The Sample Function Continuity of Stochastic Integrals in the Plane

Eugene Wong; Moshe Zakai

Stable URL:
http://links.jstor.org/sici?sici=0091-1798%28197712%295%3A6%3C1024%3ATSFCOS%3E2.0.CO%3B2-V

The Annals of Probability is currently published by Institute of Mathematical Statistics.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ims.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.
THE SAMPLE FUNCTION CONTINUITY OF STOCHASTIC INTEGRALS IN THE PLANE

BY EUGENE WONG AND MOSHE ZAKAI

University of California, Berkeley and the Technion,
Haifa, Israel

Sample continuity is proved for extended stochastic integrals involving a two-parameter Wiener process.

1. Introduction. Let R_+^2 be the positive quadrant of the plane. The partial orderings $<$ and \preceq denote: $(a, b) < (c, d)$ if $a \leq c$ and $b \leq d$, $(a, b) \preceq (c, d)$ if $a < c$ and $b < d$. For $z \in R_+^2$, R_z denotes the rectangle $[\zeta: (0, 0) < \zeta < z]$. Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a complete probability space and \mathcal{F}_z, $\zeta \in R_+^2$ be sub-σ-fields of \mathcal{F}. We assume that

$$\mathcal{F}_z \subset \mathcal{F}_{z'} \text{ whenever } z < z',$$

\mathcal{F}_z is right continuous ($\mathcal{F}_z = \bigcap_{z' < z} \mathcal{F}_{z'}$),

$\mathcal{F}_{(z_1, \infty)}$ and $\mathcal{F}_{(\infty, z_2)}$ are conditionally independent given \mathcal{F}_z.

Let (W_z, \mathcal{F}_z) be a separable two-parameter Wiener process on $(\Omega, \mathcal{F}, \mathcal{P})$. Stochastic integrals of the type $\int \phi^s dW_s$, $\int \phi dW$, $\int \int \phi^s dW_s d\zeta$ have been defined under the conditions $E \int \phi^3 d\zeta < \infty$, $E \int \phi^3 d\zeta d\zeta' < \infty$ and the existence of sample continuous versions of these stochastic integrals was demonstrated ([6], [7], cf. also [2]).

In an attempt to extend the definitions of the stochastic integrals by replacing $E(\cdot) < \infty$ with $(\cdot) < \infty$ a.s., it turned out that the standard one-parameter stopping argument does not go over to the multiparameter case. An extension was presented in [8], but it did not yield the sample function continuity of the extended stochastic integral. The purpose of this note is to prove the sample function continuity of the extended stochastic integral.

The stochastic integrals under $E(\cdot) < \infty$ were also defined for the case where W_z is replaced by certain general continuous (or right-continuous) square integrable two-parameter martingales ([2], [7]), and so was the extension of [8]. This note deals only with integration with respect to the Wiener process. A remark concerning the possibility of extending the approach to the case of integration with respect to general martingales is deferred to the end of the note.

2. Preliminaries. Let ϕ_ζ, $\zeta \in R_+^2$ be \mathcal{F}_z adapted, measurable and satisfy

Received September 16, 1976.

1 Research partially sponsored by the U.S. Army Research Office Grant DAAG29-75-G-0189.
AMS 1970 subject classifications. Primary 60H05; Secondary 60G45.
Key words and phrases. Sample continuity, stochastic integrals, two-dimensional random fields, two-parameter martingales.
\[\int_{R_+^3} \phi_{\zeta}^2 \, d\zeta < \infty \text{ a.s.} \] Let \(y^n(\omega) \) denote the rv
\[y^n(\omega) = 1 \quad \text{if} \quad \int_{R_+^3} \phi_{\zeta}^2 \, d\zeta \leq n, \]
\[= 0 \quad \text{otherwise.} \]

Let \(Y_{\zeta}^n \) denote the two-parameter martingale
\[Y_{\zeta}^n = E(y^n | \mathcal{G}_{\zeta}). \]

Since \(\mathcal{G}_{\zeta} \) is right continuous, it follows ([5], the concluding remark to the proof of Theorem 21) that \(Y_{\zeta}^n \) is right continuous in probability for every \(\zeta \in R_+^3 \); therefore, it follows by the same arguments as those of page 61 of [4] that there exists a separable and measurable version of \(E(y^n | \mathcal{G}_{\zeta}) \); we will denote this version by \(Y_{\zeta}^n \). Let \(\lambda \) be a constant satisfying \(0 < \lambda < 1 \), and let

\[(1) \]
\[S_{\zeta}^n = 1 \quad \text{if} \quad Y_{\zeta}^n \geq \lambda, \]
\[= 0 \quad \text{otherwise.} \]

Lemma 1.

\[(2) \]
\[E \int_{R_+^3} S_{\zeta}^n \phi_{\zeta}^2 \, d\zeta \leq \frac{n}{\lambda} \]

and

\[(3) \]
\[\lim_{n \to \infty} P \{ \inf_{\zeta \in R_+^3} S_{\zeta}^n = 1 \} = 1. \]

Proof. Obviously,
\[E \int_{R_+^3} y^n \phi_{\zeta}^2 \, d\zeta \leq n. \]

Let
\[\pi_{\zeta}^k = \phi_{\zeta}^k \quad \text{if} \quad \phi_{\zeta}^2 \leq k, \]
\[= k \quad \text{otherwise.} \]

Therefore, by the monotone convergence and Fubini’s theorems
\[(4) \]
\[E \int y^n \phi_{\zeta}^2 \, d\zeta = \lim_{k \to \infty} \int E(y^n \pi_{\zeta}^k) \, d\zeta \]
\[= \lim_{k \to \infty} E \int Y_{\zeta}^n \pi_{\zeta}^k \, d\zeta \]
\[= E \int Y_{\zeta}^n \phi_{\zeta}^2 \, d\zeta. \]

Therefore \(E \int_{R_+^3} Y_{\zeta}^n \phi_{\zeta}^2 \, d\zeta \leq n \), and (2) follows since \(S_{\zeta}^n \leq Y_{\zeta}^n / \lambda \). We turn now to the proof of (3). Note that \(P \{ \inf S_{\zeta}^n = 1 \} = P \{ \inf Y_{\zeta}^n \geq \lambda \} \). Let \(p^n = P \{ y^n = 1 \} \), then \(p^n \to 1 \) as \(n \to \infty \) and also \(E Y_{\zeta}^n = p^n \). By the maximal inequality for two-parameter martingales [1], the separability of \(Y_{\zeta}^n \) and the fact that every countable dense set is a separating set
\[E[\sup_{\zeta \in R_+^3} | Y_{\zeta}^n - p^n|^2] \leq c \sup_{\zeta \in R_+^3} E(Y_{\zeta}^n - p^n)^2 \]
\[\leq c(E(y^n)^2 - (p^n)^2) \]
\[= cp^n(1 - p^n). \]
Therefore, for \(n \) large enough so that \(p^n > \lambda \)

\[
P \left\{ \inf Y_{\zeta, n} \geq \lambda \right\} = P \left\{ \inf (Y_{\zeta, n} - p^n) \geq \lambda - p^n \right\} \\
\geq P \left\{ \sup \left| Y_{\zeta, n} - p^n \right| \leq |p^n - \lambda| \right\} \\
= 1 - P \left\{ \sup |Y_{\zeta, n} - p^n| > |p^n - \lambda| \right\} \\
\geq 1 - \frac{cp^n(1 - p^n)}{(p^n - \lambda)^2},
\]

which proves (2) since \(p^n \to 1 \) as \(n \to \infty \).

Write \((a, b) \wedge (c, d)\) if \(a \leq c\) and \(b \geq d\), and let \((a, b) \vee (c, d)\) denote \((\max(a, c), \max(b, d))\). Let \(\phi(\zeta, \zeta') = \zeta, \zeta' \in R^3_+\) be measurable, \(\mathcal{F}_{\zeta' \vee \zeta}\) adapted, such that \(\phi(\zeta, \zeta') = 0\) if \(\zeta \wedge \zeta'\) is not satisfied and

\[
\int_{R^3_+ \times R^3_+} \phi(\zeta, \zeta') d\zeta d\zeta' < \infty \quad \text{a.s.}
\]

Let \(y^n\) denote the rv

\[
\begin{align*}
y^n &= 1 \quad \text{if} \quad \int_{R^3_+ \times R^3_+} \phi(\zeta, \zeta') d\zeta d\zeta' \leq n, \\
&= 0 \quad \text{otherwise},
\end{align*}
\]

and let \(Y_{\zeta, n}\) denote the separable and measurable version of the two-parameter martingale \(E(y^n | \mathcal{F}_{\zeta})\). \(S_{\zeta, n}\) is as defined by (1).

Lemma 2.

\[
E \int_{R^3_+ \times R^3_+} S_{\zeta, n} \phi(\zeta, \zeta') d\zeta d\zeta' \leq \frac{n}{\lambda}
\]

and

\[
\lim_{n \to \infty} P \left\{ \inf_{R^3_+} S_{\zeta, n} = 1 \right\} = 1.
\]

The proof is essentially the same as that of Lemma 1 and is therefore omitted.

Remark. \(S_{\zeta, n}\) as defined by (1) is not a stopping time (cf. [7]). Let

\[
T_{\zeta, n} = 1 \quad \text{if} \quad \inf_{\zeta \leq \xi} S_{\zeta, n} = 1, \\
= 0 \quad \text{if not},
\]

then \(T_{\zeta, n}\) is a two-parameter stopping time and Lemmas 1 and 2 remain true with \(S_{\zeta, n}\) replaced by \(T_{\zeta, n}\).

3. **The sample function continuity of stochastic integrals.** Let \(\phi_\zeta\) be as in the previous section, and \(n'' > n' \geq n\). Since \(n' > n\) implies \(\inf_{R^3_+} (S_{\zeta, n'} - S_{\zeta, n}) \geq 0\) a.s., it follows that

\[
P \left\{ \sup_{R^3_+} |\int_{R^3_+} \phi_\zeta S_{\zeta, n'} dW_\zeta - \int_{R^3_+} \phi_\zeta S_{\zeta, n''} dW_\zeta| > \varepsilon \right\} \leq P \left\{ \inf_{R^3_+} S_{\zeta, n} = 1 \right\}
\]

and therefore by (2) of Lemma 1, \(\int_{R^3_+} \phi_\zeta S_{\zeta, n} dW_\zeta\) converges in probability uniformly to a continuous random function. Define this limit as the stochastic integral. In view of Proposition 4 of [8] the stochastic integral as defined here is for each \(z \in R^3_+\) a.s. equal to the one defined in [8]. Similar arguments hold for \(\int \int \phi dW dW'\) and \(\int \int \phi dW d\zeta'\).
Remark. In order to apply the argument of this note to prove the continuity (right-continuity) of $\int \phi \, dM$, $\int \phi \, dM \, dM$ when M is a continuous (right-continuous) martingale (§3), we have to justify the passage from (4) to (5) with $d\zeta$ replaced by $d[M]_\zeta$. In the one-parameter case this follows directly by considering the dual predictable projection of $\int y^\phi \, d[M]$ (Theorems V.31, V.17 and V.15 of [5]). Some partial results in this direction follow directly (for example, if $d[M]_\zeta = m_\zeta \, d\zeta$, and ϕ and m_ζ are \mathcal{F}_ζ-adapted), and it seems that in the general case this extension will become straightforward after the general theory of processes is extended to n-parameter processes.

References

