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Deflations Preserving Relative Accuracy

80: Abstract

Deflation turns a matrix eigenproblem into two of smaller dimensions by annihilating a block of
off-diagonal elements. When does deflation perturb at worst the last significant digit or two of
each of an Hermitian matrix’s eigenvalues no matter how widely their magnitudes spread? We
seek practicable answers to this question, particularly for tridiagonals, analogous to answers for
bidiagonals’ singular values found by Ren-Cang Li in 1994. How deflation affects singular
vectors and eigenvectors is assessed too, as is the exploitation of spectral gaps when known.

81: Introduction

Let Hermitian H:=H:= II\B/I \ﬂ and Y:=VY:= {MI \(/)\J have ordere®pectrarespectively
EH)={6,26,2...20,} and E(Y)={n;=2n,=...2n,}= EM) O EW)
wherein EM) ={p 22 ... 244} and EW)={w2wp2...20_n}-

Here the uniond is the union ofMultisets because some eigenvalugs may be repeated.

Y comes from H viaDeflation which reduces a big n-by-n eigenvalue computation to two
smaller ones, m-by-m and (n—m)-by-(n—m) (not both much smaller), computable faster. Itis
well known (see Li & Mathias [1999]) that ever§ +n;|<|[B]|, the biggest singular value

of B. This boundsAbsolute errors induced by deflation. We seek bounds uBetative
errors Iog()j/r]j) . There are obvious bounds like roughly }iH||B|| and |[¥|-||B|| but these
turn out often unnecessarily both too big and too expensive to compute. In 85 we find smaller

bounds like ||M%-B|| and ||B-W}|, though they are not always much smaller; and they may
be practicable, if practicable at all, only when H and/or M or W are/is nearly diagonal.

Let upper-triangular matrices S {P E} and Z{Q O} have ordered singular value sets
OI F 1

respectively S) ={0,20,2...20,} and §2Z)={{,=2{,=...2,}, all nonnegative.
Again, Z comes from S via deflation, and evesy—|(;| < ||E[| This bounds absolute errors
induced by deflation; we seek bounds upon relative errorsrjlég(. The obvious bounds like

roughly ||SY|||E]l and [{Z]|||E|| turn out often unnecessarily both too big and too expensive

to compute. Smaller bounds like 1EE|| and [|E7#|| were found by Ren-Cang Li[1994] to
improve bounds exhibited by Demmel & Kahan [1990] (p. 878) only for bidiagonalheSe
may also be the only matrices for which Li's bounds rederived hereunder in 84 are practicable.

Besides perturbing eigenvalues and singular values, deflation rotates eigenvectors and singular
vectors through angles assessed roughly in 86 and 87. Overestimates for these angles involve

our bounds like ||[M-BJ|| and [|D“E|| upon the relative perturbations to eigenvalues and
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singular values, and involve alseelative gaps between eigenvalugs and between singular

values. Since these gaps are usually unknown when deflation occurs, the angles’ overestimates
serve mainly to allay fears that deflations preserving relative accuraciealoés will damage
“vectors much more than must most likely be tolerated no matter vestors are computed.

Different gaps figure in §8'Quadratic relative error-bounds like [[BE|f/gap for singular

values and like ||M-B|f/gap for eigenvalues. When estimates available for the relative gaps
underestimate them at worst mildly, these quadratic bounds can be so much smaller than bounds
derived in 84 and 85 as to allow advantageously deflations otherwise disallowed, though such
deflations preserving the relative accuraciesvaflues may impairvectors intolerably.

Not every matrix computation always produces results of relative accuracy at least about as high
as is deserved taking the data’s uncertainty into account. A recent survey of such computations
is Z. Drmacs 846 in L. Hogben's [200landbook Among those computational methods

that preserve relative accuracy, only a few are candidates for deflations that do likewise. After
such a method has been applied to our data, how can we corroborate its results’ claims to high
relative accuracy? An answer to this question in 89 is the first application of our error-bounds.

Most deflations occur in certain iterations that act upon condensed matrices like tridiagonals and
bidiagonals. The sooner a deflation the better, because it reduces both the cost of each iteration
and the number of them, but this entails a conflict between reduced and augmented costs: To
decide when deflation will not perturb desired results intolerably, iterations that alter M, B, D,

E, etc must be augmented by recomputations of bounds like™Bl and ||D-E|| and their
comparisons with tolerances. ldeally the augmentations should add little to the iterations’ cost.
To this end, relevant by-products of the iterations should be exploited wherever possible, and
their innermost loops should be burdened at worst slightly, since deflations preserving relative
accuracy can occur at most very infrequently compared with passes around the inner loop. See
Parlettet al. [1994, 2000, 2012] for lengthy assessments of typical trade-offs of the likelihood

of permissible deflations versus tests for them like some explored in 810 here in the context of
his dqds iteration.

§2: A Tiny Tolerance T<<1

Suppose a tiny positiv&olerancet is given, and is so tiny that is quite negligible so that
different approximations lika =1 —e ' = —log(1 —1) = /(1 + 1) need not be distinguished.
This will simplify the discussion in so far as inequalities like> [log(6/n)|, t©>|(6 —n)/9|,

1>](®-n)/n|, ... need not be distinguished when the tolerands an upper bound upon
tolerable relative errors with whicl&(Y) approximatesg(H). Then we shall find in 85 that

those errors are surely tolerable whendah |[M™1-B|| <t and ||B-WY| <t. These
conditions resemble Li's conditions in 84 f§Z) to approximateS(S) tolerably, except

his have &ither |[DLE[|<2 or ||[E-FY|<2” in place of both ... and..”.
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83: Ostrowski’'s Inequalities for Congruent Hermitian Matrices
Y and H areCongruentif Y =C¥.H.C. Alexandre Ostrowski’s now classical inequalities

assert that J|CP < 8,/n; <||Cf for every j (except /0 :=1); see C-K.Li& R. Mathias
[1999] for an elegant proof. Also if Z=S*Corif Z=C™S, then 1]|CY|< /g <|IC||
for every j (except /0 := 1) follows. Most matrices C used below will resemble this one:
ctl .= { ' J—'U} wherein U may be rectangular, in which case zero matrika® the same

o |
shape as the transpose of @nd the two identity matrices | have different dimensions. Since

[|C]| is unchanged by unitary or real orthogonal pre- or post-multiplication, U in C may be
replaced by a (rectangular) diagonal matrix o Wingular values, ||U|| among them, to let

us deduce easily that g} = |[ é " li" Il = |JUR +V(1 + ||U[f/4) = exf(arcsint{]|U]|/2).

84 Derivation of Ren-Cang Li’'s Bounds for Singular Values

Obtained firstin 1994, their proof was simplified in 83.2 of Parlett & Marques [2000], and
will be streamlined a little hereunder. Recall upper-triangles S and Z and their singular values:

S:=[D E} , (S)={0120,>...20,}, Z:= [D O} H2)={(12(2 ... 2(,}.
O'F o F

Choose C:z | D_1EE] toget Z=S% [|CY| = exfarcsintf||[DE|[2)), and via §3
o |
find that every relative erroflog(oj/Z]—)| <||IoLE|f2. Similarly every| Iog(oj/Zj)| < ||E-FY|2.

Conclusion If either ||[DE|| <2 or ||E-FY| <2 then every|log(c;/Z;)| <.

The conclusion holds also if D and F are arbitrary squares instead of upper-triangles; further
generalization to rectangles is immediate but immaterial here. More important, if(sen@e

so one of ||D~E|| and ||[ER|| exists but not the other, the conclusion persists with 0/0 := 1

Example:

Let n-by-n S := bidia{g‘J{slS S S €

{D e} in which the paﬁ is absent from
1 1 f 1

o f

only the first and last columns, amd>f>>1>e> 0. Whenise is so small that replacing it
by o deflates S without incurring relative errors worse thaim singular values? The least
singular value of S is very close to that of B, = (—1)/V(?"-ns>+n-1). The largest
singular values of S are not far from those of @ =s+1. This putsf amidstS(D), so no

spectral gap(cf. 88) is available compared with which to deefn negligible. Yet R-C. Li's
criterion implies thate is negligible if e < 2t-f although this can exceeal, hugely. No other

relative-accuracy-preserving criterion known to me would permit this example to be so deflated.
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85: Derivations of Bounds for Eigenvalues
Recall H:=H:=|M B| and vy:=v:=|M O] and their ordere®pectrarespectively
B'W '

E(H)={6:26,2..28,} and E(Y)={ni2n,2...2n,}= EM) DEW)
wherein EM) ={p 22 ...24,} and EW)={w2wp2...20_n}-

We shall construct three versions of 83's C designed to connect first a sulEgef) ofvith
E(M), then some ofE(H) with E(W), and then all ofE(H) with E(Y) =E(M) O E(W).

M O

First try C:{ I M7 | to get Cl'-H-Cl{ _} with W:=W-B-M1B. In

o' | "W
this case 83 provides |Fé|1:||C1|F2=exr(iZ-arcsinl(“M‘l-B”’Z)). This implies that some
subset of m eigenvalueg in E(H) are approximated big(M) within factors no farther

from 1 than are eXp2-arcsinkl|M~2B|{2)). Consequently ...

The relative errors irE(M) are all smaller than threshold whenever [|M-B|| <t .

However, in the absence of a similar constraint upon {|B}WWbo we cannot infer constraints
like T upon relative errors ifg(W); for an extreme example take W := O

Secondtry C:=

| BW | toget Ct'.H.C1=|M O| with M:=M—-B-WLEB.
o | "W

In this case ||Gf| = ||CY[E? = exp(+2-arcsinkl|B-WY[/2)) . This implies that some subset of
n-m eigenvalue®); in E(H) are approximated b¥(W) within factors no farther from 1

than are exf2-arcsink||B-W/2)). Consequently ...

The relative errors ifE(W) are all smaller than threshoid whenever ||B-W| <t .

When both ||[M™-B|| <t and ||B-WY| <1, obviously eachn; in E(Y) = [E(M) O E(W)
approximatessome; in E(H) with relative error no worse than However we have not yet
deduced what we wish, namely thatery 6; in E(H) is approximated by its); with relative

error no worse tharm. So far, our reasoning has yet to preclude that some eigenveifeln
is approximated withimt twice, once by an eigenvalue E(M) and again by an eigenvalue
in E(W), leaving some other eigenvaluel&{H) approximated that closely by nonel&(Y) .

To preclude that mishap we shall find tH&M) approximatesE(M) with relative errors no
worse thant® wheneverboth ||[M™B|| <t and ||B-W?| <t. Then a matrix K satisfying
M=M-B-W2LB = (I-K)"-M-(1-K) and |[|K|| <?/2+O(t* will be constructed, whence
Ostrowski’'s inequality will imply the desired finding th&(M) = E(M) near enough, and also
I -K 0

L |

C:= will have CY¥.H-Cl=Y exactly and ||E|F <1 +1 +1%+O(1%).

Prof. W. Kahan Page 5/23



File: Deflate versioiNdae&sdber 25, 2012 11:45 pm

The construction of K begins with the definitions of G :=8-(B-W?)'/4 and the matrix-

valued function f(X) :=X-M~LX" + B-W™.B')/2 = f(X) . Starting from X:= O, iterate

Xk+1 = f(X) for k=0,1, 2,3, ... inturn. This iteration converges quickly to a fixed-point
X=f(X)=2M-(G+ F+2.G+5.G +14.-C +42.3 + 132.G + 429-& + 1430-8 + ...).

The coefficients in the bracketed series are the coefficients, all integers, of the Taylor series of

x(9) = (1-V(1-49))/2 =x(g)’+g around g =0 Since ||G|| 2/4 << 1/4, the series for X

converges very fast to X2M-G. Then K := M.X=2G turns out to behave as desired, so

coo| 17K o)

) has HC'-Y-C exactly, and [fF <1 +1+O®?, whence our ...
WB |

Conclusion: Wheneverboth |[M™LB|| <t and ||[B-W?|| <1 then, as claimed,
E(Y) approximatesE(H) with relative errors no worse than+ O(t) .

T0O0T
Examples: A := g 1 ; g has eigenvalues At and (1* 1)1 that changeto 1, 1,1 after
T
24 o | Offdiagonal elements are annihilated. {|B||=t << ||M7Y|-||B|E 1
SO our new relative error-bounds can come close to best-possible.
1 00T
However V:= 8 1 T1 g has eigenvaluesV(1+1?) and +1-V(1+1%) that change tatl, +1
T —
2, o @afteroff-diagonal elements are annihilated"}®|=||B-W|=1

SO our new error-bounds too are capable of extreme pessimism.

86: The Quality of Computed Eigenvectors

Besides affecting eigenvalues and singular values, deflation affects eigenvectors and singular
vectors. These can be affected drastically, rotated through angles agiigiaghe case of
example A above, unless the eigenvalgef 85's Y are separated bglative gaps
adequately wide compared with threshald This is the case for example V above; deflation
rotates its eigenvectors through angles likeln the absence of hypotheses about spectral gaps,
what little can be inferred about the accuracies of eigenvectors computed after our deflation is
that their Residualsare Relatively small in the senses discussed hereunder. ...

After H:={M B deflatesto Y : O and (part of) its spectri@ty) is accepted as a
B'W o''w

computed approximation to (part 08(H), corresponding eigenvectors of Y will be accepted
as computed approximations to corresponding eigenvectors dieHy be a normalized
eigenvector of Y andy its eigenvalue, so ¥=ny and |||=1. Residualr :=Hy —ny
indicates how nearly approximates an eigenvectbr of H belonging to its eigenvalu@

approximated byn. We find ||| <t-p| when ||MB|| <t and/or ||B-WY| <1 as follows:

Sincen OE(Y) =EM) O E(W), n OEM) or n OE(W) or both. For definiteness suppose
n=uOE(M), since the alternative can be handled analogously, and ket the normalized
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eigenvector of M belonging tp so that M4 =p-u and Jj|| =1. Then Ys eigenvector

y=|t]. andresiduat = Hy-ny=| 0 | has il =1Bull = (M E) uull< - IM Bl

This is why H|| <t-pn| whenn O E(M) and ||[M™-B|| <t. Similarly [f|| <t-h| when

n O EW) and ||B-WY| <t. Those are the ways in which residuais Relatively small.
The appearance ofj|| in the inequality |Ir|| <t:In|” is what justifies the term Relatively. It
embraces widely disparate eigenvalue magnitugesrid is important because it explains why

our deflation that preserves eigenvalues’ relative accuracy also preserves eigenvectors belonging
to Relatively well-separated eigenvalues. Here are some of the explanation’s details:

The Absolute Spectral Gay separatingn 0 E(Y) from the rest ofiE(Y) is defined thus:
y:=min{|n—-n| overalln OE(Y) with nzn }.

Let a Relative Spectral Gap separatingi O E(Y) from the rest ofE(Y) be defined thus:
p:=V/|A|=min{ /i —1| overalln OE(Y) with n#R{ }.

Two technicalities intrude here. First, for simplicity’s sake is assumed a simple eigenvalue

of Y whose corresponding normalized eigenvedgtois rotated slightly from the normalized

eigenvectorh of H belonging to its simple eigenval@ within i €. The angled(y, h)

of that slight rotation is in question here. Second, we shall be concerned with y g
when gapp >>1 and thresholdr << 1; otherwisell(y, h) can be much bigger than “slight”.

According to ch. 1 of Parlett's [1998] book and works cited therein, deflation rotates
through an anglél(y, h) no bigger than aboutr||fy when it is small. Above we found that

lIF|| <t:I7 | when our deflation preserves relative accuracy. This implies what was claimed:

Our deflation rotates eigenvectbr through an angleél(y, h) no bigger than about/p .

The foregoing angle overestimate can be generalized by substitutimg for a relatively tight
cluster of eigenvalues of Y separated from the rest by a sufficiently big relative.g@pen

the eigenvectors of Y belonging to that eigenvalue clugter span an invariant subspace of Y
An analogous invariant subspace of H is spanned by its eigenvectors belonging to the clustered
eigenvalues of H falling withirj €'. Then our deflation rotates one invariant subspace onto

the other through angle<f( 8117.1 etc of Parlett [1998]) again no bigger than abolg .

Conclusion: 85’s deflations that preserve eigenvalues’ relative accuracy alsa
preserve eigenvectors about as well as relative spectral gaps ditew.

87:. The Quality of Computed Singular Vectors

Let @ be a singular value of F in 84 with normalized singular vecioed v that satisfy
[ull=IVv|=1, Fu=@v andVv'-F =@u'. After S in 84 has been deflated tg 0 @ in
$(Z) has been accepted as a computed approximation to a singular valueofrésponding
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singular vectorsH an ﬂ of Z will be accepted as computed approximations to singular
u Vv

vectors of S Their residuals are := SH - ﬂ = {Ecﬂ and @ S —@ m =0'. Now

IF|l = ||Bul| =@-||E-FLv||< @ ||E-FY| < Z-¢ when ||[E-F| <, which is one of R-C. Li’s
deflation conditions in 84 sufficient to keep relative error§fd) below thresholdr. This
one condition impliesRelatively small residuals |f||p < 2t) for approximate singular vectors
of S computed from singular vectors of F in 2o deflation rotates each of these vectors
through angles no bigger than aboatp2for an appropriatRelative Gapp >>1, asin 86,
but now between adjacent singular valuesS{#) .

What happens to approximate singular vectors of S computed from singular ve&odsy

of D in Z when [|[EB||<2t<<1<<||DLE||? Now D=3y, y-D=5x", [kl|=l}l|=1

sﬂ -6-M =0 andr = M'-s —5H' =[ o y; sonow {l]| = y"-El| =5k -D-LE]||. But
0

0] 0] [0)

Now no reason exists to expect||Ip to be small. Try S :%cz T} and Z{:T=2 0} for example;
01 01

their ||| = 1k >> 1, yet deflation turns singular vectors through angles likip &r smaller
anyway. Still to be explained is why this always happens when just one of R-C. Li's deflation

conditions in §4, namely ||[E#<2t<<1, is satisfied but not the other; say }B|| >> 1
Let’'s see:

The singular vectors of a matrix are just the singular vectors of its inverse swapped. Here

-1

D D!
—~1

o' F

stl= ; its singular vectors neaﬂ arH belonging to its
0 )

0] ]

singular value nead ! have residuals % M ~5L ﬂ =0 and a newr := {
[0) [0}

| st-s{]
now r =[o' —'-D"LE-F} has a relatively smallr|||5=|y"-E-FY|<||E-FY|<2t. The
relevant relative spectral gap among singular vaiésof Z is p := mirg,s [¢/871- 1],

which turns out to be related to the relevant relative spectrabgapnin.s |¢/3 — 1] among

the singular value€ of Z thus:p=p/(p+1) andp=p/(p+1). If either of p or p is too
tiny, the other must be too tiny too. Both relative spectral gaps produce roughly similar over-
estimates, big or small, of angles like/@® of rotations of singular vectors:

Conclusion: 84's deflation that preserves singular values’ relative accuracy alsp
preserves singular vectors about as well as relative spectral gaps dikew.
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88: Quadratic Relative Error-Bounds and Spectral Gaps

B'W "W
E(H)={6,26,=>...20,} and E(Y)={ni=n,=...2n,}= EM) O EW)
wherein EM) ={ 22 ...24,} and EW)={w2wp2...20_n}-

Recall that H:=H:= {M B} and Y:=VY:= {M O} have ordered spectra respectively

Our error-bounds upon differences betwezf) and E(Y) have been roughly proportional to
B sofar. When B is small enough, smal@uadratic bounds roughly proportional to'-B
may be available provide&(M) and E(W) are separated by sufficiently big and kno@aps
Quadratic bounds come with a price: complicated proofs and hypotheses rarely applicable.

In 86 the rotations of eigenvectors by deflation involved gagsd p within E(Y); those
must be distinguished from gagsand I' defined hereunder to separd&M) from E(W):

The Absolute Spectral Gayy separatingn O E(Y) from E(M) or E(W) is defined thus:
If n OEM) theny(n) := min{|w-n| overall wOEW)}, else
if n0OEW) theny(n) :=min{|u—n| overal puOEM)}.

Let a Relative Spectral Gag separatingn O E(Y) from E(M) or E(W) be defined thus:
If nOEM) n EW) thenl(n):=y(n) =0; elselr'(n) :==yn)/In|.

Let W(E) := tar(Farctarf2€)) = tant(3 arcsinif2g)) = 28/(1+V(1+4€?); among its properties
only these will be needed: 0 ¥()/d¢ <1; W

WENE ~1 asE\0; WE) 1 as§ o, |1
These properties suffice to confirm that

WEN)E<min{ &, &3y} if £>0 andy=0, O »$
which will be used implicitly and repeatedly.

Optimal quadrati@absoluteerror-bounds for eigenvalues come from C-K. Li & R-C. Li [2005]:

B —njl < W(UIBI ¥(ny)-1IBI| AB
< min{||Bll, [IB[f/¥(n;)} when [IB|| >0 and(n))>0.

Those absolute error-boundsAB imply immediately these quadratielative error-bounds:
Bi/n; — 1= W(IBAIVT (n)-I1BA;ll- RAB

These bounds tend to pessimism partly because they are so general, a@&@wingnd E(W)

to mingle like red and black cards in a shuffled deck, and partly because they gge B/

which n; is unlikely to be known when it is needed. To replacen;||Bby something perhaps

smaller and maybe cheaper to compute, how much generality must we relinquish? We start by
relinquishing mingling; we shall not let the narrowest interval contail&(lg) overlap the
narrowest interval containin&(W). Moreover we shall seek quadratic relative error-bounds

only for positive eigenvalues, first the largest of them, then the least.

In conversations with Ren-Cang Li in May 2012 he altered the proAfebfto get this claim:
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Suppose W has all the largest eigenvalues pf sy everyn; =w; >0 for 1<j<n-m,
and Np_m= Wn_m2 Nisn-m = H; for 1<i<m. Then relative gapd (o) = 1—u1/oq , and

0< 6/oy — 1 < W(IB-WHYT (w))-|IB-WH| for 1<j<n-—m. RBW
E(M) gap E(W)
- +
Hm M1 ; Wn—m W
“«— — — — - 0O «—— — — — — -

Proof: It starts with j := 1 assumef; # w, to leave something to prov@,-I — H must be
positive semidefinite (actually singular), €9-1 — W and8;:-1 — M must be positive definite.
A congruence analogous to the firstin 85 implies that— W — B-(04-1 — M)™L-B must be
positive semidefinite, and then so B-W2—W=1— (B-WY"-(0;-1 - My~B-WL. It must
annihilate some columr normalized sov'-v = 1, whence follows that

V@1 W2-W v = v.(B-WY-01 - My LB-Wv.
The least eigenvalue di;-W2—W™ turns out to beB;/w,°—1/w, becaused;/w’— 1w is
monotone decreasing on the interval @<,,< W< w; <B;. Therefor the last equation’s left-
hand side satisfie®;/w,>—1/w; < V'-0,-W2-W).v. The equation’s right-hand side satisfies
V-(B-WY 0,1 - My LB-Wtv < ||B-WYP/(8; —p;) . Together the last two inequalities
imply 6,/w;—1 < ||B-WYR/(8,/0;—1 + 1—;/w;), whenceRBW soon follows for j=1

The rest of the proof goes by induction on supposeRBW is true when H has dimension
m+1, m+2, ... and n=1but now H has dimension. Mo generality is lost by assuming that
W is diagonal since this can be achieved by an orthogonal or unitary similarity that alters no
eigenvalue nor norm.. Obtain flom H by striking out its row #(m+1) and its column
#(m+1), thus reducing W to W diagfy,, ws, ..., w,_,] and B to Blacking the first

column of B, so BW™ lacks only the first column of B-W and [[BW3|< ||B-WY].
Now I(wy) is unchanged, anRBW implies that 4,8y, ,...,0,_4} = E(H) satisfies
0< 84/ — 1< W(BW YT (w))- [BW Y| < W(IB-W YT (w))-[[B-WY| for 2<j<n-m.
Repeated appeals ©auchy’s Interlace Theorermmplying w; < 8; < 0;_; finish the proof. []
( Cauchy’s Interlace Theorem occupies Ch116f Parlett’'s [1998] text. )

RAB said 6/ — 1< W(||Bly|VT (c3))-IBLy|| under hypotheses assumed [RiBW, whose
bound may be larger thaRA B’s for some small j (bigy) butis probably less for bigger j
(smaller o). In both error-bounds the critical quantityligw, ) = 1-p4/w,_,, one of two

smallest relative gaps betweé&(M) andE(W). Gaps can be hard to (under)estimate usefully.
Otherwise neithelRBW norRAB imposes requirements upon the sign&iiM) ; some or

all of them may be negativeRBW outdoesRAB when ||B-W1||/||B/wn_n4| is small.
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A slightly different alteration ofAB’s proof leads to this claim about lesser eigenvalues:

Suppose H and Y are both positive definite, and the least m eigengaloésy all come
from E(M), so W-p,:1 must be nonnegative definite. (These hypotheses imply that B is

small enough that both MB-WL.B' and W-B'-M~L.B are positive definite too.) Then
0< 1 —Bp_maflj < WAIM V2BV YT () IM 2BVl for 1<jsm.  RVMIB

This bound seems unlikely to be useful unless m whereupon it reduces tRAB above.

A substantial alteration 0AB’s proof yields claimRM B hereunder about lesser eigenvalues:

Suppose Y is positive definite and its least m eigenvafyesil come fromE(M) ; thus
W—p4-I is positive definite andwy,_m>Nn-m+j=H; > 0 for 1<j<m. Further suppose that
IM2-BJ| < IV((ua/ i)+ Ha/Hm) < V2. Then everyd; > 0 and (1) = y_nflj —1 and

0< 1-0y_mafiy < W(IMEBIT (W))-IMB|| for 1j<m. RMB

E(M) gap E(W)

Hm M1 Wn_m W

Proof: In §5, W:=W —B-M"%B = (W —uy-1) + (uy:| - (MLB)-M-(M~1.B)) is positive
definite because of §3 and fMB|| < Iv2, so H is positive definite, whence evdy> 0.

Now induction starts with j = m assumef,, # |, to leave something to prove. The proof will
needv = min{ (4 —en)/u2 over yy <M < Hq}; letus see how = (Y, —en)/pm2 follows

from our supposition about [[MB]||. Cauchy’s Interlace Theorem implies tha = 6,, so
L>0; and from §5 comesgi, /6, < exp(2-arcsinki|M~2B|f2)) < 2 because |[M-B|| < 1V2.

s e
r / Hm 26, H1
Since expressiox(y) := (U —en)/p2 reaches its maximum/(#6,) at u=20>y,,, we find
v = min{ (W —60)/11%, (Um—6n)/Um2} = (m—6n)/Hy2 as claimed because, unlgss =y,
sign( (U —6)/112 — M —B1)/m?) turns out the same as s{@h+ p/i1) 0/ —1); again
§5 supplies 8, /uy, = exp(—2-arcsintj|M™1-BJ|[2)) = 1/(1+ p/11) to confirm the claimed .

Next, apply a congruence like the second in 85 to6Kll= which is positive semidefinite
(actually singular), to infer that M6l — B-(W—en-l)‘l-B' is positive semidefinite, and then
another congruence to find T6,-M2— (M™L-B)-(W-6,-1)"%(M~1.B) positive semidefinite.
Its normalized null-vectow satisfies v'-(M™1=6,-M™2)-v =v'-(M~1B)-(W=8,,- 1)~ (M~1.B)-v.
Combine this equation with'-v = 1 and the foregoing value of the least eigenvalue of
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M™1-8,-M2 to infer that L = (U —6,)/ i < |IM2B|f/(w_m—6,) . From this inequality
soon follows the desired result: <@ —8,/uy, < W(IM~B|T (U))-IM™L-B|| for j=m .

The proof continues by induction on :nThe induction hypothesis asserts tiRi¥l B is true
when M has dimension 1, 2, ..., m—but now M has dimension .mNo generality is lost
by assuming that M = diagongif, 1, ..., lm—1, Mml Since this can be achieved by a unitary or

orthogonal similarity that changes no eigenvalue nor norm. Obtafrord H by deleting its
row #m and column #m, thus repacing M by.=Mliagonalfi;, 1o, ..., Um—2 Um—1] and B
by B without the last row of B and M™-B likewise by MLB with [[MLB||<|M1B||.
Since |MLB|| < IV((Hy/km)? + Mi/im) < UV ((Uy/Hm-)? + Ho/im.1), H satisfiesRM B's
hypotheses, whence<0L—8,_n./i; < W(IIM1B|IT (W))-[IM-B|| for I<j<m-1 in which
B, comes fromE(H) ={8;=6,>...20,,_1} . Cauchy’s Interlace Theorem pulis< 6, for
1<isn-1 andthen 81-8, .1y < 1=y by < PUIM BT (w))-[IM 2B for
1<j<m-1 aswellasfor j=m, completing the proofRM B . ]

Unlike our previous error estimateRM B bounds relative errors i&(M) only if its variation
Hy/Hy is restrained by [IM~2B|| < IV((1y/pm)?+ He/iy) 7, though this restraint is usually

satisfied already when a demand for high accuracy has delayed deflation urtiB|||N& tiny
like vT. Otherwise some such restraint seems unavoidable because of examples like this one:

1 0 O

Hy:=[©0 8 8| 8 =12, puy=1, py,=8, |IMLB||=1 ;=24730, but
271
© %30 1-8)u=1/2 £ 012261= W(IMLB|[T)-[IMLB]] .

The example bl:{c?s(z“) Si”(z‘)} has eigenvaluesl and eigenvector%?s(“) ‘Si”(o‘)} that
sin(2a) —cos(2a) sin(a) cos(a)

deflation rotates through an angie while changing eigenvalues b2-sirf(a), which may be
negligible thougha is not. This example, like example V in 85, reminds us that deflations
allowed by negligiblequadratic error-bounds forvalues may rotatévectors excessively.

Quadratic Error-Bounds for Singular Values
Recall upper-triangles S and its deflation Z and their ordered nonnegative singular values:

OI
Here §(Z) = (D) O S(F), wherein D) ={6,20,2 ... 28,} will have to be distinguished
from S(F)={@; 290, > ... 2@, } by gaps defined in a way now familiar:

s::{D"j L S(S)={0120,2...20,}; Z:= {D (j, S2)={01202...2,)

Prof. W. Kahan Page 12/23



File: Deflate versioiNdae&sdber 25, 2012 11:45 pm

The Absolute Spectral Gapy separating 0 §(Z) from S(D) or S(F) is defined thus:
If Z0S(D) theny(Q) :=min{|@—{| overallodSF)}, else
if {OSF) theny() :=min{|d-| overalld0SD)}.

Let a Relative Spectral Gag separatingl [0 §(Z) from S(D) or &F) be defined thus:
If ZOSD)n SF) thenT(Q) :=y(Q) =0; elsel Q) :=y/T.

Yes, the gap-functiong(é) and I'(§) are overloadedaccording to whether their argumeht
comes fromE(Y) or from §(Z) ; let’s hope their context will preclude confusion.

Li & Li [2005] used AB to derive similar quadratiabsolute error-bounds for the singular
OD OO

values of S %8- ﬂ because they and their negatives are the eigenva lgeg (é)fCF’

_ 00 FO
loj =il < WAIEN V) lIEI| AE

< min{|[El} |IEf/WZ)} when |[E||>0 ang(g)>0.
Those absolute error-boundsAE imply immediately these quadratrelative error-bounds:

l0j/¢; — L= WAIEGIVT (€))L RAE

As we did for RAB, we shall try to replace || by something perhaps smaller and cheaper
to compute. To do so we shall again relinquish somRAfE’s generality by assuming that a
sufficiently wide relative gap separates the smallest interval conta8(idy from the smallest
interval containingS(F). Here is an analog of R-C. LI'RBW , but proved differently:

SupposeS(D) has all the largest singular values of 20 every(; =g for 1<j<m, and

{m=08m>{m+1= @1 LetgapsG; :=1—(@/5)*— |[D-E[f for 1<j<m. If G;>0 then
0< (0j/8)?-1 < W(IDLE|G)-|ID E]l RDE

0 S(F) gap S(D)

Gh—m ¢ 6m 61

Proof: It starts with j =1 assumeg; # §; to leave something to prove. To simplify notation

temporarily, drop the subscripts from:=0,, 6:=90; and @:=@,. Then o2 is the largest

eigenvalue of S%{D D?: EEE E Egg , s002>3%>¢?. No generality is lost by assuming

temporarily that D and F are diagonals of their respective singular values.c¥henS-S is
positive semidefinite (and singular), and congruences now familiar establish the same for first

0%|-D?~E-E — E-F-6*|-F)L.F-E =0%1-D? —0%E-©0%|-F?)~L.E and then

0%.D%=1 - 0% (DLE)- 0% 1-F?)~L(DLE) . Its unit null-vectorv satisfiesv'-v =1 and
(0/8)2=1< V' (0%D2=1)v =0%V' - (D LE)-0%1-F) L (DLE) v < 0% ||DLE|f/(0% - ¢?) .
This inequality implies thatog/3,)°—1 < W(||DLE|[G,):[|D E]||, whichis RDE for j=1.

The proof continues by induction on the dimension af The induction hypothesis is that
RDE is valid for dimensions 1, 2, ... and m-1; butnow D has dimensiorstith assuming
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D and F are diagonal, obtain f&m S by striking off its first row and column. Doing so
replaces D by B diagonalp,, 33, ..., 8.1, O], E by E lacking the first row of E and
likewise DE by DE so that TD“B|<|IDVE|| andG;, :=1-(¢/§)* - [DTEF = G;.

And SS isjust S-Sshorn of its first row and column, so Cauchy’s Interlace Theorem tells
us o< 04 for 2<j<m as well asy®< o inferred from SS. The induction hypothesis
implies 0< (0;/8)?— 1< (0.1/8)?— 1< WDV B G.)- D Bl < W(ID-E|G))-ID-E|| for
eachG; >0 in 2<j<m, after which unravelling the diagonalizations of D and F finishes
the proof of RDE . []

RDE’s requirement G;>0" is an annoying complication, perhaps superfluous, almost
surely immaterial because relative-accuracy-preserving deflations allowgDt& will occur
only when ||DME[f <1 << 1 - /8,)?, whereupon eveng; = 1—(@/5)%>T(5) .

To cope with the smallest singular values of S atrick used in 87 will be used again here. The

-1 1

D -D T ELF produces Z- = D~ O

o} F o F
values are the reciprocals of the singular values of S and Z respectively. ApRBi&g to
st (with F increased infinitesimally perhaps) produces the inequaliti&&E hereunder:

deflation of St= . their singular

Suppose F has all the smallest singular value(a), so every(m+j = @ <{m =9y for
1<j<n-m. If ¢ =0 thenoy,;=0; otherwise if gapG; := 1—(®/dy,)?— ID-E|f> 0 ther
& (@/Om)? - 1 < W(IDLEIG)- I E|| for Ij<n-m. REF

=

0 S(F) gap S(D)
$h-m ) Om O

The reappearance of {{BE|| in[REF is not a typo. It emerges from the proof and reassures
us that a deflation preserving relative accuracglinthe biggest singular values does about the
same for the smallest, no matter how small they are, varadversa It is reminiscent of 84.

However, unlike 84 and 87, quadratic error-bounds may permit deflations that alter singular
values at worst tolerably while rotating singular vectors intolerably.

The four quadratic relative error-boun®&BW, RM B, RDE and REF proved above are

believed to be new but not unprecedented. An antecedentis Theorem 5 on p. 881 of Demmel
& Kahan [1990]. Itis more complicated and weaker thanRhe bounds. Like all quadratic
error-bounds, absolute and relative, ours require adequate underestimates of spectral gaps costly
to compute except for special matrices, among them those dominated enough by their diagonals.
Gap estimation will be discussed next.
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Estimating Spectral Gaps
All four new R... bounds have the formRelativeError< W(B/I")-B” in which B stands for a

small (over)estimate of |[BD-E|| or||[M1-B|| or||B-W|, and " stands for an (under)estimate
of a relative gap. Applications of these bounds evade computation of the fulttlmetause

the predicate W(B/I)-B <1” simplifies to “B%< (t+)-1”. To computel is not that simple.

Except in RBW sometimes[ estimates the relative difference between the largest singular
value of one submatrix and the larger least singular value of another submatrix. These involve

norms: ( Cs largest singular value ) = ||C|| (C's least singular value ) 7|JCY|.

In Table 1 below/RBW and RM B are assumed used together, asRERE and REF.
Table 1: Gaps thatl’ must (under)estimate

Bound Minimum Relative Gap
RBW & M) = 1—|IM[]-|[VWH
oM S (Wh-m) [IMI[-[[WWA

M) = YAMI-IWY) - 1
RDE&REF | G, =G, = 1-|IFfjIDYP - IDEIf

The table’s formulas reveal why all the norms must be overestimated relatively tightly to yield
usable underestimatds > 0. Explained hereunder is why relatively tight overestimates of ||...||
tend to be costly to compute; exceptions are matrices dominated enough by their diagonals.

Error-analyses frequently approximate ||C|| by another norm cheaper to compute; an example
is ||Cl, ;== max 3j|g;|, the biggest-row-sum norm. Then IKIICIL < vm:||C|| for m-by-m
matrices G and examples C exist making either inequality an equality. When m is big there
are m-by-m triangular examples F for which both[|ff|| and ||R./||F|| fall at most a few
percent short of/m, so ||...}} is far from a tight approximation to ||...|| for arbitrary triangles.
And there are big m-by-m positive definite examples M for whichJjIN]| is only a little

less than 2 which is rarely tight enough. So far as | know, tight estimates of ||...|| cost far
more thanO(m?) work unless they are obtained for special matrices like those known to have

rank far less than their dimensions, or matrices dominated enough by their diagonals; or else the
estimates are probabilistic.

Probabilistic estimates are generated by iterations that almost always converge rapidly to ||...||
from below. After a few iterations the iterate is expected to fall short of ||...]| by at most a few
percent; then adding a few percent more is expected to overestimate ||...|| only slightly. For
example, if M is positive (semi)definite then Iﬂﬂl’lx||/||Mk-x|| " |IM|| as k7o unlessx is

a very unlikely choice. Another example, motivated by the formyJ&||'= mag, [|Fx|VIXI|”,
generates a sequence of vectrrshat follow the upward gradients of ¥Ff|x|| from an initial
choice of x; convergence is fast from almost any initial choice. The trouble with probabilistic
estimates is their lack of inexpensive ways to expose bad luck which, however unlikely, befalls
every day a few at least of the billions of computed estimates.
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Estimates of ||WW}| and ||DY| incur another layer of uncertainty and expense. According to
Demmelet al [2001], there are reasons to expect any estimator of | ||€ibstantially cheaper

than the cost of computing"€to over/underestimate {f§] substantially for some matrices
C. Nothing unexpected appears among the overestimators surveyed by N.J. Higham [1987];

foran m-by-m triangular D they all incur at least m divisions to overestimaty|, ||&ften
grossly even if it is bidiagonal unless it is dominated enough by its diagonal.

C is deemedominated by its Diagonatow-wise when every j£> Zjii gjl; column-wise
dominance is defined analogously. These dominances dominate more than necessary for cheap

and fairly tight overestimates of ||C|| and jj[Cwhenever such are available. The formulas in
Table 2 hereunder help produce cheaply the gap’s underestimates needed in Table 1:

Table 2: Tight Estimates of ||...|| for a Matrix Dominated Enough by its Diagonal
R... bounds Estimates that Straddle ||...||
REW & max{my} < Ml < [IMll, = max{ 3 Imy }

Uminfw} < W < Uming{ wj — 3 i Iwik| } if positive
R%Eé‘ max{|f;[} < [IFlls max{ max{ Y Ifilt, max{ Yug Ifil} }
Umindld;[} < [ID7°Y] < 2/min; { [dj] — Qe Icki] + Yo Idkl)/2} if positive

The estimates for positive definite M and \tome from Gershgorin's Circles Theorem, for
which see 814.2 of Hogben [2007], or see p. 54 of Kahan'[2@d2a very condensed proof.
The estimate for an upper triangle F comes from Gershgorin’s Circles Theorem applied to

{S j , whose eigenvalues are the singular values of F and their negatives. The estimate for an

upper triangle D' comes from Johnson [1989]. Table 2's estimates are most convenient when
the matrices in question are tridiagonal or bidiagonal.

For complex matrices, estimates depending heavily upon elements’ magnitudes can be sped up
by saving a square root per element thus: First multiply by whatever diagonal unitary matrices

make every diagonal element of S nonnegative; then overestimater]||=\/(22+ n% by
max{E|, h|} + (V2—-1)-min{E|, h|}, which exceedst |+ In| by less than .85%.

Considering how expensive are worthwhile estimates of spectral gaps, and how|rarely
deflation is permitted by quadratic error-bounds, what good are they? Perhaps they

serve here mostly to explain why the non-quadratic bounds of 84 and 85 are sp often
S0 pessimistic though best-possible without estimates of gaps.

The last words about quadratic relative error-bounds seem unlikely to have been written yet.
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89: Application to Tests of Computed Eigenvalues’ Relative Accuracies

The Rayleigh-Ritz method (ch. 11 of Parlett [1998]) will be used here to corroborate claims
of high relative accuracy for some of the computed eigenvalues and eigenvectors of a given big
n-by-n matrix A =A. A subset of its approximated eigenvalues are arrayed as an m-by-m
diagonal A, and corresponding approximated eigenvectors are the columns of n-by-m matrix
Q. Normally these columns are orthonormal or very nearly so. To clean them up, compute
their residual V :=+Q'-Q, preferably accumulating scalar products extra-precisely, and then

replace Qby Q := O+ Q-V/2 whose residual, 4Q'-Q = (3\2+ V3)/4 + roundoff, need not
be computed if it is predictably tiny enough to drown in roundoff.

The next task is to replack by an improved approximation M and determine whether its m
eigenvalues approximate some m ofs Avith high relative accuracy. To this end compute a
temporary residual R A-Q — QA , preferably accumulating scalar products extra-precisely,
and thenAA := Q-R, which would be symmetric but for roundoff. Next repldo® by its
symmetric partAA := (AA + AA')/2 and then compute M A+AA and R :=R- QAA.

Now this final residual R (A-Q — Q-M+ roundoff) and QR= (O £ roundoff). Ideally M

should be so nearly diagonal that R*Mtan be computed easily; finally ||RM is the

desired upper bound upon the relative errors in the eigenvalues ofFhisse can be computed
as corrections to\ by a pass of Jacobi’s iteration (ch. 9 in Parlett [1998]) as described by
Drmac in 846 of Hogben [2007]. That iteration’s rotations should postmultiply Q to update
its columns, which then approximate eigenvectors of A more closely than before.

Why is ||R-MY| an upper bound upon the relative error&E{iv) ? An explanation ignoring
roundoff begins with the augmentation of Q to a notional (not computed) n-by-n orthogonal

matrix [Q, P] = ([Q, P)~%. Notional H :=[Q, P}A[Q, P] :@: \I,B\J has [Q. PR = m ’
E(H) =E(A) and |IMLBJ| = ||R-MY|, whence §5's first error-bound becomes applicable.

That error-bound is applicable also when H is the result of a method like Lanczos’ (ch. 13 in
Parlett [1998]) that reduces (part of) A to tridiagonal form. Now M is tridiagonal and only
the lower leftmost element of B has a substantial magnitude. In this case the computation of

M~L.B and its norm costs time proportional to, Ior at worst m-(n—m) if reorthogonalization
applied to Q has scattered throughout B small elements not small enough to ignore.

In case only the first or last m eigenvalues of A are desired, it is prudent to compute several
more than m to provide a reason to believe that the first or last m are among them. Doing so
often exposes a gap between some eigenvalues and the rest, thus permitting quadratic error-
bounds like those in 88 above to be applied.

810: Application to Deflations during Singular Value Computations by dqds

Here R-C. Li’'s criterionin 84 will be applied as he intended to the deflation of a bidiagonal
matrix during dqgds iterations (Parlettal [1994, 2000]) to compute its singular values. But
first the dgds process will be described as briefly as possible, which is not briefly at all.
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The process computes squared singular values of bidiagonal upper triangle S as eigenvalues of
symmetric tridiagonal T := S-Sor S-S, whose eigenvalues are the same) without having to
compute the elements of S or T explicitly. Instead arrays diad {g} are computed where

o N [By N 8y TV N P O LBy _ 1
S'S:T:trldlagql+e1 o t+e, Oz + €5 O,_1t€_1 ¢, ;
«/qZEel «/q3E92 «/qn—ll:en—Z «/qn EEn—1

{+Vg} lies on the diagonal of S andt{e} on its superdiagonal. The signs do not matter.
] §

There are two reasons for the dqgds process to act ugpradd {g} instead of S or T The

obvious reason is that no square root will be needed in the innermost loop of the process. The
unobvious reason is that rounding off explicitly computed diagonal elements of T can ruin its
tiniest eigenvalue(s). (This happens to 84's example S when its dimension n is bignand

S = bidia%1 s 15 S ) s 19 f is any big number whose incurs a rounding error.)
Starting from §:=S, the dqds iteration chooses nonnegabefts (3 and obtains |§; as
the Cholesky factor of &5, — 31 = Sy+1-S4q for k=0, 1,2, 3, ... inturn. This works
only if 13 does not exceed the least squared singular valug ob8 the closer the better. A
good choice for shift |3 raises difficult questions that will not be discussed here; see Rarlett
al. [1994, 2000] and other works in progress. The squared singular valugsesicé®d those

of S1 respectively byy 3 =+ 3 + ... + [} . Iteration drives S towards a diagonal.

Typically the shifts dwindle until the last one or two become zero and/or deflation occurs.
Deflation is the subject to be discussed at length here.

To simplify the discussion the iteration’s subscript k will be dropped. One dqds(3) iteration
maps § represented by {pand {g}, to ‘S represented by_{}q and {Ea} and satisfying
S.S=S.S—-R:I; then 3R is updated tGR:= SR + B The iteration’s inner loop goes thus:

dqds(?) : -
dy:=qqu—-R; dmin:=¢; jmin:=1;
for j=1 to n-1 do {
q:=d+g; t:=qgu/q; ... The division overlaps the next ...
if (gj <0)then {break out t&arly Failure, q.v.};

if (d;<dmin) then {jmin:=j; dmin:=g@;
B g:=tg; dy :=t.d-B}; ... endof j-loop
On = th;
if (d, < 0) then {go toLate Failure q.v.}
elseif (g <dmin) then {{min:=n; dmin:=4g.

Early Failure here differs slightly from its definition by Parlettal [1994, 2000], who break
out when ¢<0 and j<n Here the count of negative valué§ tarns out equal to the count of

eigenvalues of S*Sess than R so it is worth recording for future use when our failure occurs
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at j=n-1 The count of values; & O is less informative. However, dgds(0) cannot fail, and

then the last diagonal element of the Cholesky factor of the leading j-by-j principal submatrix
of S-S turns out to be/aj, whence the last diagonal element of the inverse of the leading |-

by-j principal submatrix of S turns out to be\/B,/, which will figure in R-C. Li's deflation
criterion below. Then too, according to 86.1 on pp. 204-6 of Fernando & Parlett [1994], the
jth diagonal enement of (S)S is 1/d, which will figure in Ming Gu'’s criterion below.

Early Failure occurs when 3 is much too big, bigger than the second-least squared singular
value of S Late Failure occurs when 3 is a little too big, between the least and second-least
squared singular values. In both caseg find {g} will be discarded, a new smaller shift 3

will be chosen somehow, and dqds(3) will be tried again. If it succeeds, dmin >0 and jmin
figure in the computation of an improved (smaller) upper bound for the least squared singular
value of Sto help choose the next shift, and the updated R will affect revised tolerances
like 1t for permissible deflations that preserve relative accuracies among the final results.

Here “deflation” means that an off-diagonal elemé_qt is deemed negligible and setta 0

Failure to deflate in a timely fashion can inhibit the iterations’ convergence. Started with every
g >0, iteration drives array {p towards zeros and drives array; {33} towards squared

singular values of §in descending order, as if big singular values migrated upward and small
ones downward. But their migration is obstructed when some relatively tiny non-negligible e

has small singular values above it and big below, a situation called “Disordered Data”. This is
why ...

Numerous tests and branches complicate the dgds process with attempts to exploit every
permissible deflation without wasting too much time rejecting impermissible deflations.

The initial iteration, and the first after every deflation, is a dqds(0) modified to scrutinize each
g for a permissible deflation. Li's condition||D1-E[|<2” in &4 becomes g < (4[2)-q ”

to permit the annihilation of; e Li’s condition “|IE-FY| < 2" becomes t.1< (4[2)-71q " 1o

permit the annihilation of ;. Both possibilities can arise also after a successful dqds(f3) with
3>0 since then;& O is a decreasing function of. But those conditions are too stringent.
Conditions less stringent are desired intensely in the hope that they permit earlier deflations.

The search for less stringent deflation conditions begins with the observation that, with each
iteration, SR typically increases by R BB while a modest overestimate of fiSjhamely
A2 1= (\/(ma>ﬁ{qj}) +vV(max{e;}))?, (to be refreshed infrequently)

decreases by a similar amount. Becaii%e ||Sﬁ = ||$)||2— >3, the squared singular values
of § yetto be computed must all lie betweEfi and fi”+ YR. An absolute error smaller
than t-0 in a not-yet-computed singular valae of S, induces a relative error no worse than
1. Ifthisis tolerable, then/Ea in S turns out to be eligible for annihilation whenever

g <t2(if ®>3R then ZR elseii®(1 +3R/i%)?) AbsEtest
because doing so changes no singular value of S by more’@h,arand thus no singular value

Prof. W. Kahan Page 19/23



File: Deflate versioiNdae&sdber 25, 2012 11:45 pm

o of § by more than about-c. Similar reasoning replaces R-C. Li's conditions above for
annihilating ¢ during dqds(3) by

g <4r?(1+3R/M)%q and gy<&®(1+3IR)%d,. Rel Etest
Actually both ¢ and _?:: t-g getsetto O wher psEtest or RelEtest is satisfied. No
harm is done if dgds(B) fails subsequently because, afferadd {g¢} are discarded and
dgds(B) restarted with a smaller e recomputed; dwill be bigger than before.

Thus relaxed Rel Etest is more likely thanAbsEtest to be effective during early iterations.

Later, afterSR has grown andi® has dwindled belows 3, deflation is more likely to occur
after AbsEtest. Alas, “more likely” might not be very likely. ThEtests are most effective
in the more common cases, when firgt and then ¢ ; become negligible, but less effective

in cases of Disordered Data, when 3 becomes negligible long before dogse

Disordered Data can require intolerably too many dqds(0) iterations before any criterion above
pemits deflation. Criteria more relaxed than those have long been sought among quadratic error-
bounds like the ones exhibited in 88 above. For examples see p. 881’'s Theorem 5 in Demmel
& Kahan [1990] and p. 216 of Fernando & Parlett [1994]. That quest has been futile so far.

All deflation-permitting criteria based upon such quadratic bounds have had to await the opening
of an obviously adequate gap between the least singular value of a leading principal submatrix of
the bidiagonal $ and the largest of the complementary trailing principal submatrix. oArs

adequate gap can be unobvious because the dqds process stores only the squares of the elements
of S inarrays {g and {g}. Their square roots would be needed for RIBE & REF

formulas tabulated in 88; fdARBW & RMB appliedto T :=S'Sorto S-S the formulas

would need square rooté(qj-q_l) or \/(qj-q) . These square roots are unavoidable because there
are examples S and T whose diagonal elements differ by not much less than their off-diagonal
elements from extreme singular values and eigenvalues. But the inner loop of dqds cannot afford
augmentation by a square root for two reasons: First, a square root on most computers nowadays
costs at least as much as a few divisions; second, during early dgds iterations when deflations
are needed most, they are so rarely permitted by quadratic tests that almost none get rewarded.

Consequently quadratic bounds can permit deflations during the dqds process only outside its
inner loop if at all. At which sites might such a deflation be permitted, albeit rarely?

The least unlikely site is at, g, followed by @_,. That site must be situated at an obviously

adequate gap between the least of the larger singular values above the site and the larger of the
lesser singular value(s) below. The gap is obvious wemin 9) —v(max ) above that site

exceedsv(max qg) + V(max ) below it; their excess is a lower bound for the spectral gap. Itis

adequate when it is big enough ttRID E & REIF predict tolerable perturbations. An obviously
adequate gap need not appear until after too many dqgds iterations and deflations permitted by
non-quadratic criteria, especially if the least several singular values of S are clustered tightly.
This happens whengSomprises a diagonal sum of blocks roughly resembling example S in 84

separated by relatively small off-diagonal elemew/i;s too big to annihilate.
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Whether the costs of tests for gaps needed by quadratic error-bounds are likely to be repaid by
substantially earlier deflations remains to be seen.

Ming Gu’'s New d-Deflation Criterion:

Theorem 2 of 86.1, pp. 204-5 in Fernando & Parlett [1994], shows for ¢awh ddds(0)

that 1/d is diagonal element #j of (39S, and consequently the least squared singular value
of S lies between dmin and drmin And annihilating fhin changes no singular value of S
by more thanvdmin. Ming Gu noticed first that a tiny;(, > 0 need not propagate to a
similarly tiny ¢, followed by an g ; tiny enough for deflation. However an annihilated

dmin a@lways propagates its zero tq whereupon, at the cost of at most one more dggds(0)
deflation at a subsequent_ge= 0 always follows.

When and why can this kind of deflation be expected to occur?

In the absence of deflations, @® increases monotonically to a limit equal to the least squared
singular valuecn2 of &, the sequence of successful shifts 3 tends to 0 though not always
monotonically. With a good shift-selection strategy (a long story for another day), 3 soon gets
so tiny that it might as well be ;0and by then the least singular value of S must be very tiny

too but unobviously so because of Disordered Data. Since no deflation has occurred yet, each
subsequent dqds(0) includes a test for the condition

d <t2(if m?>3R then ZR elsen?® (1 +3R/m?)?)/n AbsDtest
just before theEtests above to decide whethey or g is eligible for annihilation. After the
annihilation of ¢ occurs it is followed immediately by this upward movement of data:

for i=jton-1do{p=¢; €:=0G+1}; :=0.
This i-loop saves time that would otherwise be wasted on n—j—1 divisions and other arithmetic

in the rest of this dqds(0) iteration. After one more dqgds(0) iteration (or some other scheme)
applied to arrays }g and {_q} spreads the zero at,do g,_;, deflation occurs there.

Sheng-Guo Li has programmed and tesfenisDtest or something like it added to aARACK

version of the dqds process. His results show no degradation of accuracy nor speed, but show
speed-ups by factors as big as 8 for examples S on which the foameckL program spent
extraordinarily long times. An account by S-G. Li, M. Gu and B.N. Parlett [2012] has been
submitted for publication.

811: Conclusion

Like criteria for terminating an iteration, criteria for deflation have to be chosen by the error-
analyst to avoid excessive computation without incurring excessive inaccuracy. Deflation may
be permitted by more than one criterion at each of very many sites; the opportunities are too
numerous for all criteria to be tested at all sites. Instead an economical subset must be found.

The quest continues.
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