Explicit Solutions to a Class of Nonlinear Filtering Problems

EUGENE WONG

Department of Electrical Engineering and Computer Sciences, and the Electronics Research Laboratory, University of California, Berkeley, California 94720, U.S.A.

(Accepted for publication November 25, 1980)

In this paper we obtain the solution of a class of nonlinear filtering problems in the form of a series expansion in terms of multiple Wiener integrals. The solution is explicit in the sense that the kernels of the integrals in the expansion are explicitly determined.

KEY WORDS: Nonlinear filtering, multiple Wiener integrals, orthogonal polynomials

1. INTRODUCTION

Let Z_t be a stochastic process and let X_t be a process of the form

$$X_t = \int_0^t Z_s \, ds + W_t, \quad t \geq 0$$

where W_t is a standard Wiener process independent of Z_t. The general filtering problem is to find effective ways of computing the conditional expectation

$$E[f(Z_t) | X_s, 0 \leq s \leq t]$$

for some function f.

Except when Z is of finite state, the Gaussian case and some recently discovered examples [4] comprise the entire collection of cases where solutions, in some explicitly computable form, to the nonlinear filtering problem are known. The object of this paper is to add a small but possibly useful class of examples to this collection.

Since Kalman's solution to the linear filtering problem became the
dominant one, there has been a tendency to view filters only in the
differential equation form. An alternative and much older interpretation of
"filters" is that of the representation of the estimator as a functional of the
observed process, e.g., as a convolution. It is in the latter sense that results
of this paper are to be interpreted. While the representation that we shall
derive is not readily implemented as a differential equation, its form is
such that the filter can be implemented, at least in principle, by a lattice of
linear filters and multipliers. Whether such an arrangement can be
reduced to something practical remains to be determined.

2. A WIENER SERIES REPRESENTATION

Let \((\Omega, \mathcal{F}, \mathcal{P})\) be a probability space. Let \(\{Z_t, W_t, 0 \leq t \leq T\}\) be a pair of
independent processes defined on \((\Omega, \mathcal{F}, \mathcal{P})\) such that \(W\) is a standard
Wiener process, and \(Z\) is a strong Markov process that is almost surely
sample square-integrable. Consider an observation process

\[
X_t = \int_0^t Z_s \, ds + W_t, \quad 0 \leq t \leq T, \tag{2.1}
\]

and denote \(\mathcal{F}_{xt} = \sigma(X_s, s \leq t)\). It is well known (see e.g. [6]) that if we
define a probability measure \(\mathcal{P}_0\) by

\[
\frac{d\mathcal{P}_0}{d\mathcal{P}} = \exp \left\{ - \int_0^T Z_s \, dW_s - \frac{1}{2} \int_0^T Z_s^2 \, ds \right\} \tag{2.2}
\]

then \((Z, X)\) has the same distribution under \(\mathcal{P}_0\) as \((Z, W)\) under \(\mathcal{P}\).

For a bounded \(f\) define the unnormalized estimator

\[
\pi_t f = E_0 \left\{ f(Z_t) \frac{d\mathcal{P}}{d\mathcal{P}_0} \bigg| \mathcal{F}_{xt} \right\}. \tag{2.3}
\]

To normalize, one would only need to write

\[
E[f(Z_t) \big| \mathcal{F}_{xt}] = \pi_t f \frac{\pi_t 1}{\pi_t 1} \tag{2.4}
\]

where

\[
\pi_t 1 = L_t = E_0 \left\{ \frac{d\mathcal{P}}{d\mathcal{P}_0} \bigg| \mathcal{F}_{xt} \right\}, \tag{2.5}
\]

is simply the likelihood ratio.
Now, from (2.2) we have

$$\frac{d\mathcal{P}}{d\mathcal{P}_0} = \exp \left\{ \int_0^T Z_s dX_s - \frac{1}{2} \int_0^T Z_s^2 ds \right\}$$

(2.6)

and the exponential formula for multiple Wiener integrals yields [3]

$$\frac{d\mathcal{P}}{d\mathcal{P}_0} = \sum_{n=0}^{\infty} Z_n \circ X^n$$

(2.7)

where $Z_0 \circ X^0 \equiv 1$ and for $n > 1$

$$Z_n \circ X^n = \int_{0 < t_1 < \ldots < t_n < T} Z_{t_1}Z_{t_2} \ldots Z_{t_n}X(dt_1) \ldots X(dt_n)$$

(2.8)

are desymmetrized multiple Wiener integrals. It now follows that

$$\pi_t f = \sum_{n=0}^{\infty} \int_{0 < t_1 < \ldots < t_n < t} E_0(Z_{t_1}Z_{t_2} \ldots Z_{t_n}f(Z_t))X(dt_1) \ldots X(dt_n)$$

(2.9)

The process Z being identically distributed under either measures, E_0 in (2.9) can also be replaced by E.

Now, let Z be a diffusion process, with the density of Z_t being $\mathcal{P}(z, t)$. Introduce an unnormalized conditional density $V(z, t)$ of Z_t given the observation by the relationship [6]

$$\pi_t f = \int_{-\infty}^{\infty} V(z, t)f(z)dz$$

(2.10)

Then (2.9) reduces to [c.f. 5]

$$V(z, t) = p(z, t) \sum_{n=0}^{\infty} m_n(z, \cdot, t) \circ X^n$$

(2.11)

with

$$m_n(z, t_1, t_2, \ldots, t_n, t) = E(Z_{t_1}Z_{t_2} \ldots Z_{t_n} | Z_t = z)$$

(2.12)

and

$$m_n(z, \cdot, t) \circ X^n = \int_{0 < t_1 < \ldots < t_n < t} m_n(z, t_1, \ldots, t_n, t)X(dt_1) \ldots X(dt_n)$$

(2.13)
From the Markov property of Z, the functions m_n satisfy the recurrence relationships

$$m_n(z, t_k, t_n, t) = E[Z_{t_n}m_{n-1}(Z_{t_k}, t_1, \ldots, t_n)|Z_t = z]. \quad (2.14)$$

The main result of this paper is an explicit evaluation of these functions for a class of stationary Z.

3. PROCESSES OF THE PEARSON CLASS

We shall restrict our attention to a class of stationary diffusion processes Z_t that have a transition density of the forms

$$p(z, t|z_0, t_0) = p(z) \sum_{k=0}^{\infty} e^{-\lambda_k(t-t_0)} \phi_k(z) \phi_k(z_0) \quad (3.1)$$

where $p(z)$ is the stationary density and ϕ_k are orthonormal polynomials of degree k. Densities of the form (3.1) were introduced by Barrett and Lampard [1]. In [7] diffusion processes with such transition densities were exhaustively studied subject to the additional condition that $p(z)$ is of the Pearson type [2]. It was found that such processes fall into three categories, corresponding to the classical Hermite, Laguerre and Jacobi polynomials respectively. In terms of the Fokker Planck equation for the transition density p

$$\frac{1}{2} \frac{\partial^2}{\partial z^2} [\sigma^2(z)p] - \frac{\partial}{\partial z} [m(z)p] = \frac{\partial}{\partial t} p \quad (3.2)$$

these cases can be summarized as follows:

$$\sigma^2(z) = 2, \ m(z) = -z \quad (3.3a)$$

$\phi_k(z)$ are Hermite polynomials

$$z > 0, \ \sigma^2(z) = 2z, \ m(z) = (\alpha + 1) - z, \ z \geq 0 \quad (3.3b)$$

$\phi_k(z)$ are Laguerre polynomials

$$|z| < 1, \ \sigma^2(z) = 2(1 - z^2), \ m(z) = (\alpha - \beta) - (\alpha + \beta + 2)z \quad \alpha, \beta > -1 \quad (3.3c)$$

$\phi_k(z)$ are Jacobi polynomials.
Observe that $z\phi_k(z)$ is a polynomial of degree $k+1$. Furthermore, for any $j \leq k-2$ $z\phi_j(z)$ is a polynomial of degrees $k-1$ or less and hence is orthonormal to ϕ_k, i.e.,

$$\int p(z)z\phi_k(z)\phi_j(z)\,dz = 0 \quad j \leq k-2.$$

It follows that $z\phi_k(z)$ is at most a linear combination of ϕ_k and $\phi_{k \pm 1}$. We shall write

$$z\phi_k(z) = a_{k+1}\phi_{k+1}(z) + b_k\phi_k(z) + c_{k-1}\phi_{k-1}(z) \quad (3.4)$$

for the general 3-term recurrence relationship, and use this to evaluate the conditional moments $m_n(z, \cdot)$ explicitly.

We note that for any of these cases we have

$$\lambda_0 = 0 \quad \text{and} \quad \phi_0(z) = 1.$$

4. AN EXPLICIT SOLUTION

We begin with the following observation:

THEOREM 4.1 If Z is a stationary Markov process with a transition function of the form (3.1). Then, $m_n(z, \cdot)$ are of the form

$$m_n(z, t_1, \ldots, t_n, t) = \sum_{p=0}^{n} \alpha_{np}(t_2 - t_1, t_3 - t_2, \ldots, t - t_n)\phi_p(z) \quad (4.1)$$

where α_{np} satisfy the recurrence relationship

$$\alpha_{np}(t_2 - t_1, \ldots, t - t_n) = e^{-\lambda_p(t-t_n)}a_{np}\alpha_{n-1, p-1}(t_2 - t_1, \ldots, t_n - t_{n-1})$$

$$+ b_p\alpha_{n-1, p+1}(t_2 - t_1, \ldots, t_n - t_{n-1})$$

$$+ c_p\alpha_{n-1, p+1}(t_2 - t_1, \ldots, t_n - t_{n-1}) n \geq p \geq 0 \quad (4.2)$$

Proof. We note from (3.1) that

$$E[\phi_k(Z_s)|Z_t = z] = e^{-\lambda_k(t-s)}\phi_k(z), \quad t \geq s. \quad (4.3)$$
Hence, from (3.4) we have
\[m_1(z, t_1, t) = E[Z_{t_1}|Z_t = z] = E[a_1 \phi_1(Z_{t_1}) + b_0 \phi_0(Z_{t_1})|Z_t = z] = a_1 e^{-\lambda_1(t-t_1)} \phi_1(z) + b_0 e^{-\lambda_0(t-t_1)} \phi_0(z) \]
so that (4.1) holds for \(n = 1 \), and we have \(\alpha_{10} = b_0 e^{-\lambda_0(t-t_1)} = b_0 \), \(\alpha_{11} = a_1 e^{-\lambda_1(t-t_1)} \).

Suppose that (4.1) holds for \(k \leq n - 1 \). Then, from (2.14) we have
\[
m_n(z, t_1, \ldots, t_n, t) = \sum_{p=0}^{n-1} \alpha_{n-1, p}(t_2-t_1, \ldots, t_n-t_{n-1}) E[Z_{t_n} \phi_p(Z_{t_n})|Z_t = z] = \sum_{p=0}^{n-1} \alpha_{n-1, p}(t_2-t_1, \ldots, t_n-t_{n-1}) (a_{p+1} e^{-\lambda_{p+1}(t-t_0)} + b_p \phi_p(z) e^{-\lambda_p(t-t_0)} + c_{p-1} \phi_{p-1}(z) e^{-\lambda_{p-1}(t-t_0)})
\]
which is again of the form (4.1).

If we rearrange terms in (4.3), we get (4.2). \(\square \)

In (4.2) let's adopt the convention that \(\alpha_{np} = 0 \) whenever \(p > n \) or \(n < 0 \). Then the equation holds for any \(n \) and \(p \). Observe that when \(n = p \), we have
\[\alpha_{nn} = e^{-\lambda_n(t-t_n)} a_n \alpha_{n-1, n-1} \]
which can be solved immediately to yield
\[\alpha_{nn}(\tau_1, \tau_2, \ldots, \tau_n) = \prod_{k=1}^{n} a_k e^{-\lambda_k \tau_k} \]
and that in turn can be used to solve for \(\alpha_{n-1, n-1} \), etc. It is convenient to work with Laplace transforms and make a change in notation as follows:
\[
\hat{\alpha}_p^{(v)}(s_1, s_2, \ldots, s_{p+v}) = \int_0^\infty \cdots \int_0^\infty e^{-(s_1 \tau_1 + \cdots + s_p \tau_p + v)} \times \alpha_{p+v, p}(\tau_1, \tau_2, \ldots, \tau_{p+v}) d\tau_1 \cdots d\tau_{p+v}.
\]
(4.5)
Then, (4.2) becomes

\[
\hat{\alpha}_p^{(v)}(s_1, s_2, \ldots, s_{p+v}) = \frac{1}{(s_{p+v} + \lambda_p)} \{ a_p \hat{\alpha}_{p-1}^{(v)}(s_1, \ldots, s_{p+v-1}) \\
+ b_p \hat{\alpha}_p^{(v-1)}(s_1, s_2, \ldots, s_{p+v-1}) \\
+ c_p \hat{\alpha}_{p+1}^{(v-2)}(s_1, s_2, \ldots, s_{p+v-1}) \}
\]

(4.6)

which can be solved immediately to yield

\[
\hat{\alpha}_p^{(0)} = \prod_{k=1}^{p} \frac{a_k}{(s_k + \lambda_k)} , \quad \hat{\alpha}_0^{(0)} = 1
\]

(4.7)

verifying the result that we obtained earlier for \(\alpha_{nn} \).

The general solution for \(\hat{\alpha}_p^{(v)} \) is given as follows.

THEOREM 4.2 Let \(u_k, b_k^{(v)} \) and \(c_k^{(v)} \) be defined as follows:

\[
(k \geq 1, \ v \geq 1)
\]

\[
u_k = \prod_{j=1}^{k} \left(\frac{b_j}{s_j} \right)
\]

(4.8)

\[
b_k^{(v)} = \left(\frac{b_k}{s_k + v + \lambda_k} \right) \prod_{j=1}^{k} \left(\frac{s_j + v + \lambda_j}{s_j + v - 1 + \lambda_j} \right)
\]

(4.9)

\[
c_k^{(v)} = 0 \quad v = 1
\]

(4.10)

\[
\frac{c_{k-1} a_k}{(s_k + v - 1 + \lambda_k - 1)(s_k + v + \lambda_k)} \prod_{j=1}^{k} \left(\frac{s_j + v + \lambda_j}{s_j + v - 2 + \lambda_j} \right) \quad v \geq 2.
\]

For \(v \geq 1, \ p \geq 0 \) and \(1 \leq k \leq p + 1 \), define a \(v \)-dimensional row vector \(a_{pk}^{(v)} \) as follows:

\[
a_{p1}^{(v)} = \left(b_1^{(v)}, u_v \left(\frac{s_v c_1^{(v)}}{u_{v-1}} \right), u_v \left(\frac{s_{v-1} c_1^{(v-1)}}{u_{v-2}} \right), \ldots, u_v \left(\frac{s_2 c_1^{(v)}}{u_1} \right) \right)
\]

\[
a_{pk}^{(v)} = (b_k^{(v)}, c_k^{(v)}, 0 \ldots 0), \quad 2 \leq k \leq p
\]

\[
a_{pp+1}^{(v)} = (0, c_{p+1}^{(v)}, 0 \ldots 0).
\]
Finally, define $v+1$ by v matrices

$$A^{(v)}_{pk} = \begin{bmatrix} a^{(v)}_{pk} \\ \delta_{pk} I_v \end{bmatrix}$$ \hspace{1cm} (4.12)$$

where I_v is the $v \times v$ identity matrix.

Then, $\hat{\alpha}^{(v)}_p$ are given as follows:

$$\begin{bmatrix} \hat{\alpha}^{(v)}_p \\ \hat{\alpha}^{(0)}_p \end{bmatrix} = \prod_{j=1}^{p} \frac{a_j}{(s_{j+v} + \lambda_j)}$$

$$ \times \left[\sum_{k=0}^{v} \sum_{m_v = 1}^{p+1} \sum_{m_{v-1} = 1}^{m_v + 1} \cdots \sum_{m_{k+1} = 1}^{m_{k+2} + 1} A^{(v)}_{pm_v} A^{(v-1)}_{m_v, m_{v-1}} \cdots A^{(k+1)}_{m_{k+2}, m_{k+1}} 1_{k+1} \right]$$ \hspace{1cm} (4.13)$$

when 1_k is the k-dimensional unit column vector.

Proof We begin by iterating (4.6) in p and get

$$\hat{\alpha}^{(v)}_p = \prod_{j=1}^{p} \frac{a_j}{(s_{j+v} + \lambda_j)} \hat{\alpha}^{(v)}_0 + \sum_{m=1}^{p} \frac{1}{\prod_{j=1}^{m} \frac{a_j}{(s_{j+v} + \lambda_j)}}$$

$$ \times \left(\frac{b_m}{s_{m+v} + \eta_m} \right) \hat{\alpha}^{(v-1)}_m + \left(\frac{c_m}{s_{m+v} + \lambda_m} \right) \hat{\alpha}^{(v-2)}_{m+1}$$ \hspace{1cm} (4.14)$$

for $p \geq 1$ and

$$\hat{\alpha}^{(v)}_0 = \frac{b_0}{(s_v + \lambda_0)} \hat{\alpha}^{(v-1)}_0 + \frac{c_0}{(s_v + \lambda_0)} \hat{\alpha}^{(v-a)}_0$$ \hspace{1cm} (4.15)$$

Now, denote for $p \geq 1$

$$\hat{\alpha}^{(v)}_p = \left[\prod_{j=1}^{p} \frac{a_j}{(s_{j+v} + \lambda_j)} \right]_{l_p}^{(v)}$$ \hspace{1cm} (4.15)$$
Then, we have

\[\gamma_p^{(v)} = \delta_0^{(v)} + \sum_{m=1}^{p} \frac{1}{\prod_{j=1}^{m} (s_{j+v} + \lambda_j)} \left\{ \left(\frac{b_m}{s_{m+v} + \lambda_m} \right) \prod_{j=1}^{m} \frac{a_j}{(s_{j+v-1} + \lambda_j)} \gamma_m^{(v-1)} \right\} \]

\[+ \left(\frac{c_m}{s_{m+v} + \lambda_m} \right) \prod_{j=1}^{m+1} \frac{a_j}{(s_{j+v-2} + \lambda_j)} \gamma_m^{(v-2)} \]

(4.16)

which simplifies to yield

\[\gamma_p^{(v)} = \delta_0^{(v)} + \sum_{m=1}^{p} b_m^{(v)} \gamma_{m-1}^{(v)} + \sum_{m=1}^{p+1} c_m^{(v)} \gamma_{m+1}^{(v-2)} \]

(4.17)

where \(b_m^{(v)} \) and \(c_m^{(v)} \) are as defined in (4.9) and (4.10).

Equation (4.15) can be iterated to yield

\[\delta_0^{(v)} = \frac{b_0}{\prod_{j=1}^{v} (s_j + \lambda_0)} + \sum_{k=0}^{v-2} \frac{c_0 a_1 b_0^{-k-2}}{\prod_{j=k+1}^{v} (s_j + \lambda_0)} \left(\frac{s_{k+1} + \lambda_0}{s_{k+1} + \lambda_1} \right) \gamma_1^{(k)} \]

(4.18)

which is of the form

\[\delta_0^{(v)} = u_v + \sum_{k=0}^{v-2} s_{k+2} c_1^{(k+2)} \left(\frac{u_v}{u_{k+1}} \right) \gamma_1^{(k)} \]

(4.19)

With the use of (4.19), we can now rewrite (4.16) in the form of

\[\begin{bmatrix} \gamma_p^{(v)} \\ \gamma_p^{(v-1)} \\ \vdots \\ \gamma_p^{(0)} \end{bmatrix} = \sum_{m=1}^{p+1} A_{pm}^{(v)} \begin{bmatrix} \gamma_{m}^{(v-1)} \\ \vdots \\ \gamma_{m}^{(0)} \end{bmatrix} + u_v \mathbf{1}_{v+1} \]

(4.20)
where \(A_{pm}^{(v)} \) are as defined by (4.12) and (4.11). Equation (4.20) can now be iterated in \(v \). With \(\gamma_p^{(0)} = 1 \) we get

\[
\begin{bmatrix}
\gamma_p^{(v)} \\
\vdots \\
\gamma_p^{(0)}
\end{bmatrix} = \sum_{k=0}^{r} u_k \left[\sum_{m_v=1}^{p+1} \sum_{m_{v-1}=1}^{m_v+1} \cdots \sum_{m_{k+1}=1}^{m_k+2} \right] \\
\times \left\{ A_{pm_v}^{(v)} A_{m_{v-1}}^{(v-1)} \cdots A_{m_{k+2}}^{(k+1)} \right\}
\]

whence the desired result (4.13) follows immediately using (4.15).

\[
\Box
\]

5. THE SYMMETRIC CASE

There are some cases for which the polynomials \(\phi_n(z) \) contain only even or odd terms according as \(n \) is even or odd respectively. This is the situation, for example, for Gegenbauer polynomials (which include both Chebyshev and Legendre polynomials), and most importantly for Hermite polynomials which correspond to \(Z_t \) being a Gaussian process. We shall refer to these cases collectively as the symmetric case.

For the symmetric case the coefficient \(b_k \) in the recurrence relationship (3.4) is necessarily zero for every \(k \). It follows from (4.9) that \(b_k^{(v)} \) are identically zero, and the result of Theorem 4.2 simplifies a great deal as is indicated as follows:

Theorem 5.1 For the symmetric case we have

\[
\alpha_p^{(2v+1)} = 0
\]

\[
\alpha_p^{(2v)} = \prod_{j=1}^{n} \frac{a_j}{(s_{2v} + j + \lambda_j)} \left\{ \sum_{m_v=1}^{p+1} \sum_{m_{v-1}=1}^{m_v+1} \cdots \sum_{m_1=1}^{m_2+1} c_m^{(2v)} c_{m_{v-1}}^{(2v-2)} \cdots c_{m_1}^{(2)} \right\}. \quad (5.1)
\]

Proof Since \(b_k^{(v)} \equiv 0 \), (4.17) becomes

\[
\gamma_p^{(v)} = \sum_{m=2}^{p+1} c_m^{(v)} c_{m-2}^{(v-2)} + \alpha_0^{(v)} \quad (5.2)
\]

and (4.18) now takes the form

\[
\alpha_0^{(v)} = \left(\frac{c_0}{s_v} \right) \alpha_1^{(v-2)} \quad (5.3)
\]
With the use of (5.2) for $\hat{a}_0^{(v)}$, (5.2) can be rewritten as

$$\gamma_p^{(v)} = \sum_{m=1}^{p+1} c_m^{(v)} \gamma_m^{(v-2)}$$

where $c_m^{(v)}$ is given by (4.10). Since $\gamma_p^{(0)} = 1$ and $\gamma_p^{(1)} = 0$, we have $\gamma_p^{(v)} = 0$ for all v odd, and

$$\gamma_p^{(2v)} = \sum_{m_v=1}^{p+1} \sum_{m_{v-1}=1}^{m_v+1} \sum_{m_1=1}^{m_{v-1}+1} c_m^{(2v)} c_{m_{v-1}}^{(2v-2)} \cdots c_m^{(2)}$$

whence (5.1) follows. □

It is interesting to note that in the Gaussian case (c.f. 33a) the terms $c_k^{(v)}$ are given by

$$c_k^{(v)} = \frac{k}{(s_v+1)(s_v+2)} \prod_{j=1}^{k-2} \left(\frac{s_{j+v} + j}{s_{j+v} + j + 2} \right).$$

Acknowledgements

Most of the work was done while I was at MIT, as a guest of the Department of Electrical Engineering and Computer Science and the Laboratory for Information and Decision Systems. In particular, the results were inspired by the work of Mitter and Ocone [5] and by many conversations with Professor S. K. Mitter.

Research sponsored by U.S. Army Research Office Grant DAAG29-78-G-0186.

References