The Distribution of Intervals Between Zeros for a Stationary Gaussian Process

E. Wong

Stable URL:
http://links.jstor.org/sici?sici=0036-1399%28197001%2918%3A1%3C67%3ATDOIBZ%3E2.0.CO%3B2-O

SIAM Journal on Applied Mathematics is currently published by Society for Industrial and Applied Mathematics.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/siam.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.
THE DISTRIBUTION OF INTERVALS BETWEEN ZEROS FOR A STATIONARY GAUSSIAN PROCESS

E. WONG†

1. Introduction. This note supplements an earlier paper [1], where the distribution for the interval between two successive zeros was found for a real zero-mean Gaussian process with the following covariance function:

\[\rho(\tau) = Ex(t)x(t + \tau) = \frac{3}{2}e^{-|\tau|/\sqrt{3}}(1 - \frac{1}{3}e^{-2|\tau|/\sqrt{3}}). \]

This earlier work was based on a time change for the process after which a formula of McKean [2] was used to derive the desired result. A second look at McKean’s paper has revealed that the distribution of the interval between any two zeros (not only successive ones) can be found in a similar way. However, except for the case of two successive zeros, I have not been able to carry out a final integration to reduce the distribution to a closed-form expression.

2. Computation of the inter-zero interval distribution. Let \(x(t) \) be a zero-mean Gaussian process with a covariance function given by (1). All processes in this paper are assumed to be separable and real-valued. It is easy to verify by direct computation that \(x(t) \) can be represented in terms of a standard Brownian motion \(W(t) \) as

\[x(t) = \sqrt{3}e^{-\sqrt{3}t} \int_0^{\exp(2/\sqrt{3})t} W(s) \, ds, \]

a standard Brownian motion process being defined as a zero-mean Gaussian process with \(EW(t)W(s) = \min(t, s) \). It follows that for \(t \geq t_0 \) we can write

\[x(t) = x(t_0)e^{-\sqrt{3}(t - t_0)}[1 + \frac{3}{2}g(t - t_0)] \]

\[+ \sqrt{3}e^{-\sqrt{3}(t - t_0)} \cdot \left[\frac{1}{2}x(t_0)g(t - t_0) + \int_0^{g(t - t_0)} W(s) \, ds \right], \]

where \(W(s) \) is again a standard Brownian motion (but not the same one as in (2)) and is independent of both \(x(t_0) \) and \(x(t_0) \). We have also set

\[g(t) = \exp(2/\sqrt{3})t - 1. \]

Let \(\tau_n(t_0), n = 0, 1, \ldots, \) be defined as follows:

\[\tau_0(t_0) = t_0, \]

\[\tau_{n+1}(t_0) = \min \{ t : t > \tau_n(t_0), x(t) = 0 \}. \]

* Received by the editors April 9, 1968, and in revised form October 31, 1968.
† Electronics Research Laboratory, College of Engineering, University of California, Berkeley, California 94720. This research was sponsored by the Joint Services Electronics Program under AF-AFOSR-139-67 and the United States Army Research Office-Durham under Contract DAHC04-67-C-0046.
Because of the stationarity of \(x(t) \), the probability

\[
\text{Prob} \left(\tau_{m+1}(t_0) < t_0 + t | x(t_0) = 0, \text{h.w.} \right)
\]

\[
= \lim_{s \downarrow 0} \text{Prob} \left(\tau_{m+1}(t_0) < t_0 + t | 0 \leq \frac{x(t_0)}{\hat{x}(t_0)} \leq s \right)
\]

depends only on \(t \) and not on \(t_0 \) and will be denoted by \(F_m(t) \). In (6) the notation "\(x(t_0) = 0, \text{h.w.} \)" stands for "\(x(t_0) = 0 \) in the horizontal-window sense" [3] and is defined by the limit on the right-hand side. It turns out that for the process being considered here the limit in (6) is the same as

\[
\lim_{s \downarrow 0} \text{Prob} \left(\tau_{m+1}(t_0) < t_0 + t | x(s) \text{ has at least one zero for } s \in [t_0 - \alpha, t_0] \right).
\]

However, we do not make use of this fact in this paper.

Now, let \(\text{Prob} \left(\tau_{m+1}(0) < t | x(0) = x_0, \dot{x}(0) = y_0 \right) \) be the conditional probability defined in the ordinary sense. Because of the symmetry of the process \(x(t) \) about zero, we have

\[
\text{Prob} \left(\tau_{m+1}(0) < t | x(0) = -x_0, \dot{x}(0) = -y_0 \right)
\]

\[
= \text{Prob} \left(\tau_{m+1}(0) < t | x(0) = -x(0) = -y_0 \right).
\]

It is also easy to verify that \(x(0) \) and \(\dot{x}(0) \) have a joint density

\[
p(x_0, y_0) = \frac{1}{2\pi} e^{(x_0^2 + y_0^2)/2}.
\]

Using these facts, we can evaluate \(F_m(t) \) as follows:

\[
F_m(t) = \lim_{s \downarrow 0} \text{Prob} \left(\tau_{m+1}(0) < t | 0 \leq \frac{x(0)}{\hat{x}(0)} \leq s \right)
\]

\[
= \lim_{s \downarrow 0} \left[\int_0^\infty d\eta_0 \int_0^{\eta_0} dx_0 e^{-(x_0^2 + y_0^2)/2} \text{Prob} \left(\tau_{m+1}(0) < t | x(0) = x_0, \dot{x}(0) = y_0 \right) \right]
\]

\[
\int_0^\infty d\eta_0 \int_0^{\eta_0} dx_0 e^{-(x_0^2 + y_0^2)/2}
\]

\[
= \lim_{s \downarrow 0} \int_0^\infty d\eta_0 \eta_0 e^{-\eta_0^2/2}
\]

\[
\left\{ \frac{1}{\tan^{-1} s} \int_0^{\tan^{-1} s} d\theta \text{Prob} \left(\tau_{m+1}(0) < t | x(0) = \eta_0 \sin \theta, x(0) = \eta_0 \cos \theta \right) \right\}
\]

\[
= \int_0^\infty d\eta_0 \eta_0 e^{-\eta_0^2/2} \text{Prob} \left(\tau_{m+1}(0) < t | x(0) = 0, \dot{x}(0) = \eta_0 \right),
\]

where we have made use of dominated convergence and the continuity of \(\text{Prob} \left(\tau_{m+1}(0) < t | x(0) = x_0, \dot{x}(0) = y_0 \right) \) in \(x_0 \) and \(y_0 \). We note that the conditional probability in the last expression of (7) is in the ordinary sense and not in the horizontal-window sense. The principal concern of this paper is the computation of the density function \(P_m(t) = F_m(t) \).
Let \(\{W(t), t \geq 0\} \) be a standard Brownian motion, and let \(\sigma_d(\eta_0), n = 0, 1, \cdots \), be defined as follows:

\[
\begin{align*}
\sigma_0(\eta_0) &= 0, \quad \eta_0 \geq 0, \\
\sigma_{n+1}(\eta_0) &= \min \left\{ t : t > \sigma_d(\eta_0), t\eta_0 + \int_0^t W(s) \, ds = 0 \right\}, \quad \eta_0 \geq 0.
\end{align*}
\]

From (3) and a comparison of (5) and (8), it is seen that

\[
\text{Prob} \left(\tau_{m+1}(0) < t \mid x(0) = 0, \dot{x}(0) = \eta_0 \right) = \text{Prob} \left(\sigma_{m+1} \left(\frac{\eta_0}{2} \right) < g(t) \right), \quad \eta_0 \geq 0.
\]

Since \(\text{Prob} \left(\tau_{m+1}(0) < t \mid x(0) = 0, \dot{x}(0) = \eta_0 \right) \) is symmetric in \(\eta_0 \), (7) becomes

\[
F_m(t) = \int_0^\infty \eta_0 e^{-\eta_0^2/2} \text{Prob} \left(\sigma_{m+1} \left(\frac{\eta_0}{2} \right) < g(t) \right) d\eta_0.
\]

Thus, the problem of evaluating \(F_m(t) \) and its derivative \(P_m(t) \) is reduced to the problem of finding the distribution of \(\sigma_{m+1} \). Let \(\sigma_d(\eta_0) \) be as defined and let

\[
h_d(\eta_0) = (-1)^n \left[\eta_0 + W(\sigma_d(\eta_0)) \right], \quad \eta_0 \geq 0.
\]

The quantity \(h_d(\eta_0) \) is the magnitude of the slope of \(\eta_0 t + \int_0^t W(s) \, ds \) at its \(n \)th zero.

The joint distribution of \(\left(\sigma_d(\eta_0), h_d(\eta_0) \right) \) was found by McKean in [2]. Let \(f(t, a) \) denote the density function for the distribution of \(\left(\sigma_d(1), h_d(1) \right) \), i.e.,

\[
\text{Prob} \left\{ \sigma_d(1) \in dt, h_d(1) \in da \right\} = f(t, a) \, dt \, da.
\]

McKean derived the formula

\[
\int_0^\infty f(t, a) e^{-\eta_0^2} \, dt = \int_0^\infty \frac{K_1(\sqrt{8\alpha})K_1(\sqrt{8\alpha a})}{2 \cosh (\pi\gamma/3)} \, d\alpha,
\]

where \(K_\nu \) is the modified Bessel function and \(d\alpha = 2\pi^{-2}\gamma \sinh \pi\gamma \), and, upon inverting the Laplace transform, obtained

\[
f(t, a) = \frac{3a}{\pi \sqrt{2t^2}} e^{-a^2/(t^2 + a^2)} \int_0^{2a/t} \frac{e^{-3\theta/2}}{\sqrt{\pi\theta}} \, d\theta.
\]

For a standard Brownian motion \(W(t) \), \(CW(t/C^2) \) is again a standard Brownian motion. From this scaling property we can show that \(\left(\sigma_d(\eta_0), h_d(\eta_0) \right) \) have the same probability law as \(\left(\eta_0^2 \sigma_d(1), \eta_0 h_d(1) \right) \). Therefore, if we denote the joint density function of \(\left(\sigma_d(\eta_0), h_d(\eta_0) \right) \) by \(\pi_1(t, \eta) \), we find

\[
\pi_1(t, \eta) \, d\eta \, dt \, d\eta = \text{Prob} \left(\sigma_d(\eta_0) \in dt, h_d(\eta_0) \in d\eta \right) = \frac{dt \, d\eta}{\eta_0^2} \frac{\left(t \, \eta \right)}{\eta_0^2},
\]

where \(f \) is given by (14).
For a more general n, the fact that $\eta_0(t) + \int_0^t W(s)\, ds$ and its derivative are jointly Markovian leads to the recursive relationship

\begin{equation}
\pi_{n+1}(t, \eta|\eta_0) = \int_0^t \pi_1(t-s, \eta|\eta_0) \pi_n(s, \eta_0) \, ds \, d\zeta.
\end{equation}

Letting

\begin{equation}
\hat{\pi}_n(\tau, \eta|\eta_0) = \int_0^{\tau} e^{-\eta t} \pi_n(t, \eta|\eta_0) \, dt,
\end{equation}

we can transform (16) into

\begin{equation}
\hat{\pi}_{n+1}(\tau, \eta|\eta_0) = \int_0^{\tau} \hat{\pi}_1(\tau, \eta|\eta_0) \hat{\pi}_n(\tau, \zeta|\eta_0) \, d\zeta.
\end{equation}

The function $\hat{\pi}_1(\tau, \eta|\eta_0)$ can be found from (15) and (13) as follows:

\begin{equation}
\hat{\pi}_1(\tau, \eta|\eta_0) = \int_0^{\infty} e^{-\eta t} \pi_1(t, \eta|\eta_0) \, dt
\end{equation}

\begin{align*}
&= \int_0^{\infty} \frac{1}{\eta_0^3} f\left(\frac{t}{\eta_0}, \frac{\eta}{\eta_0}\right) e^{-\eta t} \, dt \\
&= \int_0^{\infty} \frac{1}{\eta_0} f\left(\tau, \frac{\eta}{\eta_0}\right) e^{-\eta \beta \zeta} \, d\tau
\end{align*}

\begin{align*}
&= \frac{1}{\eta_0} \int_0^{\infty} \frac{K_i\left(\sqrt{8\pi\eta}\eta_0\right)K_i\left(\sqrt{8\pi\eta}\right)}{2 \cosh(\pi\beta/3)} \, d\eta_0.
\end{align*}

From the Lebedev transform pair [4, vol. 2, p. 173]

\begin{align*}
g(y) &= \int_0^{\infty} f(x)K_{ix}(y)2\pi^{-2}x \sinh \pi x \, dx, \\
f(x) &= \int_0^{\infty} g(y)K_{ix}(y)^{-1} \, dy,
\end{align*}

we conclude that

\begin{equation}
2\pi^{-1}x \sinh \pi x \int_0^{\infty} K_{ix}(y)K_{ix}(y)^{-1} \, dy = \delta(x - x').
\end{equation}

Hence, by using (19) repeatedly in (18), we get

\begin{equation}
\hat{\pi}_n(\tau, \eta|\eta_0) = \frac{1}{\eta_0} \int_0^{\infty} \frac{K_i\left(\sqrt{8\pi\eta}\eta_0\right)K_i\left(\sqrt{8\pi\eta}\right)}{[2 \cosh(\pi\beta/3)]^n} \, d\eta_0.
\end{equation}
where \(d_0 = 2\pi^{-2}\gamma \sinh \pi \gamma \), which is a surprisingly simple formula. From (10) we have

\[
F_m(t) = \int_0^\infty \eta_0 e^{-\eta_0^2/2} \text{Prob} \left(\frac{\sigma_{m+1}}{2} < g(t) \right) d\eta_0
\]

\[
= \int_0^\infty \eta_0 e^{-\eta_0^2/2} \text{Prob} \left(\frac{\eta_0^2}{4\sigma_{m+1}} < g(t) \right) d\eta_0
\]

\[
= \int_0^\infty d\eta_0 e^{-\eta_0^2/2} \int_0^\infty \int_0^\infty ds \int_0^\infty d\eta \pi_{m+1}(s, \eta|1).
\]

Thus, the density \(P_m(t) = \hat{F}_m(t) \) can be expressed as

\[
P_m(t) = 4g(t) \int_0^\infty \int_0^\infty \frac{1}{\eta_0} e^{-\eta_0^2/2} \pi_{m+1} \left(\frac{4g(t)}{\eta_0^2}, \eta_1 \right) d\eta_0 d\eta.
\]

The Laplace transform (21) can now be inverted to yield

\[
\pi_{m+1}(t, \eta|1) = \frac{1}{2t} e^{-2(1 + \eta^2)/t} \int_0^\infty \frac{K_{\frac{1}{2}}(4\eta/t)}{(2 \cosh \pi \gamma/3)^{m+1}} d\eta.
\]

Using (24) in (23) yields

\[
P_m(t) = \frac{1}{t} g(t) \int_0^\infty \int_0^\infty \int_0^\infty \frac{\eta_0}{g(t)} e^{-\eta_0^2/2} e^{-\eta_0^2(1 + \eta^2)/(2g(t))}
\]

\[
\cdot \frac{K_{\frac{1}{2}}(\eta_0^2/g(t))}{(2 \cosh \pi \gamma/3)^{m+1}} d\eta_0 d\eta d0
\]

\[
= \frac{1}{t} g(t) \int_0^\infty \int_0^\infty \frac{\eta_0}{g(t)} e^{-\eta_0^2(1 + \eta^2)/(2g(t))}
\]

\[
\cdot \frac{K_{\frac{1}{2}}(\eta_0^2)}{(2 \cosh \pi \gamma/3)^{m+1}} d\eta_0 d\eta d0.
\]

Now, if we use the formula

\[
K_{\frac{1}{2}}(a) = \int_0^\infty e^{-a \cosh u} \cos \gamma u \ du
\]

in (25), we get a fourfold integral with variables of integration \(\eta_0, \eta, \gamma, u \). Integrating first with respect to \(\eta_0 \), then \(u \), we find

\[
P_m(t) = \frac{1}{t} g(t) \int_0^\infty \int_0^\infty \frac{1}{(2 \cosh \pi \gamma/3)^{m+1}}
\]

\[
\cdot \pi \sin \left(\gamma \cosh^{-1} \left(1 + \eta^2 + g(t)/(2\eta) \right) \right)
\]

\[
\cdot \sinh \pi \gamma \sqrt{[1 + \eta^2 + g(t)]^2 - 4\eta^2}
\]

\[
\left(d0 \equiv \frac{2}{\pi^2} \gamma \sinh \pi \gamma \right)
\]

\[
= \frac{1}{\pi} g(t) \int_0^\infty \int_{\cosh^{-1} \left(1 + g(t)/(2\eta) \right)}^\infty \frac{\gamma \sin \gamma x}{\sqrt{\sinh^2 x - g(t)/(2 \cosh \pi \gamma/3)^{m+1}}} dx.
\]
The expression (27) can be integrated once more with respect to γ to yield

$$P_m(t) = \frac{1}{\pi} \hat{g}(t) \int_{\cosh^{-1} \frac{-1}{g(t)}}^{\infty} \frac{1}{\sqrt{\sinh^2 x - g(t)}} \left(-1 \right) \frac{d}{dx} f_m(x) \, dx,$$

where $f_m(x)$ is given by

$$f_0(x) = \frac{3}{4} \frac{1}{\cosh \frac{3}{2} x},$$

$$f_1(x) = \frac{9}{8\pi} \frac{x}{\sinh \frac{3}{2} x},$$

$$f_m = \frac{1}{m} \left[\left(\frac{3x}{2\pi} \right)^2 + \left(\frac{m - 1}{2} \right)^2 \right] f_{m-2}(x), \quad m \geq 2.$$

I have not been able to carry out the integration in (28), except for $m = 0$. In [1], $P_0(t)$ was obtained in terms of complete elliptic integrals [1, (25)].

3. Computation of $P_m(0)$.

From (4), we have $g(0) = 0$ and $\hat{g}(0) = 2/\sqrt{3}$. Therefore, for $t = 0$, (27) becomes

$$P_m(0) = \frac{2}{\sqrt{3\pi}} \int_0^{\infty} \frac{d\gamma}{\gamma} \int_0^{\infty} dx \frac{\gamma \sin \gamma x}{\sinh x (2 \cosh \pi \gamma/3)^{m+1}}$$

$$= \frac{1}{\sqrt{3}} \int_0^{\infty} \frac{\left(e^{\pi \gamma} - 1 \right)}{\left(e^{\pi \gamma} + 1 \right) (2 \cosh \pi \gamma/3)^{m+1}} \gamma \, d\gamma$$

$$= \frac{1}{\sqrt{3}} \left(\frac{3}{\pi} \right)^2 \int_1^{\infty} \frac{x^3 - 1}{x(x + 1/x)^{m+1}} \frac{\ln x}{x^3 + 1} \, dx$$

$$= \frac{1}{2\sqrt{3}} \left(\frac{3}{\pi} \right)^2 \int_0^{\infty} \frac{x^3 - 1}{x^3 + 1} \frac{x^m \ln x}{(x^2 + 1)^{m+1}} \, dx,$$

which can be evaluated by contour integration to yield

$$P_m(0) = \frac{1}{4\sqrt{3}} \left(\frac{3}{\pi} \right)^2 (2\pi i) \sum \text{Res} \left\{ \frac{(z^3 - 1)z^m \ln z(1 - \ln z/(2\pi i))}{(z^3 + 1)(z^2 + 1)^{m+1}} \right\},$$

where the summation is taken over the residues at the five poles $z = e^{\pi i/2}, e^{3\pi i/2}, e^{\pi i/3}, e^{5\pi i/3}$. The expression (31) can be further elaborated to give

$$P_m(0) = \frac{9}{2\sqrt{3}} \left\{ \frac{(-1)^m}{3 \cdot 2^{m+1}} - \frac{10}{27} + \frac{i}{\pi m} \frac{d^m}{dz^m} \left[\frac{z^m}{(z + i)^{m+1}} H(z) \right] \right\}_{z = e^{\pi i/2}}$$

$$+ \frac{1}{\pi} \frac{i}{m} \frac{d^m}{dz^m} \left[\frac{z^m}{(z - i)^{m+1}} H(z) \right] \bigg|_{z = e^{3\pi i/2}} \right\}$$

with

$$H(z) = \frac{z^3 - 1}{z^3 + 1} \ln \left[1 - \frac{\ln z}{2\pi i} \right].$$
I have not been able to reduce (32) further.

For a stationary zero-mean Gaussian process with covariance function of the form

\[\rho(\tau) = 1 - \frac{\tau^2}{2} + \alpha|\tau|^3 + o(|\tau|^3), \]

it is not hard to show that \(P_m(0) \) is proportional to \(\alpha \). Longuet-Higgins [5] has obtained bounds for \(\frac{P_m(0)}{\alpha} \) for \(m \) up to 7. For \(m = 0, 1, 2 \), these bounds read

\[1.1556 < \frac{1}{\alpha} P_0(0) < 1.158, \]

\[0.1971 < \frac{1}{\alpha} P_1(0) < 0.198, \]

\[0.0491 < \frac{1}{\alpha} P_2(0) < 0.0556. \]

Now, the covariance function (1) under consideration in this paper has the form of (34) with \(\alpha = \frac{2}{3\sqrt{3}} \). Hence, the true values for \(\frac{P_m(0)}{\alpha} \) can be evaluated and compared against the bounds in (35). For \(m = 0, 1, 2 \), (32) can be evaluated to yield

\[P_0(0) = \frac{2}{3\sqrt{3}} \frac{37}{32} = \frac{2}{3\sqrt{3}}(1.15625), \]

\[P_1(0) = \frac{2}{3\sqrt{3}} \left(\frac{47}{64} - \frac{108}{64\pi} \right) \approx \frac{2}{3\sqrt{3}}(0.1972), \]

\[P_2(0) = \frac{2}{3\sqrt{3}} \left(\frac{121}{128} - \frac{81}{32\pi} - \frac{27}{32\pi^2} \right) \approx \frac{2}{3\sqrt{3}}(0.0541), \]

which are in agreement with (35).

Acknowledgment. My interest in the extension reported here was first aroused by a communication from Dr. M. S. Longuet-Higgins, who raised the possibility of finding \(P_m(0) \) along the lines of [1]. I am grateful to Dr. Longuet-Higgins for his suggestion.

REFERENCES

