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Deflations Preserving Relative Accuracy

 

§0: Abstract

 

Deflation turns a matrix eigenproblem into two of smaller dimensions by annihilating a block of 
off-diagonal elements.  When does deflation perturb at worst the last significant digit or two of 
each of an  Hermitian  matrix’s eigenvalues no matter how widely their magnitudes spread?  We 
seek practicable answers to this question,  particularly for tridiagonals,  analogous to answers for 
bidiagonals’ singular values found by  Ren-Cang Li  in  1994.  How deflation affects singular 
vectors and eigenvectors is assessed too,  as is the exploitation of spectral gaps when known.

 

§1: Introduction
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Here the union  
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  is the union of  

 

Multisets

 

  because some eigenvalues  
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  may be repeated.

Y  comes from  H  via  

 

Deflation

 

,  which reduces a big  n-by-n  eigenvalue computation to two 
smaller ones,  m-by-m  and  (n–m)-by-(n–m)  (not both much smaller),  computable faster.  It is 
well known  (see  Li & Mathias [1999])  that every  |
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turn out often unnecessarily both too big and too expensive to compute.  In  §5  we find smaller 

bounds like  ||M
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,  though they are not always much smaller;  and they may 
be practicable,  if practicable at all,  only when  H  and/or  M  or  W  are/is nearly diagonal.

Let upper-triangular matrices  S :=   and  Z :=   have ordered singular value sets 

respectively   
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 ζ2 ≥ … ≥ ζn },  all nonnegative.  
Again,  Z  comes from  S  via deflation,  and every  |σj – ζj| ≤ ||E|| .  This bounds absolute errors 

induced by deflation;  we seek bounds upon relative errors  log(σj/ζj) .  The obvious bounds like 

roughly  ||S–1||·||E||  and  ||Z–1||·||E||  turn out often unnecessarily both too big and too expensive 

to compute.  Smaller bounds like  ||D–1·E||  and  ||E·F–1||  were found by  Ren-Cang Li [1994]  to 
improve bounds exhibited by  Demmel & Kahan [1990] (p. 878)  only for bidiagonals  S ;  these 
may also be the only matrices for which  Li’s  bounds rederived hereunder in  §4  are practicable.

Besides perturbing eigenvalues and singular values,  deflation rotates eigenvectors and singular 
vectors through angles assessed roughly in  §6  and  §7.  Overestimates for these angles involve 

our bounds like  ||M–1·B||  and  ||D–1·E||  upon the relative perturbations to eigenvalues and 
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singular values,  and involve also  Relative  gaps between eigenvalues  ηj  and between singular 
values.  Since these gaps are usually unknown when deflation occurs,  the angles’ overestimates 
serve mainly to allay fears that deflations preserving relative accuracies of  `values  will damage 
`vectors  much more than must most likely be tolerated no matter how  `vectors  are computed.

Different gaps figure in  §8’s  Quadratic  relative error-bounds like  ||D–1·E||2/gap  for singular 

values and like  ||M–1·B||2/gap  for eigenvalues.  When estimates available for the relative gaps 
underestimate them at worst mildly,  these quadratic bounds can be so much smaller than bounds 
derived in  §4  and  §5  as to allow advantageously deflations otherwise disallowed,  though such 
deflations preserving the relative accuracies of  `values  may impair  `vectors  intolerably.

Not every matrix computation always produces results of relative accuracy at least about as high 
as is deserved taking the data’s uncertainty into account.  A recent survey of such computations 
is  Z. Drmac’s §46  in  L. Hogben’s [2007] Handbook.  Among those computational methods 
that preserve relative accuracy,  only a few are candidates for deflations that do likewise.  After 
such a method has been applied to our data,  how can we corroborate its results’ claims to high 
relative accuracy?  An answer to this question in  §9  is the first application of our error-bounds.

Most deflations occur in certain iterations that act upon condensed matrices like tridiagonals and 
bidiagonals.  The sooner a deflation the better,  because it reduces both the cost of each iteration 
and the number of them,  but this entails a conflict between reduced and augmented costs:  To 
decide when deflation will not perturb desired results intolerably,  iterations that alter  M,  B,  D, 

E,  etc.  must be augmented by recomputations of bounds like  ||M–1·B||  and  ||D–1·E||  and their 
comparisons with tolerances.  Ideally the augmentations should add little to the iterations’ cost.  
To this end,  relevant by-products of the iterations should be exploited wherever possible,  and 
their innermost loops should be burdened at worst slightly,  since deflations preserving relative 
accuracy can occur at most very infrequently compared with passes around the inner loop.  See  
Parlett et al. [1994, 2000, 2012]  for lengthy assessments of typical trade-offs of the likelihood 
of permissible deflations versus tests for them like some explored in  §10  here in the context of 
his  dqds  iteration.

§2: A Tiny Tolerance  τ << 1 
Suppose a tiny positive  Tolerance  τ  is given,  and is so tiny that  τ2  is quite negligible so that 

different approximations like  τ ≈ 1 – e–τ ≈ –log(1 – τ) ≈ τ/(1 ± τ)  need not be distinguished.  
This will simplify the discussion in so far as inequalities like   τ > |log(θ/η)| ,   τ > |(θ – η)/θ| ,   
τ > |(θ – η)/η| ,  …  need not be distinguished when the tolerance  τ  is an upper bound upon 
tolerable relative errors with which  EE(Y)  approximates  EE(H) .  Then we shall find in  §5  that 

those errors are surely tolerable whenever both   ||M–1·B|| < τ  and  ||B·W–1|| < τ .  These 
conditions resemble  Li’s  conditions in  §4  for  SS(Z)  to approximate  SS(S)  tolerably,  except 

his have  “either  ||D–1·E|| < 2τ   or   ||E·F–1|| < 2τ ”  in place of  “both … and …”.
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§3:  Ostrowski’s  Inequalities  for  Congruent Hermitian Matrices
Y and H  are  Congruent  if  Y = C–1'·H·C–1

 .  Alexandre Ostrowski’s  now classical inequalities 

assert that  1/||C–1||2 ≤ θj/ηj ≤ ||C||2  for every  j  (except  0/0 := 1 );  see  C-K. Li & R. Mathias 

[1999]  for an elegant proof.  Also if  Z = S·C–1  or if  Z = C–1·S ,  then  1/||C–1|| ≤ σj/ζj ≤ ||C||  

for every  j  (except  0/0 := 1 )  follows.  Most matrices  C  used below will resemble this one:

C±1 :=   wherein  U  may be rectangular,  in which case zero matrix  O'   has the same 

shape as the transpose of  U ,  and the two identity matrices  I  have different dimensions.  Since  
||C||  is unchanged by unitary or real orthogonal pre- or post-multiplication,  U  in  C  may be 
replaced by a  (rectangular)  diagonal matrix of  U ’s  singular values,  ||U||  among them,  to let 

us deduce easily that   ||C±1|| = || || =  ||U||/2 + √(1 + ||U||2/4)  = exp(arcsinh(||U||/2)) .

§4: Derivation of  Ren-Cang Li’s  Bounds for Singular Values
Obtained first in  1994,  their proof was simplified in  §3.2 of Parlett & Marques [2000],  and 
will be streamlined a little hereunder.  Recall upper-triangles  S  and  Z  and their singular values:

   S := ,   SS(S) = { σ1 ≥ σ2 ≥ … ≥ σn },    Z := ,   SS(Z) = { ζ1 ≥ ζ2 ≥ … ≥ ζn }.

Choose  C :=   to get  Z = S·C–1
 ,   ||C±1|| = exp( arcsinh(||D–1·E||/2)) ,  and via  §3

find that every relative error  | log(σj/ζj)| < ||D–1·E||/2 .  Similarly every  | log(σj/ζj)| < ||E·F–1||/2 .

The conclusion holds also if  D  and  F  are arbitrary squares instead of upper-triangles;  further 
generalization to rectangles is immediate but immaterial here.  More important,  if some  ζj = 0  

so one of  ||D–1·E||  and  ||E·F–1||  exists but not the other,  the conclusion persists with  0/0 := 1 .

Example:

Let  n-by-n  S := bidiag =    in which the pair    is absent from 

only the first and last columns,  and  s > f >> 1 > e > 0 .  When is  e  is so small that replacing it 
by  o  deflates  S  without incurring relative errors worse than  τ  in singular values?  The least 

singular value of  S  is very close to that of  D :   σn ≈ (s2
 – 1)/√(s2n

 – n·s2
 + n – 1) .  The largest 

singular values of  S  are not far from those of  D :  σ1 ≈ s + 1 .  This puts  f  amidst  SS(D) ,  so no 

spectral gap  (cf. §8)  is available compared with which to deem  e2  negligible.  Yet  R-C. Li’s  
criterion implies that  e  is negligible if  e < 2τ·f  although this can exceed  σn  hugely.  No other 
relative-accuracy-preserving criterion known to me would permit this example to be so deflated.
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Conclusion:  If  either  ||D–1·E|| < 2τ  or  ||E·F–1|| < 2τ  then every  | log(σj/ζj)| < τ .
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§5: Derivations of  Bounds for Eigenvalues

Recall   H := H'  :=   and  Y := Y'  :=    and their ordered  Spectra  respectively

EE(H) = { θ1 ≥ θ2 ≥ … ≥ θn }   and   EE(Y) = {  η1 ≥ η2 ≥ … ≥ ηn } =  EE(M) ∪  EE(W) 
 wherein   EE(M) = {  µ1 ≥ µ2 ≥ … ≥ µm }  and   EE(W) = { ω1 ≥ ω2 ≥ … ≥ ωn–m }  .

We shall construct three versions of  §3’s  C  designed to connect first a subset of  EE(H)  with  
EE(M) ,  then some of  EE(H)  with  EE(W) ,  and then all of  EE(H)  with  EE(Y) = EE(M) ∪  EE(W) .

First try   C :=    to get   C–1'·H·C–1 =    with   W := W – B'·M–1·B .  In

this case  §3  provides  ||C||±2 = ||C–1||±2 = exp(±2·arcsinh(||M–1·B||/2)) .  This implies that some 
subset of  m  eigenvalues  θj  in  EE(H)  are approximated by  EE(M)  within factors no farther 

from  1  than are  exp(±2·arcsinh(||M–1·B||/2)) .  Consequently …  

However,  in the absence of a similar constraint upon  ||B·W–1||  too we cannot infer constraints 
like  τ  upon relative errors in  EE(W) ;  for an extreme example take  W := O .

Second try   C'  :=    to get   C–1'·H·C–1 =    with   M := M – B·W–1·B'  .

In this case  ||C||±2 = ||C–1||±2 = exp(±2·arcsinh(||B·W–1||/2)) .  This implies that some subset of  
n–m  eigenvalues  θj  in  EE(H)  are approximated by  EE(W)  within factors no farther from  1  

than are  exp(±2·arcsinh(||B·W–1||/2)) .  Consequently …  

When  both   ||M–1·B|| < τ  and  ||B·W–1|| < τ ,  obviously  each  ηj  in  EE(Y) = EE(M) ∪  EE(W)  
approximates  some  θi  in  EE(H)  with relative error no worse than  τ  .  However we have not yet 
deduced what we wish,  namely that  every  θi  in  EE(H)  is approximated by its  ηi  with relative 
error no worse than  τ .  So far,  our reasoning has yet to preclude that some eigenvalue in  EE(H)  
is approximated within  τ  twice,  once by an eigenvalue in  EE(M)  and again by an eigenvalue 
in  EE(W) ,  leaving some other eigenvalue in  EE(H)  approximated that closely by none in  EE(Y) .

To preclude that mishap we shall find that  EE(M)  approximates  EE(M)  with relative errors no 

worse than  τ2  whenever  both   ||M–1·B|| < τ  and  ||B·W–1|| < τ .   Then a matrix  K  satisfying  

M = M – B·W–1·B'  = (I – K)'·M·(I – K)  and  ||K|| < τ2/2 + O(τ4)  will be constructed,  whence
Ostrowski’s  inequality will imply the desired finding that  EE(M) ≈ EE(M)  near enough,  and also

C :=   will have   C–1'·H·C–1 = Y  exactly and  ||C±1||2 < 1 + τ + τ2 + O(τ4) .
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The relative errors in  EE(M)  are all smaller than threshold  τ  whenever  ||M–1·B|| < τ .
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The construction of  K  begins with the definitions of   G := M–1·B·(B·W–1)'/4   and the matrix-

valued function   ƒ(X) := ( X·M–1·X'  + B·W–1·B'  )/2 = ƒ(X)'  .  Starting from  X0 := O ,  iterate  
Xk+1 := ƒ(Xk)  for  k = 0, 1, 2, 3, …  in turn.  This iteration converges quickly to a  fixed-point

    X = ƒ(X) = 2M·( G + G2 + 2·G3 + 5·G4 + 14·G5 + 42·G6 + 132·G7 + 429·G8 + 1430·G9 + … ) .
The coefficients in the bracketed series are the coefficients,  all integers,  of the  Taylor  series of  

x(g) := (1 – √(1 - 4g))/2 = x(g)2 + g   around  g = 0 .  Since  ||G|| < τ2/4 << 1/4 ,  the series for  X 

converges very fast to  X ≈ 2M·G .  Then  K := M–1·X ≈ 2G  turns out to behave as desired,  so

C :=   has   H = C'·Y·C  exactly,  and  ||C±1||2 < 1 + τ + O(τ2) ,  whence our …

Examples:  A :=   has eigenvalues  1 ± τ  and  (1 ± τ)·τ  that change to  1, 1, τ, τ  after 

          off-diagonal elements are annihilated.  ||M–1·B|| = τ << ||M–1||·||B|| = 1
so our new relative error-bounds can come close to best-possible.

However  V :=   has eigenvalues  ±√(1 + τ2)  and  ±τ·√(1 + τ2)  that change to  ±1, ±τ 

          after off-diagonal elements are annihilated.  ||M–1·B|| = ||B·W–1|| = τ
so our new error-bounds too are capable of extreme pessimism.

§6: The Quality of Computed Eigenvectors
Besides affecting eigenvalues and singular values,  deflation affects eigenvectors and singular 
vectors.  These can be affected drastically,  rotated through angles as big as  π/4  in the case of 
example  A  above,  unless the eigenvalues  ηj  of  §5’s  Y  are separated by  relative  gaps 
adequately wide compared with threshold  τ .  This is the case for example  V  above;  deflation 
rotates its eigenvectors through angles like  τ .  In the absence of hypotheses about spectral gaps,
what little can be inferred about the accuracies of eigenvectors computed after our deflation is 
that their  Residuals  are  Relatively  small in the senses discussed hereunder. …

After   H :=  deflates to  Y :=   and  (part of)  its spectrum  EE(Y)  is accepted as a 

computed approximation to  (part of)  EE(H) ,  corresponding eigenvectors of  Y  will be accepted 
as computed approximations to corresponding eigenvectors of  H .  Let  y  be a normalized 
eigenvector of  Y  and  η  its eigenvalue,  so  Y·y = η·y  and  ||y|| = 1 .   Residual  r  := H·y – η·y  
indicates how nearly  y  approximates an eigenvector  h  of  H  belonging to its eigenvalue  θ  

approximated by  η .  We find  ||r || < τ·|η|  when   ||M–1·B|| < τ  and/or  ||B·W–1|| < τ  as follows:

Since  η ∈  EE(Y) = EE(M) ∪  EE(W) ,  η ∈  EE(M)  or  η ∈  EE(W)  or both.  For definiteness suppose
η = µ ∈  EE(M) ,  since the alternative can be handled analogously,  and let  u  be the normalized

I K– O

W
1–

B'⋅ I

Conclusion:    Whenever  both   ||M–1·B|| < τ  and  ||B·W–1|| < τ   then,  as claimed,
                      EE(Y)  approximates  EE(H)  with relative errors no worse than  τ + O(τ2) .
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eigenvector of  M  belonging to  µ  so that  M·u = µ·u  and  ||u|| = 1 .  Then  Y ’s  eigenvector

y = ,  and residual  r  = H·y – η·y =   has  ||r || = ||B'·u|| = ||(M–1·B)'·µ·u|| ≤ |µ|·||M–1·B|| . 

The appearance of  |η|  in the inequality  “ ||r || < τ·|η| ”  is what justifies the term  ”Relatively”.  It
embraces widely disparate eigenvalue magnitudes  |η|  and is important because it explains why 
our deflation that preserves eigenvalues’ relative accuracy also preserves eigenvectors belonging 
to  Relatively  well-separated eigenvalues.  Here are some of the explanation’s details:

The  Absolute Spectral Gap  γ  separating   ∈  EE(Y)  from the rest of  EE(Y)  is defined thus:

 γ := min{ |η – |  over all  η ∈  EE(Y)  with  η ≠  } .

Let a  Relative Spectral Gap  ρ  separating   ∈  EE(Y)  from the rest of  EE(Y)  be defined thus:

 ρ := γ/| | = min{ |η/  – 1|  over all  η ∈  EE(Y)  with  η ≠  } .

Two technicalities intrude here.  First,  for simplicity’s sake    is assumed a simple eigenvalue 
of  Y  whose corresponding normalized eigenvector  y  is rotated slightly from the normalized 

eigenvector  h  of  H  belonging to its simple eigenvalue  θ  within  ·e±τ
 .  The angle  ∠ (y, h)  

of that slight rotation is in question here.  Second,  we shall be concerned with    and  y  only 
when gap  ρ >> τ  and threshold  τ << 1 ;  otherwise  ∠ (y, h)  can be much bigger than  “slight”.

According to  ch. 11.7  of  Parlett’s [1998]  book and works cited therein,  deflation rotates  h  
through an angle  ∠ (y, h)  no bigger than about  ||r ||/γ  when it is small.  Above we found that  
||r || < τ·| |  when our deflation preserves relative accuracy.  This implies what was claimed:

The foregoing angle overestimate can be generalized by substituting for    a relatively tight 
cluster of eigenvalues of  Y  separated from the rest by a sufficiently big relative gap  ρ .  Then 
the eigenvectors of  Y  belonging to that eigenvalue cluster    span an invariant subspace of  Y .
An analogous invariant subspace of  H  is spanned by its eigenvectors belonging to the clustered 

eigenvalues of  H  falling within  ·e±τ
 .  Then our deflation rotates one invariant subspace onto 

the other through angles  (cf.  §11.7.1 etc. of Parlett [1998])  again no bigger than about  τ/ρ .

§7:  The Quality of Computed Singular Vectors
Let  φ  be a singular value of  F  in  §4  with normalized singular vectors  u  and  v  that satisfy  
||u|| = ||v|| = 1 ,  F·u = φ·v  and  v'·F = φ·u'  .  After  S  in  §4  has been deflated to  Z ,  so  φ  in
SS(Z)  has been accepted as a computed approximation to a singular value of  S ,  corresponding

u
o

o
B' u⋅

This is why  ||r || < τ·|η|  when  η ∈  EE(M)  and  ||M–1·B|| < τ .  Similarly  ||r || < τ·|η|  when
η ∈  EE(W)  and  ||B·W–1|| < τ .  Those are the ways in which residual  r   is  Relatively  small.

η̂
η̂ η̂

η̂
η̂ η̂ η̂

η̂

η̂
η̂

η̂

   Our deflation rotates eigenvector  h  through an angle  ∠ (y, h)  no bigger than about  τ/ρ .

η̂

η̂

η̂

Conclusion:  §5’s deflations that preserve eigenvalues’ relative accuracy also 
       preserve eigenvectors about as well as relative spectral gaps like  ρ  allow. 
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singular vectors    and    of  Z  will be accepted as computed approximations to singular

vectors of  S .  Their residuals are  r  := S· – φ·  =   and  '·S – φ· '  = o' .  Now

||r || = ||E·u|| = φ·||E·F–1·v|| ≤ φ·||E·F–1|| < 2τ·φ  when  ||E·F–1|| < 2τ ,  which is one of  R-C. Li’s 
deflation conditions in  §4  sufficient to keep relative errors in  SS(Z)  below threshold  τ .  This 
one condition implies  Relatively  small residuals  ( ||r ||/φ < 2τ  )  for approximate singular vectors 
of  S  computed from singular vectors of  F  in  Z ,  so deflation rotates each of these vectors 
through angles no bigger than about  2τ/ρ  for an appropriate  Relative Gap  ρ >> τ ,  as in  §6,  
but now between adjacent singular values in  SS(Z) .

What happens to approximate singular vectors of  S  computed from singular vectors  x  and  y  

of  D  in  Z  when  ||E·F–1|| < 2τ << 1 << ||D–1·E|| ?  Now  D·x = δ·y ,  y'·D = δ·x'  ,   ||x|| = ||y|| = 1 ,

S· - δ· = o  and  r'  := '·S – δ· '  = ;  so now  ||r' || = ||y'·E|| = δ·||x'·D–1·E|| .  But

now no reason exists to expect  ||r' ||/δ  to be small.  Try  S :=  and  Z :=   for example;

their  ||r' ||/δ = 1/τ >> 1 ,  yet deflation turns singular vectors through angles like  2τ/ρ  or smaller 
anyway.  Still to be explained is why this always happens when just one of  R-C. Li’s  deflation 

conditions in  §4,  namely  ||E·F–1|| < 2τ << 1 ,   is satisfied but not the other;  say  ||D–1·E|| >> 1 .  
Let’s see:

The singular vectors of a matrix are just the singular vectors of its inverse swapped.  Here

S–1 = ;  its singular vectors near     and    belonging to its 

singular value near  δ–1 have residuals  S–1· – δ–1· = o  and a new  r'  := '·S–1 – δ–1· '  ;

now  r'  = [o'   –x'·D–1·E·F–1]  has a relatively small  ||r' ||/δ–1 = ||y'·E·F–1|| ≤ ||E·F–1|| < 2τ .  The 

relevant relative spectral gap among singular values  ζ–1  of  Z–1  is  ρ := minζ≠δ |ζ–1/δ–1
 – 1| ,  

which turns out to be related to the relevant relative spectral gap  ρ := minζ≠δ |ζ/δ – 1|  among 

the singular values  ζ  of  Z  thus:  ρ ≥ ρ/(ρ + 1)  and  ρ ≥ ρ/(ρ + 1) .  If either of  ρ  or  ρ  is too 
tiny,  the other must be too tiny too.  Both relative spectral gaps produce roughly similar over-
estimates,  big or small,  of angles like  2τ/ρ  of rotations of singular vectors:
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Conclusion:  §4’s deflation that preserves singular values’ relative accuracy also 
   preserves singular vectors about as well as relative spectral gaps like  ρ  allow. 
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§8: Quadratic Relative Error-Bounds  and  Spectral Gaps  

Recall that   H := H'  :=   and  Y := Y'  :=    have ordered spectra respectively

EE(H) = { θ1 ≥ θ2 ≥ … ≥ θn }   and   EE(Y) = {  η1 ≥ η2 ≥ … ≥ ηn } =  EE(M) ∪  EE(W) 
 wherein   EE(M) = {  µ1 ≥ µ2 ≥ … ≥ µm }  and   EE(W) = { ω1 ≥ ω2 ≥ … ≥ ωn–m }  .

Our error-bounds upon differences between  EE(H)  and  EE(Y)  have been roughly proportional to
B  so far.  When  B  is small enough,  smaller  Quadratic  bounds roughly proportional to  B'·B  
may be available provided  EE(M)  and  EE(W)  are separated by sufficiently big and known  Gaps.
Quadratic bounds come with a price:  complicated proofs and hypotheses rarely applicable.

In  §6  the rotations of eigenvectors by deflation involved gaps  γ  and  ρ  within  EE(Y) ;  those 
must be distinguished from gaps  γ  and  Γ  defined hereunder to separate  EE(M)  from  EE(W) :

The  Absolute Spectral Gap  γ  separating  η ∈  EE(Y)  from  EE(M)  or  EE(W)  is defined thus:
 If  η ∈  EE(M)  then  γ(η) := min{ |ω – η|  over all  ω ∈  EE(W) }  ,  else
 if  η ∈  EE(W)  then  γ(η) := min{ |µ – η|  over all  µ ∈  EE(M) }  .

Let a  Relative Spectral Gap  Γ  separating  η ∈  EE(Y)  from  EE(M)  or  EE(W)  be defined thus:
 If  η ∈  EE(M) ∩ EE(W)  then  Γ(η) := γ(η) = 0 ;  else  Γ(η) := γ(η)/|η| .

Let  Ψ(ξ) := tan( arctan(2ξ)) = tanh( arcsinh(2ξ)) = 2ξ/(1 + √(1 + 4ξ2)) ;   among its properties

only these will be needed:    0 < dΨ(ξ)/dξ ≤ 1 ;         

 Ψ(ξ)/ξ ↗ 1  as  ξ ↘ 0 ;     Ψ(ξ) ↗ 1  as  ξ ↗ ∞ .
These properties suffice to confirm that

  Ψ(ξ/γ)·ξ ≤ min{ ξ,  ξ2/γ }  if  ξ > 0  and  γ ≥ 0 ,
which will be used implicitly and repeatedly.

Optimal quadratic absolute error-bounds for eigenvalues come from  C-K. Li & R-C. Li [2005]:

   |θj – ηj| ≤  Ψ(||B||/ γ(ηj))·||B||                                                                 AA BB  

    <  min{ ||B|| ,  ||B||2/ γ(ηj) }   when  ||B|| > 0  and  γ(ηj) > 0 .

Those  absolute  error-bounds  AA BB   imply immediately these quadratic  relative  error-bounds:

  |θj/ηj – 1| ≤  Ψ(||B/ηj||/Γ(ηj))·||B/ηj|| .                                            RR AA BB  

These bounds tend to pessimism partly because they are so general,  allowing  EE(M)  and  EE(W) 
to mingle like red and black cards in a shuffled deck,  and partly because they use  ||B/ηj|| ,  in 
which  ηj  is unlikely to be known when it is needed.  To replace  ||B/ηj||  by something perhaps 
smaller and maybe cheaper to compute,  how much generality must we relinquish?  We start by 
relinquishing mingling;  we shall not let the narrowest interval containing  EE(M)  overlap the 
narrowest interval containing  EE(W) .  Moreover we shall seek quadratic relative error-bounds 
only for positive eigenvalues,  first the largest of them,  then the least.

In conversations with  Ren-Cang Li  in  May 2012  he altered the proof of  AA BB   to get this claim:
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Proof:  It starts with  j := 1 ;  assume  θ1 ≠ ω1  to leave something to prove.  θ1·I – H  must be 
positive semidefinite  (actually singular),  so  θ1·I – W  and  θ1·I – M  must be positive definite.  

A congruence analogous to the first in  §5  implies that  θ1·I – W – B'·(θ1·I – M)–1·B  must be 

positive semidefinite,  and then so is   θ1·W
–2

 – W–1 – (B·W–1)'·(θ1·I – M)–1·B·W–1
 .  It must 

annihilate some column  v  normalized so  v'·v = 1 ,  whence follows that

  v'·(θ1·W
–2

 – W–1)·v  =  v'·(B·W–1)'·(θ1·I – M)–1·B·W–1·v .  

The least eigenvalue of  θ1·W
–2

 – W–1  turns out to be  θ1/ω1
2

 – 1/ω1  because  θ1/ω2
 – 1/ω  is 

monotone decreasing on the interval  0 < ωn–m ≤ ω ≤ ω1 < θ1 .  Therefor the last equation’s left-

hand side satisfies  θ1/ω1
2

 – 1/ω1 ≤ v'·(θ1·W
–2

 – W–1)·v .  The equation’s right-hand side satisfies

v'·(B·W–1)'·(θ1·I – M)–1·B·W–1·v ≤ ||B·W–1||2/(θ1 – µ1) .  Together the last two inequalities 

imply   θ1/ω1 – 1  ≤  ||B·W–1||2/(θ1/ω1 – 1 + 1 – µ1/ω1) ,  whence  RR BB WW   soon follows for  j = 1 .

The rest of the proof goes by induction on  n ;  suppose  RR BB WW   is true when  H  has dimension  
m+1, m+2, … and  n–1 ,  but now  H  has dimension  n .  No generality is lost by assuming that  
W  is diagonal since this can be achieved by an orthogonal or unitary similarity that alters no 
eigenvalue nor norm..  Obtain  H  from  H  by striking out its row  #(m+1)  and its column  
#(m+1) ,  thus reducing  W  to  W := diag[ω2, ω3, …, ωn–m]  and  B  to  B  lacking the first 

column of  B ,  so  B·W–1  lacks only the first column of  B·W–1  and  ||B·W–1|| ≤ ||B·W–1|| .  
Now  Γ(ωj)  is unchanged,  and  RR BB WW   implies that  {θ1, θ2, ,…, θn–1} = EE(H)  satisfies  

   0 ≤ θj–1/ωj – 1 ≤ Ψ(||B·W–1||/Γ(ωj))·||B·W–1|| ≤ Ψ(||B·W–1||/Γ(ωj))·||B·W–1||   for  2 ≤ j ≤ n – m .
Repeated appeals to  Cauchy’s Interlace Theorem  implying  ωj ≤ θj ≤ θj–1  finish the proof. []

( Cauchy’s Interlace Theorem  occupies  Ch. 10.1  of  Parlett’s [1998] text. )

RR AA BB   said   θj/ωj – 1 ≤ Ψ(||B/ωj||/Γ(ωj))·||B/ωj||  under hypotheses assumed for  RR BB WW ,  whose 
bound may be larger than  RR AA BB ’s  for some small  j  (big  ωj)  but is probably less for bigger  j  

(smaller  ωj).  In both error-bounds the critical quantity is  Γ(ωn–m) = 1 – µ1/ωn–m ,  one of two 
smallest relative gaps between  EE(M) and EE(W) .  Gaps can be hard to  (under)estimate usefully. 
Otherwise neither  RR BB WW  nor RR AA BB   imposes requirements upon the signs in  EE(M) ;  some or 

all of them may be negative.   RR BB WW   outdoes  RR AA BB   when  ||B·W–1||/||B/ωn–m||  is small.

Suppose  W  has all the largest eigenvalues of  Y ;   say every  ηj = ωj > 0  for  1 ≤ j ≤ n – m ,
and  ηn–m = ωn–m ≥ ηi+n–m = µi  for  1 ≤ i ≤ m .  Then relative gaps   Γ(ωj) = 1 – µ1/ωj ,   and

      0 ≤  θj/ωj – 1  ≤  Ψ(||B·W–1||/Γ(ωj))·||B·W–1||   for  1 ≤ j ≤ n – m .                             RR BB WW  

gap

µm µ1 ωn–m ω1

EE(M) EE(W)

0

+–
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A slightly different alteration of  AA BB ’s  proof leads to this claim about lesser eigenvalues:

Suppose  H  and  Y  are both positive definite,  and the least  m  eigenvalues  ηj  of  Y  all come 
from  EE(M) ,  so  W – µ1·I  must be nonnegative definite.  (These hypotheses imply that  B  is 

small enough that both  M – B·W–1·B'   and  W – B'·M–1·B  are positive definite too.)  Then

          0 ≤ 1 – θn–m+j/µj ≤  Ψ(||M–1/2·B/√µj||/Γ(µj))·||M
–1/2·B/√µj||   for  1 ≤ j ≤ m .         RR √√ MM BB  

This bound seems unlikely to be useful unless  m = 1 ,  whereupon it reduces to  RR AA BB   above.

A substantial alteration of  AA BB ’s  proof yields claim  RR MM BB   hereunder about lesser eigenvalues:

Proof:  In  §5,   W := W – B'·M–1·B = (W – µ1·I) + (µ1·I – (M–1·B)'·M·(M–1·B))  is positive 

definite because of  §3  and  ||M–1·B|| < 1/√2 ,  so  H  is positive definite,  whence every  θi > 0 .

Now induction starts with  j = m ;  assume  θn ≠ µm  to leave something to prove.  The proof will 

need  υ := min{  (µ – θn)/µ2  over  µm ≤ µ ≤ µ1 }  ;  let us see how  υ = (µm – θn)/µm
2  follows 

from our supposition about  ||M–1·B|| .  Cauchy’s Interlace Theorem  implies that  µm ≥ θn ,  so 

υ > 0 ;  and from  §5  comes   µm/θn ≤ exp( 2·arcsinh(||M–1·B||/2)) < 2  because  ||M–1·B|| < 1/√2 .

Since expression  Ξ(µ) := (µ – θn)/µ2  reaches its maximum  1/(4θn)  at  µ = 2θ > µm ,  we find  

υ = min{  (µ1 – θn)/µ1
2

 ,  (µm – θn)/µm
2

 }  = (µm – θn)/µm
2  as claimed because,  unless  µm = µ1 , 

sign( (µ1 – θn)/µ1
2 – (µm – θn)/µm

2
 )  turns out the same as  sign( (1 + µm/µ1)·θn/µm – 1 ) ;   again 

§5  supplies   θn/µm ≥ exp(–2·arcsinh(||M–1·B||/2)) ≥ 1/(1 + µm/µ1)  to confirm the claimed  υ .

Next,  apply a congruence like the second in  §5  to  H – θn·I ,  which is positive semidefinite  

(actually singular),  to infer that  M – θn·I – B·(W – θn·I)
–1·B'  is positive semidefinite,  and then 

another congruence to find  M–1
 – θn·M

–2 – (M–1·B)·(W – θn·I)
–1·(M–1·B)'   positive semidefinite.

Its normalized null-vector  v  satisfies   v'·(M–1
 – θn·M

–2)·v = v'·(M–1·B)·(W – θn·I)
–1·(M–1·B)'·v .

Combine this equation with  v'·v = 1  and the foregoing value  υ  of the least eigenvalue of  

Suppose  Y  is positive definite and its least  m  eigenvalues  ηj  all come from  EE(M) ;  thus
W – µ1·I  is positive definite and   ωn–m > ηn–m+j = µj > 0  for  1 ≤ j ≤ m .  Further suppose that
||M–1·B|| < 1/√((µ1/µm)2 + µ1/µm) ≤ 1/√2 .  Then every  θi > 0  and   Γ(µj) = ωn–m/µj – 1  and 

    0 ≤ 1 – θn–m+j/µj < Ψ(||M–1·B||/Γ(µj))·||M
–1·B||   for  1 ≤ j ≤ m .                 RR MM BB  

gap

µm µ1 ωn–m ω1

EE(M) EE(W)
•
0

+–
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µm
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2θn

θn
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M–1
 – θn·M

–2  to infer that   υ = (µm – θn)/µm
2 ≤ ||M–1·B||2/(ωn–m – θn) .  From this inequality 

soon follows the desired result:   0 ≤ 1 – θn/µm < Ψ(||M–1·B||/Γ(µm))·||M–1·B||   for  j = m .

The proof continues by induction on  m :  The induction hypothesis asserts that  RR MM BB   is true 
when  M  has dimension  1, 2, …, m–1 ;  but now  M  has dimension  m .  No generality is lost 
by assuming that  M = diagonal[µ1, µ2, …, µm–1, µm]  since this can be achieved by a unitary or 
orthogonal similarity that changes no eigenvalue nor norm.  Obtain  H  from  H  by deleting its 
row  #m  and column  #m ,  thus repacing  M  by  M := diagonal[µ1, µ2, …, µm–2, µm–1]  and  B  

by  B  without the last row of  B ,  and  M–1·B  likewise by  M–1·B  with  ||M–1·B|| ≤ ||M–1·B|| .  

Since  ||M–1·B|| < 1/√((µ1/µm)2 + µ1/µm) ≤ 1/√((µ1/µm-1)
2

 + µ1/µm-1) ,   H  satisfies  RR MM BB ‘s  

hypotheses,  whence  0 ≤ 1 – θn–m+j/µj < Ψ(||M–1·B||/Γ(µj))·||M
–1·B||   for  1 ≤ j ≤ m–1  in which  

θi  comes from  EE(H) = { θ1 ≥ θ2 ≥ … ≥ θn–1 }  .  Cauchy’s Interlace Theorem  puts  θi ≤ θi  for  

1 ≤ i ≤ n–1  and then  0 ≤ 1 – θn–m+j/µj ≤ 1 – θn–m+j/µj < Ψ(||M–1·B||/Γ(µj))·||M
–1·B||   for  

1 ≤ j ≤ m–1  as well as for  j = m ,  completing the proof of  RR MM BB  .  []

Unlike our previous error estimates,  RR MM BB   bounds relative errors in  EE(M)  only if its variation 

µ1/µm  is restrained by  “ ||M–1·B|| < 1/√((µ1/µm)2 + µ1/µm) ”,  though this restraint is usually 

satisfied already when a demand for high accuracy has delayed deflation until  ||M–1·B||  is tiny 
like  √τ .  Otherwise some such restraint seems unavoidable because of examples like this one:

 H3 := ,   θn = 1/2 ,   µ1 = 1 ,   µm = 8 ,   ||M–1·B|| = 1 ,   Γ1 = 241/30 ,   but

  1 – θn/µ1 = 1/2  £  0.12261 ≈ Ψ(||M–1·B||/Γ1)·||M
–1·B|| .

The example  H2 :=  has eigenvalues  ±1  and eigenvectors   that 

deflation rotates through an angle  α  while changing eigenvalues by  ±2·sin2(α) ,  which may be 
negligible though  α  is not.  This example,  like example  V  in  §5,  reminds us that deflations 
allowed by negligible  quadratic  error-bounds for  `values  may rotate  `vectors  excessively.

Quadratic Error-Bounds  for  Singular Values
Recall upper-triangles  S  and its deflation  Z  and their ordered nonnegative singular values:

   S := ,   SS(S) = { σ1 ≥ σ2 ≥ … ≥ σn };    Z := ,   SS(Z) = { ζ1 ≥ ζ2 ≥ … ≥ ζn }.

Here  SS(Z) = SS(D) ∪  SS(F) ,  wherein   SS(D) = { δ1 ≥ δ2 ≥ … ≥ δm }  will have to be distinguished 
from   SS(F) = { φ1 ≥ φ2 ≥ … ≥ φn–m }  by gaps defined in a way now familiar:

1 0 0

0 8 8

0 8
271
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The  Absolute Spectral Gap  γ  separating  ζ ∈  SS(Z)  from  SS(D)  or  SS(F)  is defined thus:
 If  ζ ∈  SS(D)  then  γ(ζ) := min{ |φ – ζ|  over all  φ ∈  SS(F) } ,  else
 if  ζ ∈  SS(F)  then  γ(ζ) := min{ |δ – ζ|  over all  δ ∈  SS(D) }  .

Let a  Relative Spectral Gap  Γ  separating  ζ ∈  SS(Z)  from  SS(D)  or  SS(F)  be defined thus:
 If  ζ ∈  SS(D) ∩ SS(F)  then  Γ(ζ) := γ(ζ) = 0 ;  else  Γ(ζ) := γ(ζ)/ζ .

Yes,  the gap-functions  γ(ξ)  and  Γ(ξ)  are  overloaded  according to whether their argument  ξ  
comes from  EE(Y)  or from  SS(Z) ;  let’s hope their context will preclude confusion.

Li & Li [2005]  used  AA BB   to derive similar quadratic  absolute  error-bounds for the singular

values of  S =   because they and their negatives are the eigenvalues of  :

   |σj – ζj| ≤  Ψ(||E||/ γ(ζj))·||E||                                                                 AA EE 

    <  min{ ||E|| ,  ||E||2/ γ(ζj) }   when  ||E|| > 0  and  γ(ζj) > 0 .

Those  absolute  error-bounds  AA EE  imply immediately these quadratic  relative  error-bounds:

  |σj/ζj – 1| ≤  Ψ(||E/ζj||/Γ(ζj))·||E/ζj|| .                                            RR AA EE 

As we did for  RR AA BB ,  we shall try to replace  ||E/ζj||  by something perhaps smaller and cheaper 
to compute.  To do so we shall again relinquish some of  RR AA EE’s  generality by assuming that  a 
sufficiently wide relative gap separates the smallest interval containing  SS(D)  from the smallest 
interval containing  SS(F) .  Here is an analog of  R-C. Li’s  RR BB WW  ,  but proved differently:

Proof:  It starts with  j = 1 ;  assume  σ1 ≠ δ1  to leave something to prove.  To simplify notation

temporarily,  drop the subscripts from  σ := σ1 ,  δ := δ1  and  φ := φ1 .  Then  σ2  is the largest

eigenvalue of  S·S'  = ,  so  σ2 > δ2 > φ2
 .  No generality is lost by assuming

temporarily that  D  and  F  are diagonals of their respective singular values.  Then  σ2·I – S·S'   is 
positive semidefinite  (and singular),  and congruences now familiar establish the same for first  

σ2·I – D2
 – E·E'  – E·F·(σ2·I – F2)–1·F·E'  = σ2·I – D2 – σ2·E·(σ2·I – F2)–1·E'   and then  

σ2·D–2
 – I – σ2·(D–1·E)·(σ2·I – F2)–1·(D–1·E)'  .  Its unit null-vector  v  satisfies  v'·v = 1  and   

(σ/δ)2 – 1 ≤ v'·(σ2·D–2
 – I)·v = σ2·v'·(D–1·E)·(σ2·I – F2)–1·(D–1·E)'·v ≤ σ2·||D–1·E||2/(σ2

 – φ2) .  

This inequality implies that  (σ1/δ1)
2 – 1  ≤  Ψ(||D–1·E||/G1)·||D

–1·E|| ,  which is  RR DD EE  for  j = 1 .

The proof continues by induction on the dimension of  D .  The induction hypothesis is that  
RR DD EE  is valid for dimensions  1, 2, … and  m–1;  but now  D  has dimension  m .  Still assuming  

D E

O' F

O D' O O

D O E O

O' E' O F'

O' O' F O

Suppose  SS(D)  has all the largest singular values of  Z ,   so every  ζj = δj  for  1 ≤ j ≤ m ,  and

ζm = δm > ζm+1= φ1 .  Let gaps  Gj := 1 – (φ1/δj)
2 – ||D–1·E||2   for  1 ≤ j ≤ m .  If  Gj > 0  then

 0 ≤ (σj/δj)
2 – 1  ≤  Ψ(||D–1·E||/Gj)·||D

–1·E|| .                                      RR DD EE 

gap
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D  and  F  are diagonal,  obtain  S  from  S  by striking off its first row and column.  Doing so 
replaces  D  by  D = diagonal[δ2, δ3, …, δm-1, δm] ,  E  by  E  lacking the first row of  E ,  and 

likewise  D–1·E  by  D–1·E  so that  ||D–1·E|| ≤ ||D–1·E||  and  Gj-1 := 1 – (φ1/δj)
2 – ||D–1·E||2 ≥ Gj .  

And  S·S'   is just  S·S'   shorn of its first row and column,  so  Cauchy’s Interlace Theorem  tells 

us  σj
2 ≤ σj-1

2  for  2 ≤ j ≤ m  as well as  δj
2 ≤ σj

2  inferred from  S'·S .  The induction hypothesis 

implies  0 ≤ (σj/δj)
2 – 1 ≤ (σj-1/δj)

2 – 1 ≤ Ψ(||D–1·E||/ Gj-1)·||D–1·E|| ≤ Ψ(||D–1·E||/Gj)·||D
–1·E||  for 

each  Gj > 0  in  2 ≤ j ≤ m ,  after which unravelling the diagonalizations of  D  and  F  finishes 
the proof of  RR DD EE .  []

RR DD EE’s  requirement  “ Gj > 0 ”  is an annoying complication,  perhaps superfluous,  almost 
surely immaterial because relative-accuracy-preserving deflations allowed by  RR DD EE  will occur 

only when  ||D–1·E||2 < τ << 1 – (φ1/δm)2 ,  whereupon every  Gj ≈ 1 – (φ1/δj)
2 > Γ(δj) .

To cope with the smallest singular values of  S  a trick used in  §7  will be used again here.  The 

deflation of  S–1 =   produces  Z–1 = ;  their singular 

values are the reciprocals of the singular values of  S  and  Z  respectively.  Applying  RR DD EE  to  

S–1  (with  F  increased infinitesimally perhaps)  produces the inequalities in  RR EE FF  hereunder:

The reappearance of  ||D–1·E||  in  RR EE FF  is not a typo.  It emerges from the proof and reassures 
us that a deflation preserving relative accuracy in  all  the biggest singular values does about the 
same for the smallest,  no matter how small they are,  and  vice-versa.  It is reminiscent of  §4.

However,  unlike  §4  and  §7,  quadratic error-bounds may permit deflations that alter singular 
values at worst tolerably while rotating singular vectors intolerably.

• • • • • • •

The four quadratic relative error-bounds  RR BB WW ,  RR MM BB ,  RR DD EE  and  RR EE FF  proved above are 
believed to be new but not unprecedented.  An antecedent is  Theorem 5  on  p. 881  of  Demmel 
& Kahan [1990].  It is more complicated and weaker than the  RR ……   bounds.  Like all quadratic 
error-bounds,  absolute and relative,  ours require adequate underestimates of spectral gaps costly 
to compute except for special matrices,  among them those dominated enough by their diagonals.
Gap estimation will be discussed next.

D
1–

D
1–

– E F
1–⋅ ⋅

O' F
1–

D
1–

O

O' F
1–

Suppose  F  has all the smallest singular values in  SS(Z) ,   so every  ζm+j = φj < ζm = δm  for 
1 ≤ j ≤ n – m .  If  φj = 0  then  σm+j = 0 ;  otherwise if gap  Gj := 1 – (φj/δm)2 – ||D–1·E||2 > 0  then
                      0 ≤ (φj/σm+j)

2 – 1  ≤  Ψ(||D–1·E||/ Gj)·||D
–1·E||   for  1 ≤ j ≤ n – m .                  RR EE FF 

gap

φn–m φ1 δm δ1

SS(F) SS(D)
•
0

+–
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Estimating Spectral Gaps
All four new  RR ……   bounds have the form  “ Relative Error ≤ Ψ(β/Γ)·β ”  in which  β  stands for a 

small  (over)estimate  of  ||D–1·E|| or  ||M–1·B|| or  ||B·W–1|| ,  and  Γ  stands for an  (under)estimate 
of a relative gap.  Applications of these bounds evade computation of the function  Ψ  because 

the predicate  “ Ψ(β/Γ)·β < τ ”  simplifies to  “ β2 < (τ + Γ)·τ ”  .  To compute  Γ  is not that simple.

Except in  RR BB WW   sometimes,  Γ  estimates the relative difference between the largest singular 
value of one submatrix and the larger least singular value of another submatrix.  These involve 

norms:    ( C ’s  largest singular value ) = ||C|| ;     ( C ’s  least singular value ) = 1/||C–1|| .

In  Table 1  below,  RR BB WW   and  RR MM BB   are assumed used together,  as are  RR DD EE  and  RR EE FF.

         Table 1:       Gaps that  Γ  must  (under)estimate 

The table’s formulas reveal why all the norms must be overestimated relatively tightly to yield 
usable underestimates  Γ > 0 .  Explained hereunder is why relatively tight overestimates of  ||…||  
tend to be costly to compute;  exceptions are matrices dominated enough by their diagonals.

Error-analyses frequently approximate  ||C||  by another norm cheaper to compute;  an example 
is  ||C||∞ := maxi ∑j |cij | ,  the biggest-row-sum norm.  Then  ||C|| ≤ ||C||∞ ≤ √m·||C||  for  m-by-m  
matrices  C ;  and examples  C  exist making either inequality an equality.  When  m  is big there 
are  m-by-m  triangular examples  F  for which both  ||F||∞/||F||  and  ||F' ||∞/||F||  fall at most a few 
percent short of  √m ,  so  ||…||∞  is far from a tight approximation to  ||…||  for arbitrary triangles. 

And there are big  m-by-m  positive definite examples  M  for which  ||M||∞/||M||  is only a little 
less than  2 ,  which is rarely tight enough.  So far as I know,  tight estimates of  ||…||  cost far 

more than  O(m2)  work unless they are obtained for special matrices like those known to have 
rank far less than their dimensions,  or matrices dominated enough by their diagonals;  or else the 
estimates are probabilistic.

Probabilistic estimates are generated by iterations that almost always converge rapidly to  ||…||  
from below.  After a few iterations the iterate is expected to fall short of  ||…||  by at most a few 
percent;  then adding a few percent more is expected to overestimate  ||…||  only slightly.  For 

example,  if  M  is positive (semi)definite then  ||Mk+1·x||/||Mk·x|| ↗ ||M||  as  k ↗ ∞  unless  x  is 
a very unlikely choice.  Another example,  motivated by the formula  “ ||F|| = maxx≠o ||F·x||/||x|| ”,  

generates a sequence of vectors  x  that follow the upward gradients of  ||F·x||/||x||  from an initial 
choice of  x ;   convergence is fast from almost any initial choice.  The trouble with probabilistic 
estimates is their lack of inexpensive ways to expose bad luck which,  however unlikely,  befalls  
every day a few at least of the billions of computed estimates.

Bound Minimum Relative Gap

RR BB WW  & 
RR MM BB  

Γ(ωn-m)  =  1 – ||M||·||W–1|| 

Γ(µ1)  =  1/(||M||·||W–1||) – 1 

RR DD EE & RR EE FF Gm = G1  =  1 – ||F||2·||D–1||2 – ||D–1·E||2 
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Estimates of  ||W–1||  and  ||D–1||  incur another layer of uncertainty and expense.  According to  

Demmel et al. [2001],  there are reasons to expect any estimator of  ||C–1||  substantially cheaper 

than the cost of computing  C–1  to  over/underestimate  ||C–1||  substantially for some matrices  
C .  Nothing unexpected appears among the overestimators surveyed by  N.J. Higham [1987];  

for an  m-by-m  triangular  D  they all incur at least  m  divisions to overestimate  ||D–1|| ,  often 
grossly even if it is bidiagonal unless it is dominated enough by its diagonal.

C  is deemed  Dominated by its Diagonal  row-wise when every  |cii | > ∑j≠i |cij | ;  column-wise 
dominance is defined analogously.  These dominances dominate more than necessary for cheap 

and fairly tight overestimates of  ||C||  and  ||C–1||  whenever such are available.  The formulas in  
Table 2  hereunder help produce cheaply the gap’s underestimates needed in  Table 1:

   Table 2:       Tight Estimates of  ||…||  for a  Matrix Dominated Enough by its Diagonal 

The estimates for positive definite  M  and  W–1  come from  Gershgorin’s Circles Theorem,  for 
which see  §14.2  of  Hogben [2007],  or see  p. 54 of Kahan [2012' ]  for a very condensed proof. 
The estimate for an upper triangle  F  comes from  Gershgorin’s Circles Theorem  applied to 

,  whose eigenvalues are the singular values of  F  and their negatives.  The estimate for an

upper triangle  D–1  comes from  Johnson [1989].  Table 2’s  estimates are most convenient when 
the matrices in question are tridiagonal or bidiagonal.

For complex matrices,  estimates depending heavily upon elements’ magnitudes can be sped up 
by saving a square root per element thus:  First multiply by whatever diagonal unitary matrices 

make every diagonal element of  S  nonnegative;  then overestimate   |ξ + ı·η| = √(ξ2
 + η2)   by   

max{|ξ|, |η|} + (√2 – 1)·min{|ξ|, |η|}  ,   which exceeds  |ξ + ı·η|  by less than  8.25% .

The last words about quadratic relative error-bounds seem unlikely to have been written yet.

RR ……  bounds Estimates that Straddle  ||…|| 

RR BB WW  & 
   RR MM BB  

maxj{mjj}  ≤  ||M||  ≤  ||M||∞  =  maxj{  ∑k |mjk| }  

1/minj{w jj}  ≤  ||W–1||  ≤  1/minj{  wjj  – ∑k≠j |wjk| }  if positive 

RR DD EE & 
   RR EE FF 

maxj{|f jj |}  ≤  ||F||  ≤  max{ maxj{ ∑k≥j |fjk|} ,  maxj{ ∑k≤j |fkj|}  } 

1/minj{|djj |}  ≤  ||D–1||  ≤  1/minj {  |djj | – (∑k<j |dkj| + ∑k>j |djk|)/2 }  if positive 

O F

F' O

Considering how expensive are worthwhile estimates of spectral gaps,  and how rarely 
deflation is permitted by quadratic error-bounds,  what good are they?  Perhaps they 
serve here mostly to explain why the non-quadratic bounds of  §4  and  §5  are so often 
so pessimistic though best-possible without estimates of gaps.
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§9: Application to Tests of Computed Eigenvalues’ Relative Accuracies
The  Rayleigh-Ritz  method  (ch. 11 of Parlett [1998])  will be used here to corroborate claims 
of high relative accuracy for some of the computed eigenvalues and eigenvectors of a given big  
n-by-n  matrix  A = A'  .  A subset of its approximated eigenvalues are arrayed as an  m-by-m  
diagonal  Λ ,  and corresponding approximated eigenvectors are the columns of  n-by-m  matrix  
Q .  Normally these columns are orthonormal or very nearly so.  To clean them up,  compute 
their residual  V := I – Q'·Q ,  preferably accumulating scalar products extra-precisely,  and then 

replace  Q  by  Q := Q + Q·V/2  whose residual,  I – Q'·Q = (3V2
 + V3)/4 ± roundoff ,  need not 

be computed if it is predictably tiny enough to drown in roundoff.

The next task is to replace  Λ  by an improved approximation  M  and determine whether its  m  
eigenvalues approximate some  m  of  A ’s  with high relative accuracy.  To this end compute a 
temporary residual  R := A·Q – Q·Λ ,  preferably accumulating scalar products extra-precisely,  
and then  ∆Λ :=  Q'·R ,  which would be symmetric but for roundoff.  Next replace  ∆Λ  by its 
symmetric part  ∆Λ := (∆Λ + ∆Λ')/2  and then compute  M := Λ + ∆Λ  and  R := R – Q·∆Λ .  
Now this final residual  R ≈ (A·Q – Q·M ± roundoff)  and  Q'·R ≈ (O ± roundoff) .  Ideally  M  

should be so nearly diagonal that  R·M–1  can be computed easily;  finally  ||R·M–1||  is the 
desired upper bound upon the relative errors in the eigenvalues of  M .  These can be computed 
as corrections to  Λ  by a pass of  Jacobi’s  iteration  (ch. 9 in Parlett [1998])  as described by  
Drmac  in  §46 of Hogben [2007].  That iteration’s rotations should postmultiply  Q  to update 
its columns,  which then approximate eigenvectors of  A  more closely than before.

Why is  ||R·M–1||  an upper bound upon the relative errors in  EE(M) ?  An explanation ignoring
roundoff begins with the augmentation of  Q  to a notional  (not computed)  n-by-n  orthogonal

matrix  [Q, P] = ([Q, P]')–1
 .  Notional  H := [Q, P]'·A·[Q, P] =   has  [Q, P]'·R = , 

EE(H) = EE(A)  and  ||M–1·B|| = ||R·M–1|| ,  whence  §5’s  first error-bound becomes applicable.

That error-bound is applicable also when  H  is the result of a method like  Lanczos’  (ch. 13 in 
Parlett [1998])  that reduces  (part of)  A  to tridiagonal form.  Now  M  is tridiagonal and only 
the lower leftmost element of  B  has a substantial magnitude.  In this case the computation of  

M–1·B  and its norm costs time proportional to  m ,  or at worst  m·(n–m)  if reorthogonalization 
applied to  Q  has scattered throughout  B  small elements not small enough to ignore.

In case only the first or last  m  eigenvalues of  A  are desired,  it is prudent to compute several 
more than  m  to provide a reason to believe that the first or last  m  are among them.  Doing so 
often exposes a gap between some eigenvalues and the rest,  thus permitting quadratic error-
bounds like those in  §8  above to be applied.

§10:  Application to Deflations during Singular Value Computations by  dqds
Here  R-C. Li’s  criterion in  §4  will be applied as he intended to the deflation of a bidiagonal 
matrix during  dqds  iterations  (Parlett et al. [1994, 2000])  to compute its singular values.  But 
first the  dqds  process will be described as briefly as possible,  which is not briefly at all.

M B

B' W
O

B'
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The process computes squared singular values of bidiagonal upper triangle  S  as eigenvalues of 
symmetric tridiagonal  T := S·S'   (or  S'·S ,  whose eigenvalues are the same)  without having to 
compute the elements of  S  or  T  explicitly.  Instead arrays  {qj}  and  {ej}  are computed where

    S·S'  = T = tridiag  ;

{ ±√qj}  lies on the diagonal of  S  and  {±√ej}  on its superdiagonal.  The signs do not matter.

There are two reasons for the  dqds  process to act upon  {qj}  and  {ej}  instead of  S  or  T .  The
obvious reason is that no square root will be needed in the innermost loop of the process.  The 
unobvious reason is that rounding off explicitly computed diagonal elements of  T  can ruin its 
tiniest eigenvalue(s).  (This happens to  §4’s  example  S  when its dimension  n  is big and  s  in  

S := bidiag   is any big number whose  s2  incurs a rounding error.)

Starting from  S0 := S ,  the  dqds  iteration chooses nonnegative  Shifts  ßk  and obtains  Sk+1  as 
the  Cholesky  factor of  Sk·S'k – ßk·I = S'k+1·Sk+1  for  k = 0, 1, 2, 3, …  in turn.  This works 
only if  ßk  does not exceed the least squared singular value of  Sk ,  but the closer the better.  A 
good choice for shift  ßk  raises difficult questions that will not be discussed here;  see  Parlett et 
al. [1994, 2000]  and other works in progress.  The squared singular values of  S0  exceed those 
of  Sk+1  respectively by  ∑ßk := ß0 + ß1 + … + ßk .  Iteration drives  Sk  towards a diagonal.

Typically the shifts dwindle until the last one or two become zero and/or deflation occurs.

Deflation is the subject to be discussed at length here.

To simplify the discussion the iteration’s subscript  k  will be dropped.  One  dqds(ß)  iteration 
maps  S ,  represented by  {qj}  and  {ej}  ,  to  S  represented by  {qj}  and  {ej}  and satisfying  
S'·S = S·S'  – ß·I ;  then  ∑ß  is updated to  ∑ß := ∑ß + ß .  The iteration’s inner loop goes thus:

dqds(ß) 
d1 := q1 – ß ;   dmin := d1 ;   jmin := 1 ;
for  j = 1  to  n–1  do  { 

qj := dj + ej ;   t := qj+1/ qj ;   …  The division overlaps the next  …
if  (qj ≤ 0) then  {break out to Early Failure,  q.v.} ;
if  (dj ≤ dmin)  then  {jmin := j ;   dmin := dj} ; 

ej := t·ej ;   dj+1 := t·dj – ß } ;  …  end of  j-loop
qn := dn ;  
if (dn < 0)  then {go to  Late Failure,  q.v.}

    elseif  (dn ≤ dmin) then {jmin := n ;   dmin := dn} . 

Early Failure  here differs slightly from its definition by  Parlett et al. [1994, 2000],  who break 
out when  dj < 0  and  j < n .  Here the count of negative values  qj  turns out equal to the count of 
eigenvalues of  S·S'   less than  ß ,  so it is worth recording for future use when our failure occurs 

  q2 e1⋅   q3 e2⋅   …   qn 1– en 2–⋅   qn en 1–⋅   

q1 e1+   q2 e2+   q3 e3+   …   qn 1– en 1–+      qn

  q2 e1⋅   q3 e2⋅   …   qn 1– en 2–⋅   qn en 1–⋅   

 s  s  …  s  s  e  

1  1  …  …  1  1  f
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at  j = n–1 .  The count of values  dj < 0  is less informative.  However,  dqds(0)  cannot fail,  and 
then the last diagonal element of the  Cholesky  factor of the leading  j-by-j  principal submatrix 
of  S·S'   turns out to be  √dj ,  whence the last diagonal element of the inverse of the leading  j-
by-j  principal submatrix of  S  turns out to be  1/√dj ,  which will figure in  R-C. Li’s  deflation 
criterion below.  Then too,  according to  §6.1 on pp. 204-6 of Fernando & Parlett [1994],  the  

jth  diagonal enement of  (S·S')–1  is  1/dj ,  which will figure in  Ming Gu’s  criterion below.

Early Failure  occurs when  ß  is much too big,  bigger than the second-least squared singular 
value of  S .  Late Failure  occurs when  ß  is a little too big,  between the least and second-least 
squared singular values.  In both cases  {qj}  and  {ej}  will be discarded,  a new smaller shift  ß  
will be chosen somehow,  and  dqds(ß)  will be tried again.  If it succeeds,  dmin > 0  and  jmin  
figure in the computation of an improved  (smaller)  upper bound for the least squared singular 
value of  S  to help choose the next shift  ß ;  and the updated  ∑ß  will affect revised tolerances 
like  τ  for permissible deflations that preserve relative accuracies among the final results.

Here  “deflation”  means that an off-diagonal element  √ej  is deemed negligible and set to  0 .  
Failure to deflate in a timely fashion can inhibit the iterations’ convergence.  Started with every  
ej > 0 ,  iteration drives array  {ej}  towards zeros and drives  array  {qj + ∑ß}  towards squared 
singular values of  S0  in descending order,  as if big singular values migrated upward and small 
ones downward.  But their migration is obstructed when some relatively tiny non-negligible  ej  
has small singular values above it and big below,  a situation called  “Disordered Data”.  This is 
why …

Numerous tests and branches complicate the  dqds  process with attempts to exploit every 
permissible deflation without wasting too much time rejecting impermissible deflations.

The initial iteration,  and the first after every deflation,  is a  dqds(0)  modified to scrutinize each

ej  for a permissible deflation.  Li’s  condition  “ ||D–1·E|| < 2τ ”  in  §4  becomes  “ ej < (4τ2)·dj ”  

to permit the annihilation of  ej .  Li’s  condition  “ ||E·F–1|| < 2τ ”  becomes  “ en-1 < (4τ2)·qn ”  to 
permit the annihilation of  en-1 .  Both possibilities can arise also after a successful  dqds(ß)  with 
ß > 0  since then  dj > 0  is a decreasing function of  ß .  But those conditions are too stringent.  
Conditions less stringent are desired intensely in the hope that they permit earlier deflations.

The search for less stringent deflation conditions begins with the observation that,  with each 

iteration,  ∑ß  typically increases by  ß  to  ∑ß  while a modest overestimate of  ||S||2
 ,  namely

   ñ2 := ( √(maxj{qj} ) + √(maxi{ei} ) )2
 ,                 (to be refreshed infrequently) 

decreases by a similar amount.  Because  ñ2 ≥ ||S||2 = ||S0||
2

 – ∑ß ,  the squared singular values 

of  S0  yet to be computed must all lie between  ∑ß  and  ñ2 + ∑ß .  An absolute error smaller 
than  τ·σ  in a not-yet-computed singular value  σ  of  S0  induces a relative error no worse than  
τ .  If this is tolerable,  then  √ej  in  S  turns out to be eligible for annihilation whenever 

   ej < τ2·( if  ñ2 > ∑ß  then  4∑ß  else  ñ2·(1 + ∑ß/ñ2)2 )                      AA bbssEEtt eesstt 
because doing so changes no singular value of  S  by more than  √ej ,  and thus no singular value
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σ  of  S0  by more than about  τ·σ .  Similar reasoning replaces  R-C. Li’s  conditions above for 
annihilating  ej  during  dqds(ß)  by 

 ej < 4τ2·(1 + ∑ß/ñ2)2·dj    and    en–1 < 4τ2·(1 + ∑ß/ñ2)2·dn .                  RReell EEtt eesstt 
Actually both  ej  and  ej := t·ej  get set to  0  when  AA bbssEEtt eesstt  or  RReell EEtt eesstt  is satisfied.  No 
harm is done if  dqds(ß)  fails subsequently because,  after  {qj|  and  {ej}  are discarded and  
dqds(ß)  restarted with a smaller  ß ,  the recomputed  dj  will be bigger than before.

Thus relaxed,  RReell EEtt eesstt  is more likely than  AA bbssEEtt eesstt  to be effective during early iterations. 

Later,  after  ∑ß  has grown and  ñ2  has dwindled below  ∑ß ,  deflation is more likely to occur 
after  AA bbssEEtt eesstt.  Alas,  “more likely”  might not be very likely.  The  EEtt eesstts  are most effective 
in the more common cases,  when first  qn  and then  en–1  become negligible,  but less effective 
in cases of  Disordered Data,  when  ß  becomes negligible long before any  ej  does.

Disordered Data  can require intolerably too many  dqds(0)  iterations before any criterion above 
pemits deflation.  Criteria more relaxed than those have long been sought among quadratic error-
bounds like the ones exhibited in  §8  above.  For examples see  p. 881’s Theorem 5  in  Demmel 
& Kahan [1990]  and  p. 216 of  Fernando & Parlett [1994].  That quest has been futile so far.

All deflation-permitting criteria based upon such quadratic bounds have had to await the opening 
of an obviously adequate gap between the least singular value of a leading principal submatrix of 
the bidiagonal  S ,  and the largest of the complementary trailing principal submatrix of  S .  An 
adequate gap can be unobvious because the  dqds  process stores only the squares of the elements 
of  S  in arrays  {qj}  and  {ej}  .  Their square roots would be needed for the  RR DD EE & RR EE FF  
formulas tabulated in  §8;  for  RR BB WW  & RR MM BB   applied to  T := S·S'   or to  S'·S  the formulas 
would need square roots  √(qj·ej–1)  or  √(qj·ej) .  These square roots are unavoidable because there 
are examples  S  and  T  whose diagonal elements differ by not much less than their off-diagonal 
elements from extreme singular values and eigenvalues.  But the inner loop of  dqds  cannot afford 
augmentation by a square root for two reasons:  First,  a square root on most computers nowadays 
costs at least as much as a few divisions;  second,  during early  dqds  iterations when deflations 
are needed most,  they are so rarely permitted by quadratic tests that almost none get rewarded.

Consequently quadratic bounds can permit deflations during the  dqds  process only outside its 
inner loop if at all.  At which sites might such a deflation be permitted,  albeit rarely?

The least unlikely site is at  en–1 ,  followed by  en–2 .  That site must be situated at an obviously 
adequate gap between the least of the larger singular values above the site and the larger of the 
lesser singular value(s) below.  The gap is obvious when  √(min qj) – √(max ej)  above that site 
exceeds  √(max qj) + √(max ej)  below it;  their excess is a lower bound for the spectral gap.  It is 
adequate when it is big enough that  RR DD EE & RR EE FF  predict tolerable perturbations.  An obviously 
adequate gap need not appear until after too many  dqds  iterations and deflations permitted by 
non-quadratic criteria,  especially if the least several singular values of  S  are clustered tightly.  
This happens when  S0  comprises a diagonal sum of blocks roughly resembling example  S  in  §4  
separated by relatively small off-diagonal elements  √ej  too big to annihilate.
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Whether the costs of tests for gaps needed by quadratic error-bounds are likely to be repaid by 
substantially earlier deflations remains to be seen.

Ming Gu’s  New  d-Deflation  Criterion:
Theorem 2  of  §6.1,  pp. 204-5  in  Fernando & Parlett [1994],  shows for each  dj  of  dqds(0)  

that  1/dj  is diagonal element  #j  of  (S·S')–1
 ,  and consequently the least squared singular value 

of  S  lies between  dmin  and  dmin/n .  And annihilating  djmin  changes no singular value of  S  
by more than  √dmin .  Ming Gu  noticed first that a tiny  djmin > 0  need not propagate to a 
similarly tiny  qn  followed by an  en–1  tiny enough for deflation.  However an annihilated  
djmin  always propagates its zero to  qn  whereupon,  at the cost of at most one more  dqds(0) ,  
deflation at a subsequent  en–1 = 0  always follows.

When and why can this kind of deflation be expected to occur?

In the absence of deflations,  as  ∑ß  increases monotonically to a limit equal to the least squared 

singular value  σn
2  of  S0 ,  the sequence of successful shifts  ß  tends to  0  though not always 

monotonically.  With a good shift-selection strategy  (a long story for another day),  ß  soon gets 
so tiny that it might as well be  0 ;  and by then the least singular value of  S  must be very tiny 
too but unobviously so because of  Disordered Data.  Since no deflation has occurred yet,  each 
subsequent  dqds(0)  includes a test for the condition

   dj < τ2·( if  m2 > ∑ß  then  4∑ß  else  m2·(1 + ∑ß/m2)2 )/n                   AA bbssDD tt eesstt 
just before the  EEtt eesstts  above to decide whether  dj  or  ej  is eligible for annihilation.  After the 
annihilation of  dj  occurs it is followed immediately by this upward movement of data:

  for  i = j  to  n–1  do { qi := ei ;  ei := qi+1 }  ;   qn := 0 .
This  i-loop  saves time that would otherwise be wasted on  n–j–1  divisions and other arithmetic 
in the rest of this  dqds(0)  iteration.  After one more  dqds(0)  iteration  (or some other scheme)  
applied to arrays  {qj}  and  {ej}  spreads the zero at  qn  to  en–1 ,  deflation occurs there.

Sheng-Guo Li  has programmed and tested  AA bbssDD tt eesstt  or something like it added to a  LAPACK  

version of the  dqds  process.  His results show no degradation of accuracy nor speed,  but show 
speed-ups by factors as big as  8  for examples  S  on which the former  LAPACK  program spent 
extraordinarily long times.  An account by  S-G. Li,  M. Gu  and  B.N. Parlett [2012]  has been 
submitted for publication.

§11:  Conclusion
Like criteria for terminating an iteration,  criteria for deflation have to be chosen by the error-
analyst to avoid excessive computation without incurring excessive inaccuracy.  Deflation may 
be permitted by more than one criterion at each of very many sites;  the opportunities are too 
numerous for all criteria to be tested at all sites.  Instead an economical subset must be found.

The quest continues.
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