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1. INTRODUCTION 

The structural simplicity of a relational data model encourages the use of a nonpro- 
cedural data sublanguage which specifies what is to be found rather than how it is 
to bc found. Thus it is not surprising that nearly cvrry one of the relational lan- 
guages which have brcn proposed is nonprocedural. As is generally true with high 
levrl languages, a price which may have to bc paid is a loss of efliciency. For a rela- 
tional database of any size and for queries spanning scvcral relations t,he price can 
bc fcarsomc. Results of various degrees of generality on improving search strategies 
for a relational database system have been rcportcd by Palcrmo [6], Astrahan and 
Chambcrlin [2], Rothnic [lo, 111, Pecherrr [7], Smith and Chang [12], and Todd 
[14]. Koncthclcss the lack of a general approach to optimizing query processing 
remains a major impediment to achieving a satisfactory degree of efficiency for 
nonprocedural relational languages. 

The purpose of this paper is to describe in some detail the query processing al- 
gorithm drvrlopcd for QUEL [4], which is the data language for the INGRES sys- 
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224 9 E. Wong and K. Youssefi 

tern. Insofar as the problems encountered in QUEL are common to all nonprocedural 
relational languages, their solution should find general application. 

In Section 2 a brief description of QUEL, the query language to be processed, is 
presented. In Section 3 we sketch a skeletal outline of the decomposition algorithm 
emphasizing the functions of the component algorithms and the flow of information 
and control among them. The details of the component algorithms are presented in 
subsequent sections. 

2. QUEL 

A complete definition of QUEL is given in [4]. Here we shall confine ourselves to a 
brief description sufficient to make the processing strategy comprehensible. There 
are four commands: RETRIEVE, REPLACE, DELETE, APPEND. An update 
command is turned into a RETRIEVE command which is then followed by a low 
level tuple-by-tuplc operation. WC shall restrict our attention to RETRIEVE. A 
statement to retrieve in QUEL has the following form: 

RANGE OF (Variable) IS (Relation) 
RETRIEVE INTO Result-Name (Target-List) WHERE Qualification 

Example 2.1. Consider a database with relations 

Supplier (S#, Sname, City) 
Parts (Pf, Pname, Size) 
Supply (SP, P#, Quantity) 

and a query to find the names of all parts supplied by suppliers in New York. This 
can be stated in QUEL as follows: 

RANGE OF (S,P,Y) IS (Supplier, Parts, Supply) 
RETRIEVE INTO NYparts (P.Pname) WHERE (P.P#=Y.P#) 

AND (Y.S.#=S.S#) 
AND (S.City=‘New York’) 

From the point of view of query processing there are two principal sources of 
complexity. First, QUEL permits aggregation operators such as MAX and AVG 
with nesting of such operators. Second, queries involving several variables require 
deft handling in order to avoid the obvious possibility of combinatorial growth. For 
example, if the query in Example 2.1 is processed by first forming a Cartesian product, 
then the number of tuples to be scanned is equal to the product of the cardinalities 
of the three relations. In our system all aggregations are performed on single rela- 
tions. If an aggregation is to be done on a subset of the product of several relations, 
the subset must first be assembled by processing a multivariablequery. Aggregations 
once evaluated are kept for possible reuse until updates render them obsolete. In the 
remainder of the paper wc shall deal only with aggregation-free queries, and the 
thrust of the query processing strategy is to cope effectively with aggregation-free 
but multivariable queries. 

LetX= (X1,X2,..., X,) denote the variables declared in the range statement, 
and let. R1, RB , . . . , R, be their respective ranges. Then the qualification can be 
considered to be a boolean function B(X) on the Cartesian product R = R,. X Rz X 
. . . X R, . The target list can be considered to be a set of functions (T,(X), Ts(X), 
. . . , T,(X)) = T(X) on the product space, and the result relation of thequery is 
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constructed by evaluating T(X) on the subset of R defined by B.(X) = 1, and 
eliminating duplicate tuples. We note that for a query free of aggregation opcra- 
tors each tuple X in the product space R contains enough information to completely 
determine the values of B(X) and T(.X). 

The interpretation of QUEL statements suggests the following procedure for their 
processing: 

(a) Product: A Cartesian product of the range relation is formed. 
(b) Restriction: Tuples X in the product which satisfy B(X) = 1 are deter- 

mined. 
(c) Computation and projection : T(X) is computed on the subset determined in 

(b) and duplicate tuples are eliminated. 

Unfortunately this procedure is as inefficient as it is obvious. The cardinality of the 
product R, i.e. the number of tuples in R, is equal to the product of the cardinalities 
of Ri, i = 1,2, . . . , n. It does not take very large relations or very many of them to 
make this number enormous. Aside from the difficulty of having to form and store a 
very large relation, to determine the subset which satisfies B(X) = 1 requires ex- 
amining a number of tuples equal to the cardinality of R. 

3. DECOMPOSITION 

The query processing strategy that we have adopted has two overall objectives: 
(a) No Cartesian product: The result relation is to be constructed by assembling 

comparatively small pieces rather than by paring down the Cartesian product. 
(b) No geometric growth: The number of tuples to be scanned is to be kept as 

small as possible; for most queries this number is much less than the cardinality of 
R. 

Our general procedure is to reduce an arbitrary multivariable query to a sequence 
of single-variable ones. We call this process decomposition. Observe that the first 
objective is automatically achieved by such an approach. To attain the second re- 
quires a detailed examination of the tactical moves which are available. 

The decision to reduce multivariable queries to single-variable ones separates the 
overall optimization into two levels. It has obvious advantages in structuring the 
optimization procedure, which otherwise may well become unbearably complex. 
The only situation in which our approach may be undesirable is when interrelational 
information such as “links” [15] is available, in which case the desirable atomic 
units may be two-variable queries. 

It is useful to distinguish two types of operations which are repeatedly invoked in 
decomposition : 

(a) TupZe substitution : An n-variable query Q is replaced by a family of (n - 1) - 
variable queries resulting from substituting for one of its variables tuple by tuple, 
i.e. 

Q(X,, Xz,. . . , Xn) --) {Q’dXz, X3,. . . , Xn), a E RI}. 

(b) Detachment of a subquery with a single overlapping variable: A query Q is 
replaced by Q’ followed by Q” such that Q’ and Q” have only a single variable in 
common. 
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Operations of these two types suffice to decompose any query completely. Indeed, 
a series of successive tuple substitutions is sufficient, albeit tantamount to forming 
the Cartesian product. Tuple substitution for a single variable means that the cost of 
processing the remaining portion of the query is multiplied by a factor which in 
most cases is equal to the cardinality of the range of the substituted variable. It is 
important, therefore, that the ranges of the variables be reduced as much as possible 
before substitution takes place. The most straightforward way of doing this is 
through restriction and projection, which are special cases of detachment. Some- 
thing equivalent to such a step has been proposed in every paper on optimizing 
query processing. 

Example 3.1. Consider a database with three relations: 

Suppher (Sf, Sname, City) 
Parts (P#, Pname, Size) 

Supply (S#, PP, Quantity) 

and a query Q : 

RANGE OF (S,P,Y) IS (Supplier, Parts, Supply) 
RETRIEVE (S.Sname) WHERE (S.City=‘New York’) 

AND (P.Pname=‘Bolt’) 
AND (P.Size=20) 
AND (Y.S#=S.S#) 
AND (Y.P#=P.P#) 
AND (Y.Quantity2200) 

The first det.achment might be a restriction on Parts resulting in Q being replaced by 

Ql RANGE OF (P) IS (Parts) 
RETRIEVE INTO Parts1 (P.P#) WHERE (P.Pname=‘Bolt’) 

AND (P.Size=20) 
Q’ RANGE OF (S,P,Y) IS (Supplier, Partsl, Supply) 

RETRIEVE (S.Sname) WHERE (S.City=‘New York’) 
AND (Y.S#=S.S#) 
AND (Y.P#=P.P#) 
AND (Y.Quantity1200) 

Let us represent this detachment by a binary tree: 

Ql 
Then the successive detachment operations on Q can be represented by 

Q 

E 

Ql : (P.P#) WHERE (P.Size=20) AND (P.Pnnme=‘Bolt’) 
Q2 : (Y.P#, Y.S#) WHERE (Y.Qnantity>BOO) 

I (S.S# KSnnme) WHEIlF: (S.City=‘New York’) 
;: : (KS;) WHERE’ (Y.P#=P.P#) 

Q5 : (S.Sname) WHERE (Y.S#=S.S#) 

In this example detachment operations have reduced Q to three one-variable queries 
Ql, Q2, Q3 which can be processed in parallel or in arbitrary order, followed by a 
two-variable query Q4 and then another two-variable query Q5. Q4 and Q5 cannot 
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be further reduced by detachment operations, and tuple substitution must be used 
to complctc the decomposition. WC note, however, that the ranges of the variables 
in Q4 and QS arc likely to bc very much smaller than the original relations, and 
tuple substitution at these stages is relatively harmless. As an example of tuple 
substitution, consider 

Q5 : RETRIEVE (S.Sname) WHERE (Y.S#=S.S#) 

Suppose that at this point the range of Y is the relation 

SP 

101 

107 

203 

Then, successive substitut,ion of Y yields 

Q5(101) : RETRIEVE (SSname) WHERE (S.S#=lOl) 

Q5(107) : RETRIEVE (S.Sname) WHERE (S.S#=107) 
Q5(203) : RETRIEVE (S.Sname) WHERE (S.S#=ZOS) 

WC note that. unlike SEQUEL [2], QUEL has no sequential structure and there is no a 
priori preferential order of substitution for the variables. 

The general situation covered by the dctachmcnt operation is tho following: Con- 
sider a query of thn form: 

RANGE OF (X, , X2 , . . . , X,) IS (RI, Rz , . , R,) 
Q RETRIEVE T(X, , XP , . . , X,) 

WHERE B”(X1, X2 , , . . , X,) 
AND B’(Xn , X,+1 , . . . , Xn) 

It is natural to break off B’ to form 

RANGE OF (X, , X,+1 , . , X,) IS (It, ) Rm+l , , It,) 
Q’ RETRIEVE INTO R,‘(T’(X,)) 

WHERE B’(X, , X,,, , . . , X,) 

where T’(X,) contains the information on X,,, needed by the remainder of the query, 
which can now be expressed as 

RANGE OF (X, , X2, . . . , X,) IS (R, , 112, , R,‘) 
Q” RETRIEVE T(X1 , Xz , . . . , X,) 

WHERE B”(X~,Xz,...,Xm) 

Observations: (1) Q” is necessarily simpler than the original query Q since m I 
n and R,,’ is smaller than R, . Even for the worst possible cast where R:,,’ = R,,, and 
m = n, Q” is no worse than Q. (2) The detachment of Q’ does not lead to an in- 
crease in the maximum number of variables for which substitution has to be made. 
To see this, note that the maximum number of variables to be substituted for in an 
n-variable query is n - 1. Hence this number is (n - m + 1) - 1 for Q’ and m - 1 
for Q” so that the total is again n - 1. (3) Q’ and Q” arc strictly ordered. Q’ needs 
no information from Q” , so it can bc processed completely before processing on 
Q” begins. At any given time wc only riced to deal with a total of n or less variables. 

Two special cases of one-overlapping-variable subqueries are worthy of special 
note. First it may happen that the detached subquery Q’ has no variable in common 
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with the remainder Q”. That is, B’ is a function of only (X,+1, . . . , X,) and not of 
X, . In such a case WC say Q’ is a disjoint subquery. The interpretation of this situa- 
tion is that if B’ is satisfied by a nonempty set, then Q is equivalent to Q”, other- 
wise Q is itself void, i.e. its result is empty. The second special case arises when 
m = n and B’ is a one-variable query. This is a frequent and important occurrence, 
as the previous example illustrates. We say a query is connected if it has no disjoint 
subquery, one-jree if it has no one-variable subquery, and irreducible if it has no 
one-overlapping-variable subquery. An irreducible query is obviously both con- 
nected and one-free. 

Broadly speaking, we will always break up a query into irreducible components 
before tuple substitution. In effect we will always prefer not to tuple substitute if we 
can avoid or postpone it. Although examples can be constructed to show that such a 
choice is not always optimal, in general this is not a bad heuristic. Detaching sub- 
queries involves an additive growth in complexity, while tuple substitution incurs a 
multiplicative growth. Our decomposition algorithm is recursively applied to all 
the subqueries which are generated. 

4. A DESCRIPTION OF THE ALGORITHM 

The decomposition algorithm consists of four subalgorithms, reduction, subquery se- 
quencing, tuple substitution, and variable selection, and makes use of the one-variable 
processor of the system. The interaction among these component processes is indi- 
cated in Figure 1. The fact that the decomposition algorithm is recursive is made 
clear by the fact that decomposition calls itself. The basic functions of the subal- 
gorithms are as follows : 

(a) Reduction breaks up the query into irreducible components and puts them in a 
certain sequential order. 

(b) Subquery sequencing uses the result of reduction and generates in succession 
subqueries each of which contains a single irreducible component together with one- 
variable clauses. As each subquery is generated it is passed to tuple substitution, 
and the generation of thenext subquery awaits return of the result. 

(c) Tuple substitution manages the process of substituting tuple values. It calls 
variable selection to select a single variable for substitution. After substituting each 
tuple for that variable, it passes the resulting reduced query to Reduction and awaits 
the return before substiMing the next value. 

(d) Variable selection is where most of the optimization takes place. It estimates 
the relative cost of substituting for each variable and chooses the variable with the 
minimum estimated cost. In so doing, it may have to preprocess some one-variable 
subqueries. 

The details of the subalgorithms will be described in the next few sections. 

4.1 Reduction Algorithm 

The input consists of a multivariable query Q, and the output consists of the irre- 
ducible components of Q arranged in an appropriate sequential order. This sequence 
is passed to subquery sequencing, and the result relation for Q is returned. The 
basic steps of the algorithm are illustrated in Figure 2. 

Let, x = (X1 , XP ) . . . , X,) denote the variables of Q and let T(X) and B(X) 
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(query) 
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Fig. 1. Flow of control in decomposition 
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Fig. 2. Reduction algorithm 
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denote its target list and qualification, rcspcctivcly. We assume that B(X) is ex- 
pressed in conjunctive normal form 

B(X) = p C;(X), 

where each clause Ci(X) contains only disjunctions. Now consider a binary (0 or 1) 
matrix with p + 1 rows corresponding to T(X) and the p clauses, and with n col- 
umns corresponding to the variables X1 , . . . , X, . An entry of 1 denotes the prcs- 
ence of a variable in a clause (or target list), and 0 denotes its absence. We call this 
the incidence matrix. For Example 3.1 this matrix is given by 

s P Y 
T: S.Sname 1 0 0 
Cl: S.City =‘New York’ 1 0 0 
C2: P.Pname=‘Bolt’ 0 1 0 
C3: PSize=20 0 1 0 
c4: Y.S#=S.S# 1 0 1 
c5: Y.P#=P.P# 0 1 1 
C6: Y.Quantity2200 0 0 1 

yes Yes 
w connected 

yes 
. not connected 

no 

i : i+l 

form the logical or 
of 011 rows with I 
in column i 

I 

of the rows with I in column i, 
replace the first by the logical 
or. ond delete the rest 

1 

Fig. 3. Connectivity 
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We note that in Figure 1 thcrc are two steps for which detailed algorithms remain 
to be provided. First we need a test for connectedness and to separate Q into dis- 
joint components if it is not connected. Second wc need an algorithm to separate a 
connected query into irreducible components and to put them in a suitable scqucn- 
tial order. 

(a) Connectivity algorithm. If the connectivity algorithm (Figure 3) results in a 
matrix with a single row which is not all l’s, then the variables corresponding to the 
zero entries are superfluous and can be eliminated. If the final matrix has more than 
one row, then the sets of variables corresponding to different rows must be disjoint. 
If we keep track of the original rows which are combined to make up each of the 
rows of the final matrix, then the connected components of the query can be sepa- 
rated. 

Consider Example 3.1, modified by the deletion of C4. The incidence matrix now 
has the form: 

S P Y 
T 100 
Cl 1 0 0 
c2 0 1 0 
c3 0 1 0 
c5 0 1 1 
C6 0 0 1 

Applying the connectivity algorithm, we get successively: 

s P Y 
T, Cl 1 0 0 
c2 0 1 0 
c3 0 1 0 
c5 0 1 1 
C6 0 0 1 

S P Y 
T, Cl 1 0 0 
c2, c3, c5 0 1 1 
C6 0 0 1 

s P Y 
T, Cl 1 0 0 
C2, C3, C5, C6 0 1 1 

Hence the query is not connected and the connected components are (T, Cl) and 
(C2, C3, C5, C6). 

(b) Reduction into irreducible components. Let Q be a connected multivariable 
query. WC observe that it is reducible if the elimination of any one variable results in 
Q being disconnected. Let a variable with this property be called a joi&ng variable. 
Thus, Q is irreducible if and only if none of its variables is a joining variable. Join- 
ing variables have some important properties which greatly facilitate the reduction 
algorithm, and these are summarized as follows: 

PROPOSITION 4.1. Suppose that X is ajoining variable of Q such that its removal dis- 
connects Q into k connected components. Then any joining variable of one of the com- 
ponents is a joining variable of Q, and every joining variable of Q is a joining variable of 
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one of the components. Further, successive elimination of two joining variables in 
either order results in reducing Q to the same disjoint components. 

PROOF. Each joining variable joins a number of components which can overlap 
only on the joining variable. Let X be a joining variable of Q which joins components 

&I , Qz , . . . , Qk. Let Y be a joining variable of one of these components, say &I. 
Then Y joins components Q1l, Q12, . . . , Qlj of &I, only one of which can contain 
X, say &II. Therefore, (Qu , . . . , Qlj) overlaps the remainder of Q only on Y, and 
Y is a joining variable of Q. Conversely, let Y be a joining variable of Q, and join 
components QI’, Qz’, . . . , Qj’, Only one of the set (&I’, Qz’, . . . , Qj’) can contain X, 
say &II, and only one of the set (&I , Qz , . . . , Qk) can contain Y, say Q1 . Then 
1&z’, . . . , Qj’) and iQ2 , . . . , Qk} must be disjoint since each Qi , i 2 2, can over- 
lap its remainder in Q only on X an’d none of i&2’, . . . , Qj’} contains X. Hence, 
Qi, . . * 7 Qj’ are subsets of Q1 joined to it only by Y, so that Y is a joining variable 
of Qi. It is clear that Q has components {Qz, Q3, . . . , Qk} each joined by only 
X i&z’, &3/, . . . , Qj’) each joined by only Y, and Qx, joined by both X and 

Y. Elimination of X and Y in tither order results in disjoint components {& , 

&3, . . . ) &k , &ql, * * . , &j’, Qxy}, where Qi denotes Qi with X removed, &i’ de- 

notes Qi’ with Y removed, and axy denotes Qxy with both X and Y removed. 
The substance of Proposition 4.1 is illustrated by Figure 4. 
The results of Proposition 4.1 mean that we can find the irreducible components 

of Q by successively checking each variable for the possibility of its being a joining 
variable. Each variable only needs to be examined once, and the order of testing is 
immaterial. Further, since a variable is joining if and only if its elimination discon- 
nects Q, we can use the connectivity algorithm for the test. 

Take the incidence matrix of Q and eliminate from it all rows with only a single 
1. Beginning with the first, eliminate each column in turn and test for connectedness. 
Suppose that when column m is eliminated Q breaks up into k connected compon- 
ents with nl , n2 , . . , , nk variables, respectively. Then these correspond to com- 
ponents of Q with nl + 1, n2 + 1,. . . , nk + 1 variables, respectively, any pair of 
which overlap only on X, . We can now proceed to test columns m + 1, . . . , n. We 
note that each of the variables Xm+r , . . , , X, occur in only one of the components 
so that after the m-th column (i.e. the first joining variable) the tests are performed 
on matrices of reduced size. 

Each irreducible component of Q corresponds to one or more rows of the incidence 
matrix and can bc represented by the “logical or” of the corresponding rows. Hence 
Q can bc represented in terms of its irreducible components by a matrix with vari- 
ables as columns and components as rows. We shall call this the reduced-incidence 
matrix. It is convenient to arrange the rows as follows: 

(1) One-variable rows except the target list. 
(2) Components which arc one-overlapping after deletion of one-variable clauses 

.j++g 

Fig. 4. Joining variables 
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and which do not contain the target list. These should be grouped according to the 
joining variable. 

(3) Other components which do not contain the target list. 
(4) The component which contains the target list. 

For Example 3.1 the resulting reduced incidence matrix is given by: 

S P Y 
Cl 1 0 0 
c2 0 1 0 
c3 0 1 0 
C6 0 0 1 
c5 0 11 
T. C4 1 0 1 

4.2 Subquery Sequencing 

The task of this program is simple. It receives the output of Reduction and forms a 
subquery by taking the component corresponding to the first multivariable row of 
the reduced-incidence matrix and combining it with all one-variable clauses in the 
same variables. It deletes the rows which have been used and passes the subquery to 
Tuple Substitution. Upon return of the result of the subquery, it repeats the process 
on the remaining matrix until the matrix is exhausted and the result of Q is returned. 
It then returns the result of Q to the calling program. 

For Example 3.1 the subqueries which get gcncratcd are as follows: 

Ql : C2, C3,C6, C5 
Q2 : Cl, C4, T 

More explicitly, we have 

Ql : RANGE OF (P,Y) IS (Parts, Supply) 
RETRIEVE INTO Supply1 (Y.S#) WHERE (P.Pname=‘Bolt’) 

AND (P.Size=20) 
AND (Y.Quantity1200) 
AND (Y.P#=P.P#) 

Q2 : RANGE OF (S,Y) IS (Supplier, Supplyl) 
RETRIEVE (S.Sname) WHERE (S.City=LNew York’) 

AND (Y.S#= S.S#) 

4.3 Tuple Substitution 

The input to tuplc substitution is a query Q consisting of a single irreducible com- 
ponent in variables X1 , XZ , . . . ., X, , zero or more one-variable clauses in each of 
the variables, and the range relations RI, Rz , . . . , R, of the variables. It returns 
the result relation to the calling program. 

The first thing that tuple substitution does is to call variable selection which 
takes Q and the range relations and chooses a variable to be substituted for. In 
order to make this choice it may have to process some or all of the one-variable 
clauses to restrict the ranges. Thus, in general, it returns {Q’, R{, Rz’, . . . , R,,‘j 
and the variable to bc substituted for (say X,). For each tuple n! in R,‘, Q’ be- 
comes an (n - 1 )-variable query Q’(a) in the variables X1 , XZ , . . . , X,-l . For 
each (Y, Q’(a) is passed to reduction, which returns the result. The results to 
Q’(a) for all QI in R,,’ are accumulated and returned to the calling program. 
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5. VARIABLE SELECTION 

This is the heart of optimization. The input is a multivariable query which is irre- 
ducible except for one-variable clauses. As its name suggests, the task of this portion 
of the decomposition algorithm is to select a variable for substitution, although to 
do so it may also have to process some of the one-variable clauses. 

Consider a query Q with variables X1 , XZ , . . . , X, and ranges R1 , RZ , . . . , R, . 
Suppose that Xi is substituted tuple by tuple. For each tuple Q becomes an (n - l)- 
variable query &i(a). It is likely that &i(a) takes the same amount of time to 
process for every a:, and in most instances every (Y in Ri has to be used. Hence the 
cost of processing Q if Xi is substituted is equal to 

(cardinality of Ri) X cost of processing Qi. (5.1) 

Therefore the first thought is to choose Xi with the smallest range. However this is 
not optimal for several reasons. 

First, it may be possible to reduce some or all of the relations R1 , Rz , . . . , R, , 
by preprocessing one-variable clauses. Should this bc done for all, for some, or for 
none of the variables? If all of the Ri can be reduced, this decision alone involves 
2” choices. The situation is further complicated by the fact that for a given variable 
the decision as to whether to preprocess the one-variable clauses depends on whether 
the variable is chosen for substitution. If it is to be chosen for substitution, then its 
range should be reduced as much as possible. If not, preprocessing may be a waste of 
time. On the other hand, which variable should be chosen depends not so much on 
Ri as on the reduced Ri . Let Q(Xi) denote the one-variable subquery of Q in Xi 
and let Ri’ be the reduced range after Q(Xi) is processed. The following policies 
seem to be reasonable alternatives: 

(a) Preprocess every Q(Xi), basing the policy on the argument that the cost of 
processing one-variable queries is relatively small and it is important to choose the 
variable for substitution well. 

(b) On the basis of &(X,)9 decide for each variable whether to preprocess or not. 
Variable selection takes place after preprocessing. 

The version of INGRES completed in January 1976 uses policy (a), partly be- 
cause the variable selection is then based solely on the cardinalities of the reduced 
ranges. It is important, therefore, for these cardinalities to be accurate 

For (b) a workable policy is to use Q(Xi) to estimate the size of R[ for each i, 
and preprocess only if Xi is likely to bc a contender for selection. For example, we 
might choose the top three contenders for preprocessing, or preprocess every vari- 
able for which the estimated size of Ri’ is less than mini Rj 1% One good feature of 
(b) is that except for very unusual situations, the actual variable selected will be 
among those which have been preprocessed, and no further processing is necessary 
before substitution. 

A second and more important objection to the strategy of choosing Xi with the 
smallest range is that the complexity of Qi can vary greatly with i, and this must be 
taken into account in any strategy which lays claim to being even near-optimal. 
What must be determined is the extent to which Q can be reduced as a consequence 
of substituting for Xi . 

Assume that we choose either (a) or (b) for the policy on preprocessing one- 
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variable clauses so that that decision is decoupled from the selection of variable. WC 
can assume that the query at this point consists of a single irreducible component 
with some one-variable clauses. The crux of the matter is how the irreducible com- 
ponent is affected by the substitution. Assume that whatever preprocessing is to be 
done has been done. Let the query be denoted by Q. Let X1 , XZ , . . . , X, be the 
variables, and let R1 , Rz , . . . , R,, be their ranges. Let &i(a) denote the resulting 
query from substituting (Y for Xi in Q. Let C(Q) denote the minimum cost of pro- 
cessing Q. Then - _ 

C(Q) = mF(%, C CC&i(a)) ) 
1 

(5.2) 

where fii denotes the set of tuple values which have to bc substituted for Xi . In 
most instances this is simply Ri , although as we indicated earlier there are excep- 
tions. 

Equation (5.2) is a dynamic programming equation for the optimization problem 
at hand. As it stands, it is not too useful, since how C(Q) depends on Q is not known. 
However, (5.2) is a suitable starting point for optimization. The variable selected 
will correspond to the value of i which minimizes an estimated value for 

Ci = C C(Qi(a)>- (5.3) 
rrciii 

Although we have in effect transferred the optimization problem to one of estimating 
cost, the latter is amenable to a variety of heuristic approaches. Consider some of 
these : 

(a) Suppose we take the estimate of C(Qi(a)) to be independent of LY and i. 
Then the minimum Ci corresponds to the smallest Ri. This somewhat simplistic 
policy is what has been implemented in the version of INGRES operational as of 
January 1976. 

(b) We observe that unlike Q, &i(a) is not irreducible. One should therefore call 
reduction-subquery-sequencing to reduce &i(a) to a sequence Si of subqueries, 
each of which is irreducible except for one-variable clauses. Now, Q( enters the sub- 
queries only as a parameter, and the sequence Si is really independent of (Y. Thus we 
have 

C(Qi(a>) = qIZ,C(q=). (5.4) 
o! I 

Since the structure of &i(a) has now been represented, we can accept a relatively 
crude estimate for C(qol). For example, we might take the estimate of C(q,) to be 

C(qJ = II P(Rj), 
j 

(5.5) 

where Rj are the ranges of q and P(R) is the number of pages occupied by R. 
(c) We might try to obtain an estimate for cost by sampling. Consider the 

equation obtained from using (5.2): 

C(Q) = yin (5.6) 

This is truly recursive, since Q and q, are queries of the same restricted type (viz. ir- 
reducible except for one-variable clauses). If the number of variables in Q is not 
enormous (in practice very few queries contain more than four or five variables), 
one might try to push the recursion (5.6) all the way down to one-variable queries, 
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but using small samples for the range relations of Q. It is very likely that the costs of 
different paths in the decision tree vary widely, and only a few arc contenders for the 
optimal path. With efficient management, this approach need not be prohibitively 
expensive. 

These are but three possible approaches to estimating C(Q). Other approaches 
including some variants and combinations of these are under consideration. WC 
expect to implement at least the three outlined above for experimental evaluation. 
Indeed, (a) has been implemented, and (b) is in the process of being implemented. 

In order to use (5.5) in (5.4)) we must know the number of pages oucupied by the 
range relations for every q in the sequence Si . We note that Si is a sequence and not 
a set, so that the range relation of a query may involve the result relations of queries 
which precede it. Therefore knowing the sizes of the range relations of Q is not 
sufficient to determine (5.5) for the q, . Since we don’t want to execute the sequence 
Si except for the optimal i, we must rely on a procedure to estimate the sizes and 
other parameters of the result relation for a query. 

Consider a query Q with range relations RI, Rt , . . . , R, , a target list T(X), and 
a qualification B(X). Let the domains of Ri be denoted by Dii, j = 1: 2,. . . , di. 
Each Ri is by definition a subset of nj<diDij. Hence, the product n Ri is a subset 
of 

D = n n Dij. 
i<n j_<di 

(5.7) 

To determine what subset of fiRi satisfies B(X) = 1 requires accesses to the actual 
relations, but to determine what subset of D satisfies B(X) = 1 only requires know- 
ing the domains (Dij] . The storage required to represent {Dij) is in general far less 
than that required for { Ri) , 

Let R(Q) dcnotc the result relation of Q. WC can estimate the cardinality of 
R(Q) as: 

IR(Q)I=I~RiI.If t rat ion of D satisfying B(X) = 1). (5.8) 

The domains of R(Q) can be estimated by evaluating T(X) on the subset of D 
which satisfied B(X) = 1. That is, the k-th domain of R(Q) is estimated to bc 

{Tk(x); x ED, B(X) = I). (5.9) 

In most cases Dii has sufficient regularity to permit it to be represented by just a 
few parameters. For example, Dij might be simply all integers between a and b. Thus 
the storage requirement for keeping track of the domains for the result relations of 
the sequence Si can be expected to be reasonable. 

Since the sizes of the tuples are always known, the number of pages required for 
each of the result relations for the sequence can bc computed from the estimated 
(5.8)) which in turn is computed from the estimated domains using (5.9). 

6. SUMMARY 

In this paper we have presented a detailed account of how multivariable queries are 
decomposed in system INGRES. The basic ingredients of the decomposition are 
two: (a) to discover pieces of a query which are joined to the remainder by a single 
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joining variable, and (b) to substitute for a variable. The overall strategy is to 
break up a query at the joining variables whcncver this is possible, and to select a 
variable for substitution which incurs a “minimum cost” whcnevcr substitution can 
no longer br postponrd. A detailed algorithm for rc>ducing a query into irreducible 
components has been given. Altcrnativcl approacht>s to rstimating costs have also 
bcc>n discussed. 

Optimization itself incurs a cost which has not been taken into consideration. For 
simple queries elaborate optimization may well do more harm than good. We have 
chosen an approach suggested by Stoncbrakcr to rcsolvc this. Suppose that we have 
two or more strategies sto , str , . . . , St,, , each one being better than the previous one 
but also requiring a greater overhead. Suppose we begin a query on sto , and run it 
for an amount of time equal to a fraction of the estimated overhead of stl . At the 
end of that time, by simply counting the number of tuples of the first substitution 
variable which have already been proccsscd, we can get an estimate for the total 
processing time using sto . If this is significantly greater than the overhead of stl , 
then we switch to str . Otherwise we stay and complete processing the query using 
sto . Obviously the procedure can be repcatcd on str , to call stz if necessary, etc. For 
example, st, may correspond to progressively more levels in the decision tree, or to 
progressively more elaborate estimates of result parameters, or to better sampling. 

We have not addressed the question of optimizing the processing of one-variable 
queries. Some optimization is currently being done in INGRES, and this is described 
elsewhere [ 131. 

In Appendix A we give a brief description of how INGRES is implemented. The 
original design of the implementation was primarily the work of Stonebraker and 
Held. Redesign of the third process and in particular the design of the query tree 
and the implementation of the decomposition algorithm in the current version (as of 
January 1976) have been largely the work of Peter Kreps. In Appendix B are specifi- 
cations for the principal data structures needed for our decomposition algorithm. 

One of us (E.W.) is responsible for introducing the conceptual framework in 
which the decomposition algorithm rests, viz. the policy of transforming a multi- 
variable query to one-dimensional ones, and the strategy of alternating between re- 
duction and tuplc substitution. We have collaborated on the reduction algorithm, 
and on the heuristics for variable selection. The implementation of the full al- 
gorithm as well as monitoring subsystems for the performance evaluation is being 
designed and executed by K.A.Y. The decomposition algorithm, being at the heart 
of INGRES, has enjoyed the attention of many participants of the project. It is 
difficult to remember who suggcstcd what, but the three aforementioned colleagues 
have all made important contributions. In particular, as in every aspect of INGRES, 
the influcncc of Stoncbrakcr is discernible throughout our algorithm. 

APPENDIX A. SYSTEM ORGANIZATION 

INGRES, Interactive Graphics and Retrieval System, runs on a PDP 11/45 under 
the UNIX operating system [8]. The cntirc system is written in the programming 
language C [9]. It has four major components, which are organized as shown in 
Figure 5. These four components are set up as processes under UNIX and communi- 
cate through the USC of pipes. The user interface can be one of several forms: an in- 
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teractive text editor, a graphics interface [.5], an interactive English-like language 
[3], or part of a host programmin g language [l]. The parser accepts the user’s 
query and processes it into a tree in conjunctiva normal form. This query tree and 
a table of relations declared in the RANGE statcmcnts are passed to decomposition. 
The decomposition process contains not only the decomposition algorithm but 
also the one-variable query processor. The utilities process contains many 
functions which can bc used by the system or the user. 

APPENDIX 6. DATA STRUCTURES 

There are three main data structures which arc used during decomposition of a query. 
Range table. Some of the information for this structure is gathered during parsing 

and passed to decomposition as an ordered matrix. It is then put into a matrix, each 
entry of which has the following form : 

struct rangev 
1 char relid [MAXNAME] ; 

struct descriptor *desp; 
int setup; 

The parser sends a table of relation names which have been declared in RASGE 
statements; the order of these names indicates the variable associated with each. 
These are relid. The second entry is a pointer to an in-core copy of the system cata- 
loguc description for that relation. The third entry is a flag which is set when the 
corresponding variable has been selected for substitution. 

The USC of this table aids decomposition in the use of temporary relations. When 
a new range is created for a variable by execution of a one-variable query, the entry 
in the range table for that entry is the same except for the pointer to the catalogue 
description. The relid is always the original relation name for that variable and the 
descriptor is for the current subrelation it is ranging over. In this way if a temporary 
relation must be created several times during the process of substitution, the same 
temporary relation name and descriptor can be reused by simply deleting the old 
tuples from the previous iteration. This saves much overhead in the creation of 
temporary relations. 

Incidence matrix. This is a binary matrix of clauses (or subquerics) versus vari- 
ables lvhich is used within decomposition to represent the query currently under 
consideration. It is used during reduction to determine all irreducible subqueries 
and can bc used during selection to represent the component subqucries in a com- 
pact form. This matrix also contains an entry for each clause which points to the 
actual clause so that it may be easily obtained when it is necessary to build a query 
tree for execution of a subqucry. 

Query tree. The parser sends a list representing the query tree to decomposition, 
which then rebuilds the query tree adding useful information as it is recognized. The 
general form of this tree is a root node with the target list of the query as the left 
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branch and the qualification as the right branch. Since the query is in conjunctive 
normal form, all the intermediate nodes along the right side will be AND (conjunc- 
tion) nodes. 

Root 

tl 
Element2 

,,A*,,, 
Fkmentl 

END 

More specifically, nodes of the tree are defined as: 

struct querytree 
( struct querytree *left, *right; 

struct symbol sym; 

I 

where left and right are the pointers to the respective branches. The second entry 
defines the structure within the node and this varies depending on the type of node. 

For nodes representing arithmetic operators, disjunctions (OR), result domains, 
and constants, the structure is: 

struct symbol 
1 char type; 

char len; 
int value[ I; 

where type is a code representing the type of the node (i.e. plus, minus, OR, etc.) and 
len is the length in bytes of value. Value is a variable length field (O-255 bytes) and 
contains the appropriate value for that type of node. For example, if the node is 
representing a constant then the value contains the actual constant. For nodes rep- 
resenting variable. attribute (e.g. E.SALARY) the structure is: 

struct symbol 
f char type; 

char len; 
char varno, attno; 
char frmt, frml; 
char *valptr; 

1 

where type is the same as above and len is fixed. varno is an index into the range 
table for the correct variable; attno is the domain number (from the system cata- 
loguc) of the correct domain referenced; and frmt and frml give the format of the 
attribute (e.g. A6,12, etc.). This is used to determine new domain types and for cal- 
culations. The last entry is used during tuple substitution. If a particular variable 
is selected for substitution, all variable. attribute nodes involving that variable will 
become nodes representing constants. But the tree itself need not be changed. This 
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field, valptr, is simply set to point to the constant value that should be used. This 
position remains fixed so when a new tuple value is substituted the pointer does not 
change; only the value it is pointing to changes. In this way a new tree is not needed 
for each level of substitution or for each iteration of substitution values. If the pointer 
is zero, the variable information is used; if it is nonzero, it is a constant node. 

For nodes representing the root or conjunctions (AND), the structure is: 

struct symbol 
I char type; 

char len; 
char tvarc; 
char lvarc; 
int lvarm; 
int rvarm; 

I 

where type is the same and len is fixed. tvarc and lvarc are both counts of the vari- 
ables used; tvarc is the number of variables in the subtree below this node; and 
lvarc is the number of variables in the left branch. So for the root node, tvarc is the 
total number of variables in the query and lvarc is the number of variables in the 
target list. For an AND node tvarc is the number of variables in the remaining 
clauses and lvarc is the number of variables in the single clause of its left branch. 
lvarm and rvarm are bit maps of the variables used in the left and right branches of 
the node, respectively. 

This structure is not as costly as it might appear. It is true that during decom- 
position many subqueries are created and executed many times, but it should be 
noted that all of these subqueries use clauses which appear in the original query. 
The target lists may change, but no new clauses are ever created except through 
substitution. Since this is true, when a subquery is to be executed a query tree can be 
constructed using nodes from the original tree. A new root node must be created for 
each subquery and for some target list nodes? but all the AND nodes can simply be 
detached from the original query tree and added to the new query tree. 
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