
Decomposition -A Strategy for

Query Processing

EUGENE WONG AND KAREL YOUSSEFI

University of California, Berkeley

Strategy for processing multivariable queries in the database management system INGRES is
considered. The general procedure is to decompose the query into a sequence of one-variable
queries by alternating between (a) reduction: breaking off components of the query which are
joined to it by a single variable, and (b) tuple substitution: substituting for one of the variables
a tuple at a time. Algorithms for reduction and for choosing the variable to be substituted are
given. In most cases the latter decision depends on estimation of costs; heuristic procedures
for making such estimates are outlined.

Key Words and Phrases: relational database, query processing, decomposition, tuple substi-
tution, detachment, joining (overlapping) variable, irreducible query, connected query, vari-
able selection
CR Categories: 3.50, 3.70, 4.3

1. INTRODUCTION

The structural simplicity of a relational data model encourages the use of a nonpro-
cedural data sublanguage which specifies what is to be found rather than how it is
to bc found. Thus it is not surprising that nearly cvrry one of the relational lan-
guages which have brcn proposed is nonprocedural. As is generally true with high
levrl languages, a price which may have to bc paid is a loss of efliciency. For a rela-
tional database of any size and for queries spanning scvcral relations t,he price can
bc fcarsomc. Results of various degrees of generality on improving search strategies
for a relational database system have been rcportcd by Palcrmo [6], Astrahan and
Chambcrlin [2], Rothnic [lo, 111, Pecherrr [7], Smith and Chang [12], and Todd
[14]. Koncthclcss the lack of a general approach to optimizing query processing
remains a major impediment to achieving a satisfactory degree of efficiency for
nonprocedural relational languages.

The purpose of this paper is to describe in some detail the query processing al-
gorithm drvrlopcd for QUEL [4], which is the data language for the INGRES sys-

copyright @ 1976, Association for Computing Machinery, Inc. General permission to repub-
lish, but not for profit, all or part of this material is granted provided that ACM’s copyright
notice is given and that reference is made to the publication, to its date of issue, and to the
fact that reprinting privileges were granted by permission of the Association for Computing
Machinery.
A version of this paper was presented at the ACM SIGMOD International Conference on
Management of Data, Washington, D.C., June 2-4, 1976.
This research was sponsored by the US Army Research Office-Durham under Grant, DAHC04-
74-GO087 and the Joint Services Electronics Program under Contract F44620-71-C-0087.
Authors’ address: Department of Electrical Engineering and Computer Sciences, Electronics
Research Laboratory, University of California, Berkeley, Berkeley, CA 94720.

.4CM Transactions on Database Systems, Vol. 1, No 3, September 1976, Pages 223-241.

224 9 E. Wong and K. Youssefi

tern. Insofar as the problems encountered in QUEL are common to all nonprocedural
relational languages, their solution should find general application.

In Section 2 a brief description of QUEL, the query language to be processed, is
presented. In Section 3 we sketch a skeletal outline of the decomposition algorithm
emphasizing the functions of the component algorithms and the flow of information
and control among them. The details of the component algorithms are presented in
subsequent sections.

2. QUEL

A complete definition of QUEL is given in [4]. Here we shall confine ourselves to a
brief description sufficient to make the processing strategy comprehensible. There
are four commands: RETRIEVE, REPLACE, DELETE, APPEND. An update
command is turned into a RETRIEVE command which is then followed by a low
level tuple-by-tuplc operation. WC shall restrict our attention to RETRIEVE. A
statement to retrieve in QUEL has the following form:

RANGE OF (Variable) IS (Relation)
RETRIEVE INTO Result-Name (Target-List) WHERE Qualification

Example 2.1. Consider a database with relations

Supplier (S#, Sname, City)
Parts (Pf, Pname, Size)
Supply (SP, P#, Quantity)

and a query to find the names of all parts supplied by suppliers in New York. This
can be stated in QUEL as follows:

RANGE OF (S,P,Y) IS (Supplier, Parts, Supply)
RETRIEVE INTO NYparts (P.Pname) WHERE (P.P#=Y.P#)

AND (Y.S.#=S.S#)
AND (S.City=‘New York’)

From the point of view of query processing there are two principal sources of
complexity. First, QUEL permits aggregation operators such as MAX and AVG
with nesting of such operators. Second, queries involving several variables require
deft handling in order to avoid the obvious possibility of combinatorial growth. For
example, if the query in Example 2.1 is processed by first forming a Cartesian product,
then the number of tuples to be scanned is equal to the product of the cardinalities
of the three relations. In our system all aggregations are performed on single rela-
tions. If an aggregation is to be done on a subset of the product of several relations,
the subset must first be assembled by processing a multivariablequery. Aggregations
once evaluated are kept for possible reuse until updates render them obsolete. In the
remainder of the paper wc shall deal only with aggregation-free queries, and the
thrust of the query processing strategy is to cope effectively with aggregation-free
but multivariable queries.

LetX= (X1,X2,..., X,) denote the variables declared in the range statement,
and let. R1, RB , . . . , R, be their respective ranges. Then the qualification can be
considered to be a boolean function B(X) on the Cartesian product R = R,. X Rz X
. . . X R, . The target list can be considered to be a set of functions (T,(X), Ts(X),
. . . , T,(X)) = T(X) on the product space, and the result relation of thequery is

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976.

Decomposition-A Strategy for Query Processing 225

constructed by evaluating T(X) on the subset of R defined by B.(X) = 1, and
eliminating duplicate tuples. We note that for a query free of aggregation opcra-
tors each tuple X in the product space R contains enough information to completely
determine the values of B(X) and T(.X).

The interpretation of QUEL statements suggests the following procedure for their
processing:

(a) Product: A Cartesian product of the range relation is formed.
(b) Restriction: Tuples X in the product which satisfy B(X) = 1 are deter-

mined.
(c) Computation and projection : T(X) is computed on the subset determined in

(b) and duplicate tuples are eliminated.

Unfortunately this procedure is as inefficient as it is obvious. The cardinality of the
product R, i.e. the number of tuples in R, is equal to the product of the cardinalities
of Ri, i = 1,2, . . . , n. It does not take very large relations or very many of them to
make this number enormous. Aside from the difficulty of having to form and store a
very large relation, to determine the subset which satisfies B(X) = 1 requires ex-
amining a number of tuples equal to the cardinality of R.

3. DECOMPOSITION

The query processing strategy that we have adopted has two overall objectives:
(a) No Cartesian product: The result relation is to be constructed by assembling

comparatively small pieces rather than by paring down the Cartesian product.
(b) No geometric growth: The number of tuples to be scanned is to be kept as

small as possible; for most queries this number is much less than the cardinality of
R.

Our general procedure is to reduce an arbitrary multivariable query to a sequence
of single-variable ones. We call this process decomposition. Observe that the first
objective is automatically achieved by such an approach. To attain the second re-
quires a detailed examination of the tactical moves which are available.

The decision to reduce multivariable queries to single-variable ones separates the
overall optimization into two levels. It has obvious advantages in structuring the
optimization procedure, which otherwise may well become unbearably complex.
The only situation in which our approach may be undesirable is when interrelational
information such as “links” [15] is available, in which case the desirable atomic
units may be two-variable queries.

It is useful to distinguish two types of operations which are repeatedly invoked in
decomposition :

(a) TupZe substitution : An n-variable query Q is replaced by a family of (n - 1) -
variable queries resulting from substituting for one of its variables tuple by tuple,
i.e.

Q(X,, Xz,. . . , Xn) --) {Q’dXz, X3,. . . , Xn), a E RI}.

(b) Detachment of a subquery with a single overlapping variable: A query Q is
replaced by Q’ followed by Q” such that Q’ and Q” have only a single variable in
common.

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976.

226 l E. Wong ond K. Youssefi

Operations of these two types suffice to decompose any query completely. Indeed,
a series of successive tuple substitutions is sufficient, albeit tantamount to forming
the Cartesian product. Tuple substitution for a single variable means that the cost of
processing the remaining portion of the query is multiplied by a factor which in
most cases is equal to the cardinality of the range of the substituted variable. It is
important, therefore, that the ranges of the variables be reduced as much as possible
before substitution takes place. The most straightforward way of doing this is
through restriction and projection, which are special cases of detachment. Some-
thing equivalent to such a step has been proposed in every paper on optimizing
query processing.

Example 3.1. Consider a database with three relations:

Suppher (Sf, Sname, City)
Parts (P#, Pname, Size)

Supply (S#, PP, Quantity)

and a query Q :

RANGE OF (S,P,Y) IS (Supplier, Parts, Supply)
RETRIEVE (S.Sname) WHERE (S.City=‘New York’)

AND (P.Pname=‘Bolt’)
AND (P.Size=20)
AND (Y.S#=S.S#)
AND (Y.P#=P.P#)
AND (Y.Quantity2200)

The first det.achment might be a restriction on Parts resulting in Q being replaced by

Ql RANGE OF (P) IS (Parts)
RETRIEVE INTO Parts1 (P.P#) WHERE (P.Pname=‘Bolt’)

AND (P.Size=20)
Q’ RANGE OF (S,P,Y) IS (Supplier, Partsl, Supply)

RETRIEVE (S.Sname) WHERE (S.City=‘New York’)
AND (Y.S#=S.S#)
AND (Y.P#=P.P#)
AND (Y.Quantity1200)

Let us represent this detachment by a binary tree:

Ql
Then the successive detachment operations on Q can be represented by

Q

E

Ql : (P.P#) WHERE (P.Size=20) AND (P.Pnnme=‘Bolt’)
Q2 : (Y.P#, Y.S#) WHERE (Y.Qnantity>BOO)

I (S.S# KSnnme) WHEIlF: (S.City=‘New York’)
;: : (KS;) WHERE’ (Y.P#=P.P#)

Q5 : (S.Sname) WHERE (Y.S#=S.S#)

In this example detachment operations have reduced Q to three one-variable queries
Ql, Q2, Q3 which can be processed in parallel or in arbitrary order, followed by a
two-variable query Q4 and then another two-variable query Q5. Q4 and Q5 cannot

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976

Decomposition-A Strategy for Query Processing l 227

be further reduced by detachment operations, and tuple substitution must be used
to complctc the decomposition. WC note, however, that the ranges of the variables
in Q4 and QS arc likely to bc very much smaller than the original relations, and
tuple substitution at these stages is relatively harmless. As an example of tuple
substitution, consider

Q5 : RETRIEVE (S.Sname) WHERE (Y.S#=S.S#)

Suppose that at this point the range of Y is the relation

SP

101

107

203

Then, successive substitut,ion of Y yields

Q5(101) : RETRIEVE (SSname) WHERE (S.S#=lOl)

Q5(107) : RETRIEVE (S.Sname) WHERE (S.S#=107)
Q5(203) : RETRIEVE (S.Sname) WHERE (S.S#=ZOS)

WC note that. unlike SEQUEL [2], QUEL has no sequential structure and there is no a
priori preferential order of substitution for the variables.

The general situation covered by the dctachmcnt operation is tho following: Con-
sider a query of thn form:

RANGE OF (X, , X2 , . . . , X,) IS (RI, Rz , . , R,)
Q RETRIEVE T(X, , XP , . . , X,)

WHERE B”(X1, X2 , , . . , X,)
AND B’(Xn , X,+1 , . . . , Xn)

It is natural to break off B’ to form

RANGE OF (X, , X,+1 , . , X,) IS (It,) Rm+l , , It,)
Q’ RETRIEVE INTO R,‘(T’(X,))

WHERE B’(X, , X,,, , . . , X,)

where T’(X,) contains the information on X,,, needed by the remainder of the query,
which can now be expressed as

RANGE OF (X, , X2, . . . , X,) IS (R, , 112, , R,‘)
Q” RETRIEVE T(X1 , Xz , . . . , X,)

WHERE B”(X~,Xz,...,Xm)

Observations: (1) Q” is necessarily simpler than the original query Q since m I
n and R,,’ is smaller than R, . Even for the worst possible cast where R:,,’ = R,,, and
m = n, Q” is no worse than Q. (2) The detachment of Q’ does not lead to an in-
crease in the maximum number of variables for which substitution has to be made.
To see this, note that the maximum number of variables to be substituted for in an
n-variable query is n - 1. Hence this number is (n - m + 1) - 1 for Q’ and m - 1
for Q” so that the total is again n - 1. (3) Q’ and Q” arc strictly ordered. Q’ needs
no information from Q” , so it can bc processed completely before processing on
Q” begins. At any given time wc only riced to deal with a total of n or less variables.

Two special cases of one-overlapping-variable subqueries are worthy of special
note. First it may happen that the detached subquery Q’ has no variable in common

ACM Transactions on Database Systems, Vol. 1, No. 3, Septenrhr 107G.

228 l E. Wong and K. Youssefi

with the remainder Q”. That is, B’ is a function of only (X,+1, . . . , X,) and not of
X, . In such a case WC say Q’ is a disjoint subquery. The interpretation of this situa-
tion is that if B’ is satisfied by a nonempty set, then Q is equivalent to Q”, other-
wise Q is itself void, i.e. its result is empty. The second special case arises when
m = n and B’ is a one-variable query. This is a frequent and important occurrence,
as the previous example illustrates. We say a query is connected if it has no disjoint
subquery, one-jree if it has no one-variable subquery, and irreducible if it has no
one-overlapping-variable subquery. An irreducible query is obviously both con-
nected and one-free.

Broadly speaking, we will always break up a query into irreducible components
before tuple substitution. In effect we will always prefer not to tuple substitute if we
can avoid or postpone it. Although examples can be constructed to show that such a
choice is not always optimal, in general this is not a bad heuristic. Detaching sub-
queries involves an additive growth in complexity, while tuple substitution incurs a
multiplicative growth. Our decomposition algorithm is recursively applied to all
the subqueries which are generated.

4. A DESCRIPTION OF THE ALGORITHM

The decomposition algorithm consists of four subalgorithms, reduction, subquery se-
quencing, tuple substitution, and variable selection, and makes use of the one-variable
processor of the system. The interaction among these component processes is indi-
cated in Figure 1. The fact that the decomposition algorithm is recursive is made
clear by the fact that decomposition calls itself. The basic functions of the subal-
gorithms are as follows :

(a) Reduction breaks up the query into irreducible components and puts them in a
certain sequential order.

(b) Subquery sequencing uses the result of reduction and generates in succession
subqueries each of which contains a single irreducible component together with one-
variable clauses. As each subquery is generated it is passed to tuple substitution,
and the generation of thenext subquery awaits return of the result.

(c) Tuple substitution manages the process of substituting tuple values. It calls
variable selection to select a single variable for substitution. After substituting each
tuple for that variable, it passes the resulting reduced query to Reduction and awaits
the return before substiMing the next value.

(d) Variable selection is where most of the optimization takes place. It estimates
the relative cost of substituting for each variable and chooses the variable with the
minimum estimated cost. In so doing, it may have to preprocess some one-variable
subqueries.

The details of the subalgorithms will be described in the next few sections.

4.1 Reduction Algorithm

The input consists of a multivariable query Q, and the output consists of the irre-
ducible components of Q arranged in an appropriate sequential order. This sequence
is passed to subquery sequencing, and the result relation for Q is returned. The
basic steps of the algorithm are illustrated in Figure 2.

Let, x = (X1 , XP) . . . , X,) denote the variables of Q and let T(X) and B(X)

ACM Transactions on Database Systema, Vol. 1, No. 3, September 1976.

Decomposition-A Strategy for Query Processing 229

(query)

subquery
sequencing

l-x-
l “O /&ore tudles in_

range of xi?

x---i yes

substitute
next tuple
value far

Fig. 1. Flow of control in decomposition

ll0

+ output to

-c sequence
+ subquer y -

sequencing

separate into
irreducible - =

components

Fig. 2. Reduction algorithm

ACM Transactions on Database Systims, Vol. 1, No. 3, September 1976.

230 l E. Wong and K. Youssefi

denote its target list and qualification, rcspcctivcly. We assume that B(X) is ex-
pressed in conjunctive normal form

B(X) = p C;(X),

where each clause Ci(X) contains only disjunctions. Now consider a binary (0 or 1)
matrix with p + 1 rows corresponding to T(X) and the p clauses, and with n col-
umns corresponding to the variables X1 , . . . , X, . An entry of 1 denotes the prcs-
ence of a variable in a clause (or target list), and 0 denotes its absence. We call this
the incidence matrix. For Example 3.1 this matrix is given by

s P Y
T: S.Sname 1 0 0
Cl: S.City =‘New York’ 1 0 0
C2: P.Pname=‘Bolt’ 0 1 0
C3: PSize=20 0 1 0
c4: Y.S#=S.S# 1 0 1
c5: Y.P#=P.P# 0 1 1
C6: Y.Quantity2200 0 0 1

yes Yes
w connected

yes
. not connected

no

i : i+l

form the logical or
of 011 rows with I
in column i

I

of the rows with I in column i,
replace the first by the logical
or. ond delete the rest

1

Fig. 3. Connectivity

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976.

Decomposition-A Strategy for Query Processing 231

We note that in Figure 1 thcrc are two steps for which detailed algorithms remain
to be provided. First we need a test for connectedness and to separate Q into dis-
joint components if it is not connected. Second wc need an algorithm to separate a
connected query into irreducible components and to put them in a suitable scqucn-
tial order.

(a) Connectivity algorithm. If the connectivity algorithm (Figure 3) results in a
matrix with a single row which is not all l’s, then the variables corresponding to the
zero entries are superfluous and can be eliminated. If the final matrix has more than
one row, then the sets of variables corresponding to different rows must be disjoint.
If we keep track of the original rows which are combined to make up each of the
rows of the final matrix, then the connected components of the query can be sepa-
rated.

Consider Example 3.1, modified by the deletion of C4. The incidence matrix now
has the form:

S P Y
T 100
Cl 1 0 0
c2 0 1 0
c3 0 1 0
c5 0 1 1
C6 0 0 1

Applying the connectivity algorithm, we get successively:

s P Y
T, Cl 1 0 0
c2 0 1 0
c3 0 1 0
c5 0 1 1
C6 0 0 1

S P Y
T, Cl 1 0 0
c2, c3, c5 0 1 1
C6 0 0 1

s P Y
T, Cl 1 0 0
C2, C3, C5, C6 0 1 1

Hence the query is not connected and the connected components are (T, Cl) and
(C2, C3, C5, C6).

(b) Reduction into irreducible components. Let Q be a connected multivariable
query. WC observe that it is reducible if the elimination of any one variable results in
Q being disconnected. Let a variable with this property be called a joi&ng variable.
Thus, Q is irreducible if and only if none of its variables is a joining variable. Join-
ing variables have some important properties which greatly facilitate the reduction
algorithm, and these are summarized as follows:

PROPOSITION 4.1. Suppose that X is ajoining variable of Q such that its removal dis-
connects Q into k connected components. Then any joining variable of one of the com-
ponents is a joining variable of Q, and every joining variable of Q is a joining variable of

ACM Transactions on Database Systems. Vol. 1, No. 3, September 1976.

232 l E. Wong and K. Youssefi

one of the components. Further, successive elimination of two joining variables in
either order results in reducing Q to the same disjoint components.

PROOF. Each joining variable joins a number of components which can overlap
only on the joining variable. Let X be a joining variable of Q which joins components

&I , Qz , . . . , Qk. Let Y be a joining variable of one of these components, say &I.
Then Y joins components Q1l, Q12, . . . , Qlj of &I, only one of which can contain
X, say &II. Therefore, (Qu , . . . , Qlj) overlaps the remainder of Q only on Y, and
Y is a joining variable of Q. Conversely, let Y be a joining variable of Q, and join
components QI’, Qz’, . . . , Qj’, Only one of the set (&I’, Qz’, . . . , Qj’) can contain X,
say &II, and only one of the set (&I , Qz , . . . , Qk) can contain Y, say Q1 . Then
1&z’, . . . , Qj’) and iQ2 , . . . , Qk} must be disjoint since each Qi , i 2 2, can over-
lap its remainder in Q only on X an’d none of i&2’, . . . , Qj’} contains X. Hence,
Qi, . . * 7 Qj’ are subsets of Q1 joined to it only by Y, so that Y is a joining variable
of Qi. It is clear that Q has components {Qz, Q3, . . . , Qk} each joined by only
X i&z’, &3/, . . . , Qj’) each joined by only Y, and Qx, joined by both X and

Y. Elimination of X and Y in tither order results in disjoint components {& ,

&3, . . .) &k , &ql, * * . , &j’, Qxy}, where Qi denotes Qi with X removed, &i’ de-

notes Qi’ with Y removed, and axy denotes Qxy with both X and Y removed.
The substance of Proposition 4.1 is illustrated by Figure 4.
The results of Proposition 4.1 mean that we can find the irreducible components

of Q by successively checking each variable for the possibility of its being a joining
variable. Each variable only needs to be examined once, and the order of testing is
immaterial. Further, since a variable is joining if and only if its elimination discon-
nects Q, we can use the connectivity algorithm for the test.

Take the incidence matrix of Q and eliminate from it all rows with only a single
1. Beginning with the first, eliminate each column in turn and test for connectedness.
Suppose that when column m is eliminated Q breaks up into k connected compon-
ents with nl , n2 , . . , , nk variables, respectively. Then these correspond to com-
ponents of Q with nl + 1, n2 + 1,. . . , nk + 1 variables, respectively, any pair of
which overlap only on X, . We can now proceed to test columns m + 1, . . . , n. We
note that each of the variables Xm+r , . . , , X, occur in only one of the components
so that after the m-th column (i.e. the first joining variable) the tests are performed
on matrices of reduced size.

Each irreducible component of Q corresponds to one or more rows of the incidence
matrix and can bc represented by the “logical or” of the corresponding rows. Hence
Q can bc represented in terms of its irreducible components by a matrix with vari-
ables as columns and components as rows. We shall call this the reduced-incidence
matrix. It is convenient to arrange the rows as follows:

(1) One-variable rows except the target list.
(2) Components which arc one-overlapping after deletion of one-variable clauses

.j++g

Fig. 4. Joining variables

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976.

Decomposition-A Strategy for Query Processing 233

and which do not contain the target list. These should be grouped according to the
joining variable.

(3) Other components which do not contain the target list.
(4) The component which contains the target list.

For Example 3.1 the resulting reduced incidence matrix is given by:

S P Y
Cl 1 0 0
c2 0 1 0
c3 0 1 0
C6 0 0 1
c5 0 11
T. C4 1 0 1

4.2 Subquery Sequencing

The task of this program is simple. It receives the output of Reduction and forms a
subquery by taking the component corresponding to the first multivariable row of
the reduced-incidence matrix and combining it with all one-variable clauses in the
same variables. It deletes the rows which have been used and passes the subquery to
Tuple Substitution. Upon return of the result of the subquery, it repeats the process
on the remaining matrix until the matrix is exhausted and the result of Q is returned.
It then returns the result of Q to the calling program.

For Example 3.1 the subqueries which get gcncratcd are as follows:

Ql : C2, C3,C6, C5
Q2 : Cl, C4, T

More explicitly, we have

Ql : RANGE OF (P,Y) IS (Parts, Supply)
RETRIEVE INTO Supply1 (Y.S#) WHERE (P.Pname=‘Bolt’)

AND (P.Size=20)
AND (Y.Quantity1200)
AND (Y.P#=P.P#)

Q2 : RANGE OF (S,Y) IS (Supplier, Supplyl)
RETRIEVE (S.Sname) WHERE (S.City=LNew York’)

AND (Y.S#= S.S#)

4.3 Tuple Substitution

The input to tuplc substitution is a query Q consisting of a single irreducible com-
ponent in variables X1 , XZ ,, X, , zero or more one-variable clauses in each of
the variables, and the range relations RI, Rz , . . . , R, of the variables. It returns
the result relation to the calling program.

The first thing that tuple substitution does is to call variable selection which
takes Q and the range relations and chooses a variable to be substituted for. In
order to make this choice it may have to process some or all of the one-variable
clauses to restrict the ranges. Thus, in general, it returns {Q’, R{, Rz’, . . . , R,,‘j
and the variable to bc substituted for (say X,). For each tuple n! in R,‘, Q’ be-
comes an (n - 1)-variable query Q’(a) in the variables X1 , XZ , . . . , X,-l . For
each (Y, Q’(a) is passed to reduction, which returns the result. The results to
Q’(a) for all QI in R,,’ are accumulated and returned to the calling program.

ACM Transactions on Database Systems, Vol. 1, No. 3. September 1976.

234 8 E. Wong and K. Youssefi

5. VARIABLE SELECTION

This is the heart of optimization. The input is a multivariable query which is irre-
ducible except for one-variable clauses. As its name suggests, the task of this portion
of the decomposition algorithm is to select a variable for substitution, although to
do so it may also have to process some of the one-variable clauses.

Consider a query Q with variables X1 , XZ , . . . , X, and ranges R1 , RZ , . . . , R, .
Suppose that Xi is substituted tuple by tuple. For each tuple Q becomes an (n - l)-
variable query &i(a). It is likely that &i(a) takes the same amount of time to
process for every a:, and in most instances every (Y in Ri has to be used. Hence the
cost of processing Q if Xi is substituted is equal to

(cardinality of Ri) X cost of processing Qi. (5.1)

Therefore the first thought is to choose Xi with the smallest range. However this is
not optimal for several reasons.

First, it may be possible to reduce some or all of the relations R1 , Rz , . . . , R, ,
by preprocessing one-variable clauses. Should this bc done for all, for some, or for
none of the variables? If all of the Ri can be reduced, this decision alone involves
2” choices. The situation is further complicated by the fact that for a given variable
the decision as to whether to preprocess the one-variable clauses depends on whether
the variable is chosen for substitution. If it is to be chosen for substitution, then its
range should be reduced as much as possible. If not, preprocessing may be a waste of
time. On the other hand, which variable should be chosen depends not so much on
Ri as on the reduced Ri . Let Q(Xi) denote the one-variable subquery of Q in Xi
and let Ri’ be the reduced range after Q(Xi) is processed. The following policies
seem to be reasonable alternatives:

(a) Preprocess every Q(Xi), basing the policy on the argument that the cost of
processing one-variable queries is relatively small and it is important to choose the
variable for substitution well.

(b) On the basis of &(X,)9 decide for each variable whether to preprocess or not.
Variable selection takes place after preprocessing.

The version of INGRES completed in January 1976 uses policy (a), partly be-
cause the variable selection is then based solely on the cardinalities of the reduced
ranges. It is important, therefore, for these cardinalities to be accurate

For (b) a workable policy is to use Q(Xi) to estimate the size of R[for each i,
and preprocess only if Xi is likely to bc a contender for selection. For example, we
might choose the top three contenders for preprocessing, or preprocess every vari-
able for which the estimated size of Ri’ is less than mini Rj 1% One good feature of
(b) is that except for very unusual situations, the actual variable selected will be
among those which have been preprocessed, and no further processing is necessary
before substitution.

A second and more important objection to the strategy of choosing Xi with the
smallest range is that the complexity of Qi can vary greatly with i, and this must be
taken into account in any strategy which lays claim to being even near-optimal.
What must be determined is the extent to which Q can be reduced as a consequence
of substituting for Xi .

Assume that we choose either (a) or (b) for the policy on preprocessing one-

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976.

Decomposition-A Strategy for Query Processing 235

variable clauses so that that decision is decoupled from the selection of variable. WC
can assume that the query at this point consists of a single irreducible component
with some one-variable clauses. The crux of the matter is how the irreducible com-
ponent is affected by the substitution. Assume that whatever preprocessing is to be
done has been done. Let the query be denoted by Q. Let X1 , XZ , . . . , X, be the
variables, and let R1 , Rz , . . . , R,, be their ranges. Let &i(a) denote the resulting
query from substituting (Y for Xi in Q. Let C(Q) denote the minimum cost of pro-
cessing Q. Then - _

C(Q) = mF(%, C CC&i(a)))
1

(5.2)

where fii denotes the set of tuple values which have to bc substituted for Xi . In
most instances this is simply Ri , although as we indicated earlier there are excep-
tions.

Equation (5.2) is a dynamic programming equation for the optimization problem
at hand. As it stands, it is not too useful, since how C(Q) depends on Q is not known.
However, (5.2) is a suitable starting point for optimization. The variable selected
will correspond to the value of i which minimizes an estimated value for

Ci = C C(Qi(a)>- (5.3)
rrciii

Although we have in effect transferred the optimization problem to one of estimating
cost, the latter is amenable to a variety of heuristic approaches. Consider some of
these :

(a) Suppose we take the estimate of C(Qi(a)) to be independent of LY and i.
Then the minimum Ci corresponds to the smallest Ri. This somewhat simplistic
policy is what has been implemented in the version of INGRES operational as of
January 1976.

(b) We observe that unlike Q, &i(a) is not irreducible. One should therefore call
reduction-subquery-sequencing to reduce &i(a) to a sequence Si of subqueries,
each of which is irreducible except for one-variable clauses. Now, Q(enters the sub-
queries only as a parameter, and the sequence Si is really independent of (Y. Thus we
have

C(Qi(a>) = qIZ,C(q=). (5.4)
o! I

Since the structure of &i(a) has now been represented, we can accept a relatively
crude estimate for C(qol). For example, we might take the estimate of C(q,) to be

C(qJ = II P(Rj),
j

(5.5)

where Rj are the ranges of q and P(R) is the number of pages occupied by R.
(c) We might try to obtain an estimate for cost by sampling. Consider the

equation obtained from using (5.2):

C(Q) = yin (5.6)

This is truly recursive, since Q and q, are queries of the same restricted type (viz. ir-
reducible except for one-variable clauses). If the number of variables in Q is not
enormous (in practice very few queries contain more than four or five variables),
one might try to push the recursion (5.6) all the way down to one-variable queries,

ACM Transactions on Database Systems, Vol. 1. No. 3, September 1976.

236 l E. Wong and K. Youssefi

but using small samples for the range relations of Q. It is very likely that the costs of
different paths in the decision tree vary widely, and only a few arc contenders for the
optimal path. With efficient management, this approach need not be prohibitively
expensive.

These are but three possible approaches to estimating C(Q). Other approaches
including some variants and combinations of these are under consideration. WC
expect to implement at least the three outlined above for experimental evaluation.
Indeed, (a) has been implemented, and (b) is in the process of being implemented.

In order to use (5.5) in (5.4)) we must know the number of pages oucupied by the
range relations for every q in the sequence Si . We note that Si is a sequence and not
a set, so that the range relation of a query may involve the result relations of queries
which precede it. Therefore knowing the sizes of the range relations of Q is not
sufficient to determine (5.5) for the q, . Since we don’t want to execute the sequence
Si except for the optimal i, we must rely on a procedure to estimate the sizes and
other parameters of the result relation for a query.

Consider a query Q with range relations RI, Rt , . . . , R, , a target list T(X), and
a qualification B(X). Let the domains of Ri be denoted by Dii, j = 1: 2,. . . , di.
Each Ri is by definition a subset of nj<diDij. Hence, the product n Ri is a subset
of

D = n n Dij.
i<n j_<di

(5.7)

To determine what subset of fiRi satisfies B(X) = 1 requires accesses to the actual
relations, but to determine what subset of D satisfies B(X) = 1 only requires know-
ing the domains (Dij] . The storage required to represent {Dij) is in general far less
than that required for { Ri) ,

Let R(Q) dcnotc the result relation of Q. WC can estimate the cardinality of
R(Q) as:

IR(Q)I=I~RiI.If t rat ion of D satisfying B(X) = 1). (5.8)

The domains of R(Q) can be estimated by evaluating T(X) on the subset of D
which satisfied B(X) = 1. That is, the k-th domain of R(Q) is estimated to bc

{Tk(x); x ED, B(X) = I). (5.9)

In most cases Dii has sufficient regularity to permit it to be represented by just a
few parameters. For example, Dij might be simply all integers between a and b. Thus
the storage requirement for keeping track of the domains for the result relations of
the sequence Si can be expected to be reasonable.

Since the sizes of the tuples are always known, the number of pages required for
each of the result relations for the sequence can bc computed from the estimated
(5.8)) which in turn is computed from the estimated domains using (5.9).

6. SUMMARY

In this paper we have presented a detailed account of how multivariable queries are
decomposed in system INGRES. The basic ingredients of the decomposition are
two: (a) to discover pieces of a query which are joined to the remainder by a single

ACM Transactiona on Database Systems, Vol. 1, No. 3, September 1976.

Decomposition-A Strategy for Query Processing l 237

joining variable, and (b) to substitute for a variable. The overall strategy is to
break up a query at the joining variables whcncver this is possible, and to select a
variable for substitution which incurs a “minimum cost” whcnevcr substitution can
no longer br postponrd. A detailed algorithm for rc>ducing a query into irreducible
components has been given. Altcrnativcl approacht>s to rstimating costs have also
bcc>n discussed.

Optimization itself incurs a cost which has not been taken into consideration. For
simple queries elaborate optimization may well do more harm than good. We have
chosen an approach suggested by Stoncbrakcr to rcsolvc this. Suppose that we have
two or more strategies sto , str , . . . , St,, , each one being better than the previous one
but also requiring a greater overhead. Suppose we begin a query on sto , and run it
for an amount of time equal to a fraction of the estimated overhead of stl . At the
end of that time, by simply counting the number of tuples of the first substitution
variable which have already been proccsscd, we can get an estimate for the total
processing time using sto . If this is significantly greater than the overhead of stl ,
then we switch to str . Otherwise we stay and complete processing the query using
sto . Obviously the procedure can be repcatcd on str , to call stz if necessary, etc. For
example, st, may correspond to progressively more levels in the decision tree, or to
progressively more elaborate estimates of result parameters, or to better sampling.

We have not addressed the question of optimizing the processing of one-variable
queries. Some optimization is currently being done in INGRES, and this is described
elsewhere [131.

In Appendix A we give a brief description of how INGRES is implemented. The
original design of the implementation was primarily the work of Stonebraker and
Held. Redesign of the third process and in particular the design of the query tree
and the implementation of the decomposition algorithm in the current version (as of
January 1976) have been largely the work of Peter Kreps. In Appendix B are specifi-
cations for the principal data structures needed for our decomposition algorithm.

One of us (E.W.) is responsible for introducing the conceptual framework in
which the decomposition algorithm rests, viz. the policy of transforming a multi-
variable query to one-dimensional ones, and the strategy of alternating between re-
duction and tuplc substitution. We have collaborated on the reduction algorithm,
and on the heuristics for variable selection. The implementation of the full al-
gorithm as well as monitoring subsystems for the performance evaluation is being
designed and executed by K.A.Y. The decomposition algorithm, being at the heart
of INGRES, has enjoyed the attention of many participants of the project. It is
difficult to remember who suggcstcd what, but the three aforementioned colleagues
have all made important contributions. In particular, as in every aspect of INGRES,
the influcncc of Stoncbrakcr is discernible throughout our algorithm.

APPENDIX A. SYSTEM ORGANIZATION

INGRES, Interactive Graphics and Retrieval System, runs on a PDP 11/45 under
the UNIX operating system [8]. The cntirc system is written in the programming
language C [9]. It has four major components, which are organized as shown in
Figure 5. These four components are set up as processes under UNIX and communi-
cate through the USC of pipes. The user interface can be one of several forms: an in-

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976.

238 . E. Wong and K. Youssefi

teractive text editor, a graphics interface [.5], an interactive English-like language
[3], or part of a host programmin g language [l]. The parser accepts the user’s
query and processes it into a tree in conjunctiva normal form. This query tree and
a table of relations declared in the RANGE statcmcnts are passed to decomposition.
The decomposition process contains not only the decomposition algorithm but
also the one-variable query processor. The utilities process contains many
functions which can bc used by the system or the user.

APPENDIX 6. DATA STRUCTURES

There are three main data structures which arc used during decomposition of a query.
Range table. Some of the information for this structure is gathered during parsing

and passed to decomposition as an ordered matrix. It is then put into a matrix, each
entry of which has the following form :

struct rangev
1 char relid [MAXNAME] ;

struct descriptor *desp;
int setup;

The parser sends a table of relation names which have been declared in RASGE
statements; the order of these names indicates the variable associated with each.
These are relid. The second entry is a pointer to an in-core copy of the system cata-
loguc description for that relation. The third entry is a flag which is set when the
corresponding variable has been selected for substitution.

The USC of this table aids decomposition in the use of temporary relations. When
a new range is created for a variable by execution of a one-variable query, the entry
in the range table for that entry is the same except for the pointer to the catalogue
description. The relid is always the original relation name for that variable and the
descriptor is for the current subrelation it is ranging over. In this way if a temporary
relation must be created several times during the process of substitution, the same
temporary relation name and descriptor can be reused by simply deleting the old
tuples from the previous iteration. This saves much overhead in the creation of
temporary relations.

Incidence matrix. This is a binary matrix of clauses (or subquerics) versus vari-
ables lvhich is used within decomposition to represent the query currently under
consideration. It is used during reduction to determine all irreducible subqueries
and can bc used during selection to represent the component subqucries in a com-
pact form. This matrix also contains an entry for each clause which points to the
actual clause so that it may be easily obtained when it is necessary to build a query
tree for execution of a subqucry.

Query tree. The parser sends a list representing the query tree to decomposition,
which then rebuilds the query tree adding useful information as it is recognized. The
general form of this tree is a root node with the target list of the query as the left

ACM Tran,wctions on Database Systems, Vol. I, No. 3, September 1976

Decomposition-A Strategy for Query Processing 239

branch and the qualification as the right branch. Since the query is in conjunctive
normal form, all the intermediate nodes along the right side will be AND (conjunc-
tion) nodes.

Root

tl
Element2

,,A*,,,
Fkmentl

END

More specifically, nodes of the tree are defined as:

struct querytree
(struct querytree *left, *right;

struct symbol sym;

I

where left and right are the pointers to the respective branches. The second entry
defines the structure within the node and this varies depending on the type of node.

For nodes representing arithmetic operators, disjunctions (OR), result domains,
and constants, the structure is:

struct symbol
1 char type;

char len;
int value[I;

where type is a code representing the type of the node (i.e. plus, minus, OR, etc.) and
len is the length in bytes of value. Value is a variable length field (O-255 bytes) and
contains the appropriate value for that type of node. For example, if the node is
representing a constant then the value contains the actual constant. For nodes rep-
resenting variable. attribute (e.g. E.SALARY) the structure is:

struct symbol
f char type;

char len;
char varno, attno;
char frmt, frml;
char *valptr;

1

where type is the same as above and len is fixed. varno is an index into the range
table for the correct variable; attno is the domain number (from the system cata-
loguc) of the correct domain referenced; and frmt and frml give the format of the
attribute (e.g. A6,12, etc.). This is used to determine new domain types and for cal-
culations. The last entry is used during tuple substitution. If a particular variable
is selected for substitution, all variable. attribute nodes involving that variable will
become nodes representing constants. But the tree itself need not be changed. This

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976.

240 . E. Wong and K. Youssefi

field, valptr, is simply set to point to the constant value that should be used. This
position remains fixed so when a new tuple value is substituted the pointer does not
change; only the value it is pointing to changes. In this way a new tree is not needed
for each level of substitution or for each iteration of substitution values. If the pointer
is zero, the variable information is used; if it is nonzero, it is a constant node.

For nodes representing the root or conjunctions (AND), the structure is:

struct symbol
I char type;

char len;
char tvarc;
char lvarc;
int lvarm;
int rvarm;

I

where type is the same and len is fixed. tvarc and lvarc are both counts of the vari-
ables used; tvarc is the number of variables in the subtree below this node; and
lvarc is the number of variables in the left branch. So for the root node, tvarc is the
total number of variables in the query and lvarc is the number of variables in the
target list. For an AND node tvarc is the number of variables in the remaining
clauses and lvarc is the number of variables in the single clause of its left branch.
lvarm and rvarm are bit maps of the variables used in the left and right branches of
the node, respectively.

This structure is not as costly as it might appear. It is true that during decom-
position many subqueries are created and executed many times, but it should be
noted that all of these subqueries use clauses which appear in the original query.
The target lists may change, but no new clauses are ever created except through
substitution. Since this is true, when a subquery is to be executed a query tree can be
constructed using nodes from the original tree. A new root node must be created for
each subquery and for some target list nodes? but all the AND nodes can simply be
detached from the original query tree and added to the new query tree.

REFERENCES

1. ALLMAN, E., AND STONEBRAKER, M. Embedding a relational data sub-language in a general
purpose programming language. ERL Mem. No. M564, Electronics Research Lab., U. of
California, Berkeley, Calif., Oct. 1974.

2. ASTRAHAN, M.M., AND CHAMBERLIN, D.D. Implementation of a structured English query
language. Comm. ACM 18, 10 (Oct. 1975), 580-588.

3. CODD, E.F. Seven steps to rendezvous with the casual user. Proc. IFIP TC-2 Working
Conf. on Data Base Management Systems, Cargese, Corsica, April 1974.

4. HELD, G.D., STONEBRAKER, M., AND WONG, E. INGRES-a relational data base manage-
ment system. Proc. AFIPS 1975 NCC, Vol. 44, AFIPS Press, Montvale, N.J., pp. 409-416.

5. MCDONALD, N., AND STONEBRAKER, M. Cupid-the friendly query language. ERL Mem.
No. M487, Electronics Research Lab., U. of California, Berkeley, Calif., Oct. 1974.

6. PALERMO, E.P. A data base search problem. Proc. 4th Int. Symp. on Computers and In-
formation Science, Miami Beach, Fla., Dec. 1972.

7. PECHERER, R.M. Efficient evaluation of expressions in a relational algebra. Proc. ACM
Pacific 75 Conf., April 1975, pp. 4449.

8. RITCH~E, D., AND THOMPSON, K. The UNIX time sharing system. Comm. ACM f7,7 (July
1974)) 365-375.

9. RITCHIE, D.M. C Reference Manual. UNIX Programmer’s Manual, Bell Telephone Labs,
Murray Hill, N.J., July 1974.

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976.

Decomposition-A Strategy for Query Processing l 241

10. ROTHNIE, J.B. An approach to implementing a relational data base management system.
Proc. 1974 ACM-SIGFIDET Workshop on Data Description, Access and Control, Ann
Arbor, Mich., May 1974.

11. ROTHNIE, J.B. Evaluating inter-entry retrieval expressions in a relational data base man-
agement system. Proc. AFIPS 1975 NCC, Vol. 44, AFIPS Press, Montvale, N.J., pp. 417-
423.

12. SMITH, J.M., AND CHANG, P.Y.T. Optimizing the performance of a relational algebra
database interface. Comm. AClM 18, 10 (Oct. 1975), 568-579.

13. STONEBRAKER, M., WONG, E., KREPS, P., AND HELD, G. The design and implementation
of INGRES. ACM Trans. on Database Systems 1, 3 (Sept. 1976), 189-222 (this issue).

14. TODD, S. PRTV: An efficient implementation for large relational data bases. Proc. Int.
Conf. on Very Large Data Bases, Framingham, Mass., Sept. 1975, pp. 554-556. (Available
from ACM, New York).

15. TSICHRITZIS, D. A network framework for relational implementation. Rep. CSRG-51,
Computer Systems Research Group, U. of Toronto, Toronto, Ont., Canada, Feb. 1975.

Received December 1975; revised April 1976

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976.

