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On the Statistical Theory of Optimum Demodulation* , 

J. B. THOMAS?, MEMBER, IRE, AND E. WONGt, MEMBER, IRE 

Summary-The multidimensional demodulation problem is 
considered from the point of view of statistical estimation theory 
and a posteriori most probable signal estimates are derived. Cor- 
related signals and noises are treated. This formulation yields a 
set of two matrix integral equations which must be solved for the 
optimum estimates. 

For amplitude modulation, the problem reduces to that of finding 
a set of time varying filters which are, again, solutions to a matrix 
integral equation. Special cases such as two-receiver systems, 
quadrature modulation, and single-sideband have particularly 
simple representations and are considered in some detail. 

A 

N interesting problem in statistical communication 
theory is the LLoptimum” estimation of modulated 
intelligence in the presence of additive noise. For 

linear forms of modulation, the problem is essentially that 
of linear nonstationary filtering, and application of the 
minimum mean-squared error criterion leads to a reason- 
ably simple integral equation.1’2 Similarly, for nonlinear 
modulations, e.g., I?M, PM, etc., minimum mean-squared 
error nonlinear filtering theory can be applied.” However, 
even with simplifying restrictions,4 the resulting math- 
ematics is formidable and not usually amendable to 
explicit solutions. The methods of statistical estimation 
theory have been used to obtain a posteriori most probable 
estimates of generally modulated Gaussian signals in 
Gaussian noise.’ This treatment results in two integral 
equations which specify the optimum receiver. 

An extension of such estimation techniques to the 
multidimensional case is considered here. This extension 
treats the reception of more than one waveform, the 
estimation of more than one signal, and the case where 
signals and noises are correlated. 

FORMULATION 

The USC of a posteriori most probable estimation is dis- 
cussed in detail in the literature.“-’ It suffices to state 
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here that, given the received waveforms, those signals are 
chosen as estimates which have the greatest conditional 
likelihood of occurrence. 

Let the received waveforms be 

P(u) = fi[d(u), u] + 7ql.h)) t-T<u<& (1) 

where f(u), ?%[a(~), u], d(u), and ii(u) are column vectors; 

e.g., 

(2) 

Here, d(u) represents the modulating signals and a(u), 
additive noises. The components of both d(u) and $2~) 
are assumed to be correlated Gaussian time series with 
zero means. The vector fi[ti(u), u] is a general modulation 
function whose form depends on the modulating scheme. 
It is assumed that this modulation function is differentiable 
with respect to the elements a#(u). 

In general, the noise vector s(u) will have q components, 
as will *[d(u), u]. The signal vector a(u) will be taken to 
have Ic components where lc and (1 are not necessarily 
related. 

The problem is to find the set of a,(u), denoted by 
a;(U), such that the conditional probability p(d/~) is a 
maximum. Let the joint probability p(ii, fi, f) be written 

p(iz, +i, F) = p[(a, fi)/F]p@) = p[r/qa, fi)]p(a, 73 @I 

where ~(6, ii, 7) is the probability of the simultaneous 
realizations of T(U), B(U) and ii(u) in the interval t - 
T < u 5 t, and a similar definition holds for the other 
terms. Eq. (3) may be rewritten 

If it is noted that 

p[(f/(b, ii>] = S[Fi - (1: - 772)]> 

where s(a) is the Dirac delta-function, then 

(5) 

Eq. (6) was obtained by integrating both sides of (4) with 
respect to ii and using the relationship of (1). l?or a given 
set of received waveforms, ~(7) is a conslant; therefore, 

&i/F) = Ic,p[&, (r - 77i)]* (3 
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It is desired to maximize this expression with respect to 
the elements of 6. 

ANALYSIS t 
Define C.?(U) to be a column vector 

and t,he associated covariance function matrix R(u, V) 
with elements 

E&L, v) k E~ziiu)x~(v) ] (9) 

where E ( ] indicates the expectation of the bracketted 
quantity. It is apparent that R(u, v) can be partitioned as 

R(u, v) = . 
(10) 

It is convenient to use a multidimensional expansion 
recently introduced,’ and to write 

where cp,(u) is a column vector of p + lc components, 

[m 1 

(12) 

If the g,(u) are the vector eigenfunctions of the matrix 
integral equation 

&IL) = x I R(u, v)+(v) dv, t-T<u<t, (13) t--T 

t#hen it can be shown’ that these vectors up, are orthog- 
onal in the sense that, after normalization 

and that the coefficients o(, are uncorrelated, i.e., 

1 
E {cyP~, ) = - 6,,. 

hJ 
(15) 

Since the conditional probability p(~~/f) is proportional 
to the joint probability of the components of Z(U), 

P(fm - exp (-+ g ^,G). (161 

Therefore, in order to maximize p(a/~), it is sufficient to 
minimize the quantity czCl A,&. It is shown in the 
Appendix that 

2 A& = z(u) .Q(u, V)Z(V) du dv, (17) P=l 
d 

9 This expansion has been used by L. A. Zadeh and one of us in 
connection with other work not yet published. 

where the matrix Q(u, v) satisfies the integral equation 

s 
,;, R(u, v)Q(a, zu) dv = 6(u - w)l, t-TI’u,wSt, 

08) 

1 being a unit matrix. It is apparent from (83) that the 
matrix Q(u, v) may be partitioned as 

Qb, 4 = 4 Qa&, 4 (19) 
Qnab, 4 Qnn(u, 4 

It is now easy to minimize (16) with respect to the a,(u). 
By the familiar techniques of the calculus of variation, 
the following is obtained: 

s ,1, CQdu, 4 - Wa*,4Q,,b, 4la*(u> dv 

= 
s ,I, Ma’*, u)Qnn(?~, 4 - Q.nh, 41 

. [F(V) - F@*, v)] dv, t-TTiu<t, i20> 
where the modulation matrix M(6*, U) has the elements 

(21) 

Eq. (20) together with (18) is sufficient for the solution of 
the a*(u) in terms of the received waveforms P(U). 

In the special case where the noises are uncorrelated 
with the signals, (21) and (18) can be used to obtain 

s 

I 
a*(u) = Rao(~, v)M(a*, ZJ)#(V) dv, t - T I u 5 t, (22) 

I-T 

and 

s 

1 
F(u) - ?%(a*, u) = R,n(u~ vhXv) dv, 

t--T 

t-T?‘u<t, (23) 

where O(U) has been written for the expression 

In the one-dimensional case, (22) and (23) reduce to those 
obtained by You1a.5 

In principle, the a posteriori most probable demodulator 
has been found. It is only necessary to specify the form of 
modulation and the covariance functions of the signals 
and noises. In practice, the solutions to the equations may 
be prohibitively difficult depending on the form of 
modulation. 

AMPLITUDE MODULATION 

General forms of amplitude modulation produce 
relatively simple expressions for the specifying equations 
and will be considered in some detail. In these cases, the 
modulation matrix M is not a function of the signals 
a,(t) and can be written as M(u). Then, the received 
waveforms are 
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T(u) = ti(u)a(u) + ii(u), t-T2’uut, (24) It is interesting to note that if R,,1 = RSzz A R,, then the 

where $I is the transpose of M. symmetry of (30) and (31) implies that 

If, furthermore, the noises are uncorrelated with the Wl(U, v) = W,(u, v) k W(u, v), (32) 
signals, manipulation of (22) and (23) yields 

and (30) and (31) reduce to a*(u) = s t;T W(u, v)P(v) dv, t-T?‘uIt, (25) L 
s 

W(u, v)[2M(v)M(ul)Rz,(v, w) + IL&, 41 dv 
1-T 

s ’ W(u, v)[ti(v)R,(v, @M(w) + R,(v, 41 dv t--T 
= R&, 4W4, t - T r’ u, w _< t, Gw 

where W(u, v) is a weighting function matrix det,ermined 
from (26). Eq. (26) can also be derived as the specifying 
equation for the minimum mean-squared error non- 
stationary filter. 

Eqs. (25) and (26) may be used to investigate a number 
of special cases of interest. 

Case l-Multireceiver Systems 

Let us consider a two-receiver system where the received 

When the noise level at the receiver itself is large com- 
pared to that of the transmission link, it is advantageous 
to consider multireceiver systems. Their advantage lies- 
in the fact that the noises in the various inputs are un- 
correlated, while the signals are tither highly correlated 
or the same. Applications for these types of systems occur, 
for example, in the field of radio astronomy.lO’ll 

waveforms are 

rl(u) = M(u)a(u) + n,(u), 

and 

r(u) = cos w,ua,(u) + sin w0ua2(u) + n(u), t 
t-Tiu<t (27) 

Then, (25) and (26) become 

?-2(u) = M(u)a(u) + n,(u), 

Then (25) and (2G) become 

a*(u) = 
s 

’ W,(u, v)~,(v~ dv 
L - 1’ 

and 

l-l 

t-TI’u<t. cw 

+ S 
t s t TV2h, v)?-,(v) dv, (29) dgu) = Wdu, 44~~ dv, t - 1 

I-T 

and 

= Kb, w)Jf(w), (33) 

while the corresponding equation for one dimension is 

s 
’ W(u, v)[M(v)M(w)R,(v, w) + R,(v, w)] dv 

f-T 

= R,(u, w)M(w). (34) 

A compasison of (33) and (34) indicates the advantage 
of a two-receiver syst>em. Effectively, the signal level 
relative to noise is doubled. 

Case 2-Multiplex X@ems 

Various multiplex modulation schemes are used in 
communication. They have the common chn,racteristic 
that more than one signal is transmitted simultaneously 
on a time or frequency sharing basis.l’ 

Quadrature 114odulation 

One of the most familiar examples of multiplexing is 

Let the received waveform be 

quadrature modulation, which, in the formulation dis- 
cussed here, has a particularly simple representation. 

a?(u) = 
s 

t W1(u, 2$7”(v) dv, 
(--I’ 

l.t 

.I W,(u, v)[~(v)M(w)R,(v, wj + R,z,,(v, w)] dv 
L-T 

+ fT W-&L, v)M(v)M(w)R,(v, w) dv 

- T_<u<t. 
(36) 

(37) 

(38) 

J 
W,(u, v)[cos w,vR,,l(v, w) cos wow 

l-T 

+ cos w~vR~~~(v, w) sin wow + sin wOvl~lznzl(~, W) cos wow 

+ sin w,vR,~~(v, w) sin wow + I&,@, w)] dv 

= R,(u, w)M(w). (30) = R,,,(u, w) cos W,,W + R&u, w) sin wow, (39) 

S 
t 

W&L, v)[M(v)M(w)R,(v, w) + Rnx(v, w)l dv 
L-T 

-t 

J 
W,(u, v)[cos wovR,11(v, w) MM wow 

(-7 

+ j-I, Wl(u, v)M(v)M(w)R,h, 20) dv + cos wovR.,~(v, w) sin wow + sin w~v~~,,~~(v, W) cos WOW 

+ sin w,vR,,&, w) sin wow + &(zJ, w)] dv 
= R&L, w)M(w). (30 = Raz,(u, w) cos wow -I- R,za(t~, w) sin wow. (40) 

10 11. H. Diclte “The measurement of thermal raclistiou at micro- 
wave frequencies,” Eev. SC%. In&., vol. 17, pp. 268-275; July, 1946. 

I1 S. J. Goldstein, “A comparison of two radiometer circuits,” I2 II. S. Black, “R~lodulation Theory,” D. Van Nostraud co. 
PROC. IRE, vol. 43, pp. 1663-1666; November, 1955. Inc., New York, N. Y.; 1953. 
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It should be noted that the kernels of (39) and (40) are 
identical. 

Single Sideband 

Although single-sideband amplitude modulation is 
basically a one-dimensional problem, it can be con- 
veniently treated as a special case of quadrature modula- 
tion. In this case, 

r(u) = cos w,ua(u) + sin wOuci(u> + n(u), 

Note that the integral equations (47a) and (47b) have 
kernels which are functions of the difference of two 
variables and can be solved easily by standard tech- 
niques.l* 

In order to obtain an indication of the forms of the 
optimum demodulators, we shall give an example with 
explicit solutions. Let 

R,(u) = A, % e-“‘“’ , (49) 

t-Tlult, (41) R,(u) = iv, 6(u), (50) 

where d(u), the Hilbert transform of a(u), is definedI by and the received waveform be given for the range - a to t. 

d(u) =e b 
s 

_“,~av. 
Then, with a change in variables, (37) and (47a) become 

(4% 
a:(t) = 

In the case when the signal and noise are stationary, the 
s 

m 
W:(t, u)r(t - 26) du (51) 0 

representation simplifies even further. If we define and 
R(u) A E{a(t) a(t + u)), then the following relationships m 
are easily derived: 

s 
n;i(t, 7L) 

0 [ 
4: e--al-l cos w,,(v - u) + A-,, 6(v - u) 1 du 

E{a(t)ci(t + u)) = A(u), (43) A 
h’{&(t)aCt + u)} = -g(u), and (44j 

‘a emna cos w&t - v). =- 
2 (52) 

iY(lqt)ci(t + 7~)) = R(u). (45) Eq. (52) can be solved in the usual wayI* and W:(t, u) 

Using these expressions, we find t.hat (39) reduces to 
is found to have the form 

s 1 W{(t, ZL~ = h,,(u) cos wO(t - u) + h,,(u) sin w,,(t - u). (53) 
W,(u, v)[R*(w - 21) cos wo(w - v) 

t--T In other words, the receiver can be represented as shown 
+ &(w - v) sin wO(w - a) + R,(w - v)] civ in Fig. 1. This is a form of synchronous receiver with 

= R,(w - u) cos wow + &(w - u) sin wow. (46) 

In this case, Wz(u, v) is of no interest since it gives the co5 w,t 
estimate of a(u). It should be noted that B,(u) is an odd 
function of u, and therefore, the kernel of (46) remains 
symmetric with respect to the variables u and v, as it h,, 
must. r(t) 

A Quadrature Modulation Example 

In the special case where a,(u), a,(u) and n(u) are 
stationary, and where a,(u) and a,(u) are uncorrelated 
and have the same autocorrelation function, (39) and 
(40) reduce to 

81n w-t 

Fig. l-An optimum quadrature demodulator. 

s ’ W,(U, v)~z,(w - V) cos w,,(w - v) + R,(w - v)] dv 
t--T specific stationary filters. For convenience, we define the 

= R,(w - u) cos wow (474 
constants 

and A0 E&Z (54) 

s 
t W,(u, v)[R,(w - v) cos woiw - v) + R,(w - 41 dv and 

l--T 

where 

= R,(w - u) sin wow, (47b) pp$’ (55) 

and consider two cases. 
R&w - v) = R,,,(v, zu) = R,JJ, w). (43) 

I3 E. C. Titchmarch, 
I4 L. A. Zadeh and J. R. Ragazzini, “An extension of Wiener’s 

“Introduction to the Theory of Fourier theory of prediction,” 
Integrals,” Oxford University Press, London, England; 1937. 1950. 

J. Appl. Phys., vol. 21, pp. 645-655; July, 
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1) For the case where p” 5 4(1 + E)/E’, the filters are 
given by 

I 
k’: = ;,- a, -- [p2(b’ - 1.j2 + 11. (70 

h,,(u) = cdoeeauu[k T, cos wo(l - bju - Ii, cos WJl + bju It should be noted that, despite their complexity, the 

+ KS sin oO(l - bj,)u - K, sin w,(l + b)zc] (5G 
filters can be synthesized as lumped-constant R-L-C 
networks for any given 0 and E. 

and It is interesting to consider some limiting cases of the 

h,,(u) = ooe-aau[K3 cos oO(l - bju - IL cos ~(1 + bju 
example: 

1) 6 + 0 (very small signal power), 
- K, sin wO(l - D)u + K, sin wO(l + bju], 

with constants 

I{, = Ha - l)[P2(u - 1j2 + (1 + @,)“I 
2b > 

K, = P(a - l)[P(a - 1)” + (1 - VJ ) 
26 

& = (1 - b)i82(a - 1)” + (1 - bY1 -___ 
2b 7 

K, = (1 + h)[@(n - 1j2 + (1 - Q”] 
2b 7 

and 

a = ; {$[@” + 1j2 + 2cp”(p” + 1j]“2 

+ (1 + E)@ - 1)“2 

and 

b = {$[(/3” + 1)” + 2&p” + 1)]“2 

- (1 + Sp” + 1)1’2. 

(57) h,,(u) -+ coO/?ce-““, 

h,z(u) 3 0 
(58) to the first order in E. 

2) E -+ a3 (noise power becomes negligible), 

(59) Mu) ---f 
(16 - oL)2 + W~sin WoUe-bu + 6(u) 

7 
WO 

0% where 

lc = (a” + cdy 
(61) and 

h2hl 
2lc(lc - n!) -+ -___- cos woLle-ku + L;A 6(u). 

WO 

(72) 

(73) 

(74) 

(75) 

(76) 

In the same way as before, the optimum estimate 

(62) 
a:(t) can bc found to be 

s 

m 
a$(t) = wgt, 2&o - u) cl% (77) 

0 

with 

(63) -wi(t, uj = h,,(u) cos oo(t - uj + h,,(u) sin oo( t - u). (78) 
2) For the case where /3” > 4(1 + e)/~‘, the filters are 

given by 

h,,(u) = woe -a’a“(K: sin wou - K{ cos uou) 

+ woe-b’aU(K~ cos wou - K: sin woUJ (64) 
and 

It should bc noted that h,,(u) and h,,(u) are simply 
related to h,,(u) and h,,(zhj; in fact, 

M.4 = -Lb), 0% 

and 

k&j = h,,(u). (80) 
’ h,,(u) = woe-” OLu (K: cos wou + Ki sin wou) 

- woe -” *“(I~; sin wou + 1G cos wou) , 

where 

(65) AM DEMODULATION WITH DELAY 

With present techniques, most of the integral equations 
involved in optimum demodulation are difficult to solve 
explicitly. However, if a reasonable delay can be tolerated, 
approximate solutions to a large class of AM problems 
can be obtained. The demodulator is fomid to bc a syn- 
cronous demodulator followed by a type of Wiener filter. 
Problems of this nature have been treated in some detail” 
for the one-dimensional case. Extensions to multi-di- 
mensional cases are straightforward.‘” 

a’ = ; {(l + cjp” - 1 - p[p”E” - 4(1 + ~~]1’211’2 (66) 

b’ = $ {(I + c)p2 - 1 + p[fi’~” - 4(1 + ~j]~“j~” (67) 

and 

(6% 

[@"(a' - 1)" + 11, (69) 

K, = f12@ - I)' + ' , and 3 P(b'z-- (70) 

15 J. 13. TNomas, “On the Statistical Design ol Demodulatioll 
Systems for Signals in Additive Noise,” Stanford University Alec- 
tronics Rcs. LAb., Stanford, Calif., Tech. Rept. No. 88; August, 1955. 

16 J. 13. Thomas, T. IL. Williams, J. Wolf and IX. Wang, “The 
demodulationiof AM signals in noise,” Proc. 1969 IRE Convention 
012 Lwizitq/ Eteclronics, pp. 138-146. 
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NONLINEAR MODULATIONS Q, j(U, v) = 2 X,~~“(U)qp(V). (83) 

For nonlinear forms of modulation such as FM and PM, 
the problem of optimum estimation cannot be reduced to 
that of finding a time varying filter. In general, one has to 
consider the solution of (20) for u*(u). Although this 
equation is not usually amenable to explicit solution, it is 
of a form that can be treated by analog techniques. Indeed, 
if feedback is allowed in the system, it essentially specifies 
the demodulator. Some work along this line has been 
initiated.*’ 

PROBLEMS IN CARRIER SPECIFICATION 

In this formulation, the phases, amplitudes and fre- 
quencies of the carriers are assumed known. In practice, 
this knowledge must be obtained frequently either by 
operating on the received waveforms or by transmitting 
the carriers over a separate channel. Both of these methods 
involve errors due to noise and thus cause additional errors 
in the estimation of signals. Such difficulties are common 
to all synchronous receiver systems. 

p-1 

Then, the sum ~~~1 X,C$ becomes 

z(u) .Q(u, v)z(v) du 05. (84) 

The matrix Q(u, v) is related to the covariance function 
matrix R(u, v). This relationship becomes clear when the 
integral 

is examined. With the substitution of (83) for CJik(u, w) 
and the use of (13), this integral becomes 

(85) 
APPENDIX xJ=l 

With the use of the orthonormality condition given by The sum on the right-hand side above satisfies the 

(14), the coefficients of expansion aB can be expressed as identity 

s 

t 
c-Y9 = c&,(u) . z(u) du. 

t--T (81) (86) 

Therefore, the sum c:=1 X,olz is evaluated to be To prove this identity, multiply both sides of (86) by 
pii) (u), sum over the index i, and integrate with respect 
to u. With the use of the orthonormality condition, this 
procedure yields the identity 

p;‘(w) = g)(W), 
i=l / showing the validity of (85). Therefore, the matrix 

where YV = q + k. Kow, define the matrix Q(u, v) by the Q(v, w) is related to the covariance function matrix 
relationship R(u, v) by matrix integral equation 

I7 R. Jaffe and E. Rechtin, “Design and performance of phase 
locked circuits capable of near optimum performance over a wide s 

R(u,v)Q(v, w) dv = 6(u - w)l, (87) 
l-T 

range of input signal and noise levels,” IRE TRANS. ON INFORMA- 
TION THEORY, vol. IT-I, pp. 66-76; March, 1955. 1 being a unit matrix. 


