Y)m will be the sum of the three types of terms of 
the last equation. The sum of the terms of the first type will yield ( -  1)r'(X A 
dY) as m ~ oe, the sum of the terms of the second type will yield (dX/x Y) as 
m ~  c~ and the sum of the terms of the last type will yield [X, Y] as m ~ oo. 
The IX, Y] term is therefore very similar to the cross quadratic variation of 
continuous one-parameter  martingales. In the one parameter  case 

lira ~ (Mt~+ ~ - M r )  2 = l i m  ~ E((M,,+,-  Mr,)21Vt,) 
i i 

and what we conjecture is that the same is true in the present case; namely, we 
assume that we may replace the terms limit of terms of the form 

(X(e~) - X(a~-)) (Y(a~-) - Y(o-~-)) 

by the limit of terms of the form 

E{(X(a-[)-X(aT))(Y(a+) - Y(r I F~(~;}} 

which vanishes if either d k X or d k Y is a strong martingale. 
As an application of (9.1) consider the case where ~ is a Z 2 martingale zero 

form and M is a Z 2 martingale one form. Note that our definition of a strong 
martingale implies that every martingale i-form is strong therefore [q~, M] = 0  
and 

d(~ A M)=d~) AM+q~ A d M  

which for IR2+ is the Green formula of Cairoli and Walsh [-1]. 
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