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ON THE CONVERGENCE OF ORDINARY INTEGRALS TO
STOCHASTIC INTEGRALS

By EuceNE WoNG' AND MOSHE ZAKAT
University of California, Berkeley, and Sylvania Electronic Systems

1. Introduction. Let y(t) be the real Brownian motion process (with E{y(f)} = 0
and E{y’(t)} = |t|) and let y.(¢) be a sequence of approximations to y(¢) with
the following properties. For each n, y.(t) is of bounded variation, continuous
and converges a.s. t0 y(¢) asn — . Then lime [§ ¥.(t) dya(t) = y*(a)/2; how-
ever, for the “corresponding’ stochastic integral fﬁ y(1) dy(t) = (4*(a) — a)/2,
([1] p. 444). The reason for the difference between the two results is easily
traced to P. Lévy’s theorem on the oscillation of the Brownian motion ([1] p.
395). Let 2(t), a = ¢t = b be the solution to the stochastic differential equation.

(1) de(t) = m(x(t), ) dt + o(x(1), t) dy(t), x(a) = za

where z, is a random variable independent of y(¢) — y(a), a <t = b and
m(-,-), o(+,) satisfy the conditions for existence and uniqueness of z(¢) ([1]
p. 288). Assuming that y.(¢) has, a.s., a piecewise continuous derivative, let
za(t) be the sequence of integrals of the ordinary differential equations

(2) dza.(t) = m(za(), 1) dt + o(xa(t), t) dya(t), za(a) = x,.

A direct calculation for the special case dx,(t) = . (t) dya(t), £.(0) = 1 shows
that 2.(t) converges as n — « to a diffusion process which does not satisfy the
same Kolmogoroff equations as the solution to the- stochastic differential equa-
tion dz(t) = x(t) dy(t), x(0) = 1. Certain problems lead to the question of
existence, properties and the proper Kolmogoroff equation for the limit of z.(t).
For example, physical systems driven by ‘“white noise” lead directly to limits of
z,(t) where xz,(t) satisfies (2) (namely, Langevin equations). This follows from
the fact that any physical experiment will correspond to (2) rather than (1) as
Brownian motion can only be approximated but not realized in the physical
world. The object of this note is to derive relations between limits of integrals of
the type [2 ¥ (ya(t), t) dya(1) and Jaw(y(t), t) dy(t) and corresponding relations
between the solution of (1) and the solution of the Langevin equation (2) (the
limit of the solutions of (2)).

The following types of approximations to the Brownian motion will be con-
sidered

A; . For almost all w, y.(t, ») — y(¢, w) for all ¢ in [a, b] and y.({, w) are con-
tinuous and of bounded variation.
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A; . A, and also: for almost all w there exist no(w), k(w), both finite, such that
for all n > n and all ¢ in [a, b), ya(t, w) = k(w).

A; . A, and also: y.(f, ) has a piecewise continuous derivative.

A, . A; and also: ya(t, w) — y(¢, w) uniformly in [a, b)].

In a recent paper [3], Stratonovich introduced a symmetrized definition of
the stochastic integral and related the symmetrized definition of It8’s definition
of stochastic integrals. It is shown in [3] that, under the symmetrized definition,
the rules of transformation of equations become the same rules as in the ordinary
calculus (rather than Itd’s rules of transformation [2]). The results of this
note are, very roughly, that [J¢(ya(t), t) dya(t) — (S) Jow(y(t), t) dy(t)
(where the second integral is to be interpreted in the Stratonovich symmetrized
sense) and a similar result for differential equations. All the stochastic integrals
considered in the remainder of this note are in It6’s sense.

For the special case where y,(t) are polygonal approximations to y(¢), we ob-
tained results which are similar to the results of this note but under considerably
weaker conditions on o(z, t) (to be published).

2. Stochastic Integrals.
THEOREM la. Let y(n, t) have continuous partial derivatives y(n, t)/dn,
W(n, t)/dtin —xo < 9 < o, a =t =b Lety,(t) satisfy As. Then, a.s.,

(3)  liMnaw fa¥(ya(t), t) dym(t) = [aw(y(t),t) dy(t) + 3 [2[ow(y(t), t)/dy] dt.
If, in addition, ¥(n, t) is independent of ¢ (dyY/dt = 0) then (3) holds with Al
replacing A, .

Proor. Let F(\, t) = [ay(n, t) dq. Then

F(ya(b), b) — F(yn(a), a) = [a¥(ya(t), t) dyn(t) + [a[9F (yn(t), t)/1] dt.

By the continuity of ¥(7, t) and dy¥(9, t)/dt, A, and dominated convergence it
follows that, a.s.

(4) 1imaew [ ¥ (ya(t), t) dya(t)
= F(y(b), b) — F(y(a), a) — [al0F(y(1), t)/o1] dt.

If 9y/dt = 0 then (4) hold with A, replaced by A; . A result of Itd [2] states that
if G(¢, t) has a continuous first partial derivative with respect to ¢ and a con-
tinuous second partial derivative with respect to §, — » < § < ®,a <t < b,
and if the random functions f(¢) and ¢g(t), a < t < b, are independent of the
aggregate of differences y(s) — y(1),t < s < b, f(¢) € Lila, b], f(t) € Li[a, b] a.s.
and dz(t) = g¢(t) dt + f(t) dy(t) then, a.s.
(5) G(2(b), b) — G(z(a), a) = [a[8G(2(1), 1)/32)f(t) dy(t)

+ Jal10G(2(1), 1)/32lg(t) + [9G(=2(), 1)/31] + 3 (D9°G(=(2), 1) /92"} dt.
Applying this result to F':
(6) F(y(b),b) — F(y(a),a) = [av(y(t), 1) dy(t)

+ [ A[oF (y(1), £)/31] + 33w (y(1), 1)/3yl} dt, a.s.

And (3) follows by substituting (6) into (4).
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TrEOREM 1b. Let 2(t) = [&g(s) ds + [Lf(s) dy(s),a < t < b, where g(s),f(s)
are random functions satisfying the following conditions: f(-) € Lifa, b, g(-) &
Lya, b] a.s., and f(t), g(t), a = t = b, are independent of the aggregale of differences
y(s) — y(t),t = s < b. Let Y(n, t) satisfy the requirements of Theorem la. Let
Zn(t) be a sequence of approximations to x(t) such that for almost all w, za(t, w) —
z(t, ) boundedly for all t in [a, b] and x.(%, w) is continuous and of bounded varia-
tion. Then

limnaw fo ¥(2a(t), 8) dan(t) = [a(x(0), 8) da(t) + 3 [af*(t)[0¢(x (1), t)/d2] dt
= [ u(a(t), Hyg(t) dt + [2(x(t), t) dy(t)
+ 3 [ () [ov(x(t), t)/0x] dt.
The proof is the same as for 1a.

3. Stochastic differential equations. Let y,(¢) have a piecewise continuous
derivative. Let m(z, t) and o(z, t) be continuousin — o <z < ©,a St < b
and satisfy the Lipschitz condition

(7) lf(z,t) — f(& )] < kv — &
Then
(8) dza(t) = m(za(t), ) dt + o(@a(t), t) dya(t), 2(a) = za

has a unique solution which is continuous in [a, b]. If, in addition, o(x, t) has a
first derivative with respect to x which is continuous in — o < z < oo,
a =t = 0band o(z, t) do(z, t)/dx satisfies (7), then the stochastic differential
equation

(9) da(t) = m(x(1), ¢) di + Fo(2(), 1)[90(2(¢), ) /0x] dt + o(x(2), ¢) dy(?)

z(a) = z, (with z, random variable independent of the differences y(t) — y(a),
a <t = b) has a.s. a unique continuous solution.

Taeorem 2. If

(i) m(=z,t), o(x, t), do(z, t)/dz, do(x, t)/0t are continuous in — o < x < o,
a<t=sbt

(ii) m(z, t), o(x, t), do*(x, t)/dx, satisfy the Lipschitz condition (7).

(iii) a(x, t) = B8 >0 (or —o(x,t) = B > 0) and |3c(x, t)/0t| < ko’(z, t).

(iv) z. s a random variable independent of the aggwgate of differences y(t)
—y(a),a =t =2 b.

(v) za(t) and z(t) salisfy

(8) dxn(t) = m(za(t), t) dt + a(za(t), t) dya(t); x.(a) = z,
(9) dx(t) = m(x(¢), t) dt
+ 30(z(2), t)[00(x(2), t)/0x] dt + o(2(2), t) dy(?),

z(a) = x4
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Then for ya(t) satisfying Az and for t in [a, b], z.(¢) — z(t) a.s. asn — o; and
for yn(t) satisfying Ay, zo(t) — z(t) uniformly in [a, b] a.s. asn — oo,
Proor. Let &(), t) = [t o(u, t)~ du. Then:

®(a(2), 1)

(10) = [:[6®(z4(s), 5)/3s] ds + [E16®(2n(s), 8)/02a] dza(s) + ®(2a, a)
= [210%(2a(s), 5)/3s] ds + [a [m(za(s), 8)/a(aa(s), 8)] ds
+ ya(t) — ya(a) + 2(a, a).

By It6’s result for stochastic differentials (Equation (5)) we have

®(x(t),t)

= [L[0®(x(s), s)/s]ds + % [4[0°®(x(s), 5)/02")o*(z(s), §) ds
+ Ja[0®(z(s), 5)/0alo(2(s), 8) dy(s) + &(2a, a)

(11) + [a[0®(z(s), s)/0z]lm(x(s), ) + 3o (x(s), 8)[80((s), s)/dz]] de
= [alo®(x(s),5)/0s]ds + y(t) — y(a) + [alm(z(s), s)/o(2(s), s)] ds
+ ®(zs, a).

Since m(z, t) is continuous and by (7) it follows that |m(z, t)| = Ki(1 + |z|)
for some K; , therefore

]m(x, t)/o’(:l), t) - m(i‘, t)/a(E, t)'
(12) = lm(x’ t)/“(“’; t) - m(f) t)/a(:l” t)l + lm(E, t)/o’(d), t) — m(§, t)/a(E’ t)l
< (Ky/B)(1 + |E]) |x — &

Since ¢ %(z, t) - do(z, t)/dt is uniformly bounded, we have

(13) [6®(x, t) /0t — 8®(&, 1)/l < Kslz — §&|.
We will now show that

By the continuity in ¢ and by (7), o(z, t) £ C(1 + |z|). If  and £ have the
same sign, we can assume, without loss of generality that both are non-negative.
Let v = max (z, £) v = min (z, £), then

|@(x, 1) — @4 1)
2 (1/0) [¥ [1/(1 + w)ldw = (1/C) log (1 4 |u — v|/(1 +v))

z (1/C)log (1 + [& — /(1 + [&).
If z and ¢ have opposite signs, we assume w.l.g. » = |v| and

[®(z, 1) — (& 8)| = (1/C) llog (1 + ) + log (1 + [v])]
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= (1/C)log (1 +u + ) = (1/C) log (1 + [z — &)
z (1/C) log (1 + [z — £l/(1 + [£).
Let u be the random variable 1 4+ max,<:<s (t) = g, then p < o a.s. Subtract-
ing (11) from (10) and using (12), (13), (14) we obtain
(15) log (1 + |aa(t) — 2(8)|/u)
< K [y(t) — ya(t)] + Ksly(a) — ya(@)| + Ko [2 |oa(s) — a(s)| ds.
In order to deduce from (15) that z.(t) —— x(¢) we will prove the following
lemma. (Lemma 1 is similar to the Bellman-Gronwall lemma, which requires
a condition stronger than (16). Thus, Lemma 1 is applicable whenever the
latter is, but not conversely.)
LemMA 1. Let f(t) be real, non-negative and continuousin — © < a <t £ b < .

Let0 < u < o, p > 0andlet e(t) = 0 and f.," e(t) ds < (oue”®™®) ™. Suppose
that

(16) log (1 4 f(t)/u) < log (1 + &(0)) + p [af(s) ds.
Then '
(A7) 7)< ule(t) + pue™ - [2 e(t) dtl/[1 — pue™ ™ [2 e(t) d].

Proor oF LEMMA. From (16)

(18) [1 + f(&)/ul/exp (o [2f(s) ds) =1+ «(t)
or
low + of ())/exp (o [L7(s) ds + put) = —(d/dt) exp (—p [af(s) ds — put)
< ou(l + (t))e™™

Integrating from a to ¢:

e ™ — exp (—p [Lf(s) ds — put) £ €™ — e 4 pue ™ [o e(t) dt.
For pue™®™® [Le(t)dt <1

exp (p [if(s)ds) = 1/(1 — pue™ - [Ze(t) dt)

and (17) is obtained by substituting the last inequality into (18).

Applying (17) to (15) with ex(t) = e(t) = exp {Klly(¢t) — ya(8)| + [|y(a)
— ya(@)[l} — 1, &a(t) — 0 as n — oo and by dominated convergence fﬁ en(t)
dt — 0. Therefore, under A;, 2,(t) — z(¢) — 0 a.s. and under A4 for almost
all samples 2(t) — x(t) — 0 uniformly in [a, b].
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