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On the Cost of Floating-Point Computation
Without Extra-Precise Arithmetic

§0:  Abstract & Introduction
Current benchmarks give the impression that computation costs no more than the time consumed,  
and perhaps the memory occupied,  only because we can measure these so easily.  What about the 
costs of maintenance  (when hardware or operating systems change),  of development  (algorithm 
design,  tests,  proofs of correctness),  and of misleading results?  Solving a quadratic equation 
provides a relatively easily understood case study of the way all costs get inflated when arithmetic 
precision rather higher than the precision of the data and the accuracy demanded of results is 
unavailable or,  worse,  unusable because of lapses in the design and/or implementation of widely 
used programming languages.  Then costs are inflated by the trickery required to devise portable 
programs that compute roots at least about as accurately as the data deserve,  and to prove that 
they are that accurate,  and to test them.  This trickery will be illustrated by a  MATLAB  program 
designed to get results of high quality from diverse versions of  MATLAB  on the two most popular 
kinds of hardware,  PCs  and  Macs.  Included is a test program and some of its results.  Only a 
small part of the program needs higher precision arithmetic not too slow.  There it would cost far 
less than the consequences of doing without.
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§1:  Formulas that Almost Solve a Quadratic Equation 
We learn in  High School  how,  given real coefficients  A,  B  and  C  of a quadratic equation  

Az2 – 2Bz + C = 0 ,  to solve it for its roots  z :  They are  (B ± √D)/A  wherein the  Discriminant  

D := B2 – A·C .  Later some of us learn that,  if  D > 0 ,  better accuracy is usually obtained from 
formulas  z1 := (B ± √D)/A  and  z2 := C/(B ± √D)  in which the sign of  ±√D  is chosen to match 
the sign of  B  in order to defend  z2 ,  the root of smaller magnitude,  from ruin by roundoff when 
the roots have extravagantly different magnitudes.  There is more to the story than these formulas.

Very few of us learn that roundoff in these formulas can lose more than the roots’ last sig. digit or 
two when the roots come too close to coincidence.  Then the number of sig. digits lost roughly 
equals the number of leading digits in which the roots agree up to a maximum loss of about half 
the sig. digits carried by the arithmetic.  The shock we feel at learning of this loss may abate when 
we learn from  Backward Error-Analysis  that the roots suffer little worse from roundoff during 
their computation than if first each of the given coefficients  A,  B  and  C  had been perturbed by 
a rounding error or two when it was generated,  and then the roots had been computed exactly 
from the perturbed coefficients.

Thus we might conclude that the computed roots are scarcely more uncertain due to roundoff 
during their computation than to roundoff before their computation,  and therefore the loss of 
more than a few of their last sig. digits,  when this loss occurs,  is deserved by  “Ill Conditioned  
roots”,  as they are called when they are hypersensitive to perturbations of the coefficients.

That conclusion is not quite right.  It seems somewhat like blaming a crime upon its victim.

Good reasons exist for software to compute the roots each correct in every bit except perhaps its 
last one or two,  as if every coefficient’s every bit had been supplied correctly.  It may have been,  
for all the programmer and users of that software know.  Software that accurate can be costly to 
program in a language that lacks support for arithmetic rather more precise than the precision of 
the coefficients and the desired accuracy of the roots.  Why is their accuracy worth that cost?
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§2:  Why We Care  
How do computations resemble  “Recreational”  drugs?   Hardly anybody ever stops with one.

Rarely does a computation end at the roots of a quadratic.  They are almost always intermediates 
towards some other goal.  For example,  they may characterize responses to impulses of a simple 
linear system,  perhaps a mechanical system consisting of a mass,  a spring,  and some drag,  or 
perhaps an electrical system consisting of an inductance,  a capacitance and some resistance.  A 
question like

“After disturbance by an impulse,
     does the system pass through its equilibrium state before returning to it?” 

can be answered by determining whether the roots are real or complex,  and then they reveal how 
long the system takes to return so nearly to equilibrium as doesn’t matter.  In near-borderline 
cases,  near what is called  “Critical Damping”,  the roots almost coincide,  and these are the cases 
most sensitive to roundoff in the coefficients and in the program that computes the roots.

Roots computed from the formulas in  §1  belong to coefficients almost indistinguishable from the 
stored coefficients which,  in turn,  are almost indistinguishable from intended values and thus 
belong to a linear system almost indistinguishable from the intended system.  The two systems 
behave in ways so nearly indistinguishable that everybody might as well compute the behavior of 
the system whose coefficients are stored in the computer.  All its properties will be computed from 
these coefficients.  If properties are to be physically consistent,  all of them must be computed 
accurately enough from the same coefficients rather than from slightly different coefficients that 
vary from one property to another.  Otherwise inaccurate roots belonging to coefficients slightly 
perturbed in one unknown way may turn out inconsistent with some other property belonging to 
coefficients slightly perturbed in some other unknown way.  Let’s look at such a property.

A crucial property of a system is the way its response to disturbances changes when the system’s 
parameters change a little.  This property is especially important during attempts to optimize the 
system’s design.  Then the parameters are changed intentionally to adjust the system’s response 
towards some desired behavior.  The optimization process presumes that the system’s computed 
response changes the way it should when the process alters parameters a little but not too little to 
elicit a palpable change in response.  Computed responses that change too differently than do true 
responses are too likely to confound the optimization process.

Here is a concrete example.  Lest the reader drown in digits,  the quadratics’ coefficients and roots 
are restricted to  4  sig. dec.  and inexact computations are all rounded to  4  sig. dec.  The roots of 
two quadratic equations with slightly altered coefficients are compared to see whether their roots 
change in the right directions when computed directly from the formulas presented in  §1.

Changing the coefficients has changed all roots substantially;  but the computed roots,  besides 
losing half the digits carried,  change too much in directions opposite to the way they should.

Table 1: True  vs.  Crudely Computed Roots of Nearby Quadratic Equations

A B C true D true roots computed D computed roots

10.27 29.61 85.37 0.0022 2.88772… 2.87859… 0.1000 2.914 2.852

10.28 29.62 85.34 0.0492 2.90290… 2.86075… 0 2.881 2.881

Changes in roots: +0.01518… –0.01784… –0.033 +0.029
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Backward Error Analysis  explains the results tabulated above but does not endorse them nor does 
it answer a question troublesome to both users and providers of numerical software:

How much accuracy should be expected of the results from high-quality floating-
   point software when well-known or obvious formulas deliver inadequate accuracy?

“High-quality floating-point software”  is the kind upon which we prefer to rely when its results 
may matter to us more than computerized entertainment does.  Such software will influence the 
trajectory of an anti-ballistic-missile missile,  or the control surfaces of a new airliner  flown by 
wire  as most are now,  or predictions of an economy’s response to proposed changes in policy.

All such software uses mathematical models to predict future behavior,  and all such predictions 
are extrapolations,  and most extrapolations amplify errors in the course of propagating them.  The 
farther the prediction,  the greater the amplification.  And many a mathematical model relies upon 
delicate internal relationships far more sensitive to tiny errors than is the modeled system to small 
perturbations of its parameters.  For instance,  we characterize the behavior of control systems in 
terms of the eigensystems of associated matrices even though the eigensystems,  both computed 
and true,  are often orders of magnitude more sensitive to tiny perturbations in the matrices than 
are control systems sensitive to variations in their components.  The roots of a quadratic equation 
can be vastly more sensitive to perturbations of its coefficients than the behavior of a simple linear 
system  (over time intervals not extremely long)  can be sensitive to variations in its parameters.

Consequently the foregoing question about the expected accuracy of high-quality floating-point 
software has no simple quantitative answer.  Instead the question gets answered qualitatively:

•   “I desire results so accurate that I don’t care how accurate they are.”

•   “I hope to produce results at least about as accurate as the input data deserve
  and can be extracted from this data in a tolerable amount of time
     with the computational resources available to my program.”

How much will the fulfillment of these hopes and desires cost?  This is the question to be explored 
in what follows.  A simple answer almost always adequate in the absence of a competent  (and 
often too expensive)  error-analysis is provided by this old  Rule of Thumb :

Perform all computation in arithmetic with somewhat more than
twice as many sig. digits as are deemed significant in the data

and are desired in the final results.

This old rule of thumb works beautifully for  Table 1’s  quadratic equations:  Roots computed by 
arithmetic carrying at least  8  sig. dec. are correct in all digits carried but the last one or two.  The 
rule of thumb malfunctions so seldom that it would almost answer our question about cost but for 
lapses in today’s most popular programming languages.  Unlike the original  Kernighan-Ritchie  
C ,  which evaluated all floating-point subexpressions,  literal constants and functions in  double  
precision  8  bytes wide even if an expression’s variables were all  floats  4  bytes wide,  ANSI C,  
Fortran  and  Java  generally do not promote purely  float  subexpressions to  double.  Instead 
programmers must remember to insert  casts  like  “ D = (double)B*B – (double)A*C ; ”  in  
C  and  Java,  and use  “ D = dprod(B,B) – dprod(A,C) ”   in  Fortran.
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Thus,  when  float  is precise enough for the quadratic equation’s coefficients and roots,  or for 
data and results more generally,  today’s programming languages tend to exacerbate end-users’ 
costs due to the occasional unreliability of floating-point software produced by programmers who 
either forgot the  (double)  casts or did not know to insert them.

   In every army large enough there is always somebody who fails to get the message,  or gets it wrong,  or forgets it.

Of course,  a typical end-user is unlikely to know  when  floating-point results are worse than they 
should be,  much less  why  they are worse.  Consequently those exacerbated costs are unknown.  
And if they were known they might well be blamed entirely upon deficiencies in applications 
programmers’ education rather than at least partially upon programming languages’ entrapment 
of numerically naive programmers.

Lacking estimates of the costs to users of misleading floating-point results,  we explore instead the 
costs to conscientious software developers of attempts to avoid producing misleading results.  We 
suppose data and/or results require at least  8  or  9  sig. dec.  and are stored in the computer as  
doubles.  Then the old rule of thumb would demand more than  double  precision which,  though 
adequate for most computations,  is inadequate for nearly coincident roots of quadratic equations.

Here is a simple example with data and all arithmetic in  IEEE Standard 754  double  precision.
( Your computer may require the suffix  “ D0 ”  be appended to the data’s digits.) 

Besides half the digits carried,  the roots’ direction of movement has been lost despite arithmetic 
carrying rather more sig. digits  (53 sig. bits amounts to almost  16 sig. dec.)  than the  11  sig. dec. 
the data might naively be thought to deserve.  No such loss afflicts this data when the discriminant  

D = B2 – A·C  is accumulated in whatever floating-point wider than  double,  whether built into 
hardware or simulated in software,  is provided by any current  C  or  Fortran  compiler.

When coefficients are given in  double  the simplest way to defend accuracy is to accumulate the 
discriminant  D  in floating-point arithmetic  16  bytes wide.  This may be called  long double  in  
Hewlett-Packard’s  or  Sun Microsystem’s  C,  or  extended  in  IBM’s  Fortran,  or  real*16  or  
quadruple precision  elsewhere.  Binary floating-point rightly called  “quadruple precision”  
should have  113  sig. bits and an exponent field  15  bits wide.  An alternative called  “doubled-
double”  is less well specified,  supplying at best  106  sig. bits of precision and an exponent field  
11  bits wide;  this is the  long double  on  Power-PC  processors used by  IBM  and  Apple.

Here is a test to tell which kind of  16-byte  floating-point you have if you have it:
long double  s,  t = 3.0 ;
s = 1.0 - (4.0/t - 1.0)*t .

Table 2: True  vs.  Crudely Computed Roots of Nearby Quadratic Equations

A B C true D true roots computed D computed roots

94906265.625 94906267.000 94906268.375 1.89… 1.000000028975958…
1.0    

0.0 1.000000014487979
1.000000014487979

94906266.375 94906267.375 94906268.375 1.0 1.000000021073424…
1.0    

2.0 1.000000025437873
0.999999995635551

Changes in roots: -0.000000007902534…
0

+0.000000010949894
–0.000000018852428
Prof. W. Kahan                     WORK IN PROGRESS;         COMMENTS ARE INVITED.                      Page 5/21



Qdrtcs                   November 20, 2004 1:50 am                       §2: Why We Care 
If  s  is zero this test has failed,  perhaps because your compiler  “optimized”  too aggressively.

If  s  is  2–112 ≈ 1.926e-34  your  long double  is probably an honest  quadruple precision  of the 
kind found on  IBM’s z/Architecture ESA/390  and in  H-P’s  and  Sun’s  C,  slow but reliable.  If  

|s|  is roughly  2–105 ≈ 2.465e-32  your  long double  is probably a grubbier but faster  doubled-
double.  Computing  D  with either of these arithmetics and then rounding it back to  double  will 
obviously provide adequately accurate  double  roots for quadratics with  double  coefficients,  
and will do so at the least possible cost.  And if you can do that,  you need not read what follows.

If  s  is  2–52 ≈ 2.22e–16  your  long double  is just  double  8  bytes wide,  as happens on recent  

Microsoft  compilers for the  PC.  If  s  is  –2–63 ≈ –1.0842e–19  your  long double  is  IEEE 
Standard 754’s  double-extended  on an  Intel-based  PC  or clone with a  Borland  or  gnu  C  
compiler or an early version  (6  or  7)  from  Microsoft.  Or you may be running a  680x0-based  
Apple Macintosh  two decades old.  (Though  10  bytes wide,  each of these double-extended 
numbers is best stored in  12  or  16  bytes of memory to avoid degradation of performance due to 
misalignments with  4-byte,  8-byte  or  16-byte  memory busses.)  Neither  8-byte  nor  10-byte  
arithmetic can provide adequately accurate  double  roots for  every  quadratic equation with  
double  coefficients unless it is backed up by a tricky scheme to compute the discriminant  D .

What follows will explore this tricky scheme and its costs.  A mole hill will grow into a mountain 
before our eyes.  It is a sight worth watching because similar inflation afflicts other problems –

Matrix Computations,  Equation Solving,  Optimization,  Financial Forecasting,
Geometrical Analysis,  Deflections of Loaded Structures,  Trajectories and Orbits,  … –

when arithmetic extravagantly more precise than the data and the desired accuracy  (deserved or 
not)  of results is inaccessible or too slow to use.  Of course,  extravagant precision is most likely 
necessary only for data sets that occur rarely if ever;  and were such troublesome data recognized 
easily in advance we would tolerate extra costs paid on rare occasions.  Instead numerical troubles 
are usually recognized too late if ever,  and then misdiagnosed at least at first if not forever.  We 
tend to blame time wasted and other inflated costs upon that data by calling it  “Ill-Conditioned”  
whenever we have persuaded ourselves that our computational methods,  having succeeded on all 
the other data we tested,  must be  “Numerically Stable”.

Name-calling makes the caller feel better without enlightening him.
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§3:  Arithmetic Available to Compute the Discriminant  D 
How costly is the computation of  8-byte  D := B2 – A·C  from  8-byte  coefficients  A,  B  and  C  
when  D  must be accurate in all but its last few bits,  and  16-byte  floating-point arithmetic is 

unavailable?  This step is crucial to the solution of the quadratic equation  Az2 – 2Bz + C = 0  for  
8-byte  roots  z1  and  z2  accurate in all but their last bit or two.

Also important are the treatments of exceptional coefficient like  ∞  and  NaN  and  A = 0 ,  and the avoidance of 
premature over/underflows among intermediate results when the final results should be roots  z  within the range of  
8-byte  numbers.  We shall skip over these issues because they can be handled easily in ways that would merely 
distract us from our main concern,  which is accuracy despite roundoff.

The scheme by which we shall compute  D  accurately enough has three steps.  The first tests 
whether the obvious formula for  D  has lost too many bits to roundoff.  If so,  the second step 

recomputes each of  B2  and  A·C  exactly  as an unevaluated sum of two  8-byte  floating-point 

numbers;  say  P + dP = B2  and  Q + dQ = A·C  wherein  P = ( B2  rounded to  8  bytes)  and  

dP = B2 – P  exactly,  and similarly  Q = ( A·C  rounded to  8  bytes)  and  dQ = A·C – Q  exactly.  
The third step simply computes  D := (P–Q) + (dP–dQ)  in ordinary  8-byte arithmetic;  the proof 
of its adequate accuracy must be unobvious because algorithms  (including one of mine (1981, 
Fig. 10 on p.49))  published previously for this step  are much more complicated and slower.

Our three-step scheme will accommodate three styles of floating-point arithmetic.  The first style 
rounds every algebraic operation upon  8-byte  operands to  8  bytes.  This is what  Java  requires 
and  MATLAB  normally does.  The second style evaluates some expressions in  10-byte  registers 
before rounding assignments to  8-byte  variables in memory.  Though this is the way  Intel’s  and  
Motorola’s  floating-point arithmetics were designed to be used  25  years ago,  the community of 
programming language designers and implementers has misunderstood its virtues and skimped its 
support.  Still,  vestiges of this second style persist in a recent version of  MATLAB  on  PCs,  so it 
will be exploited to enhance substantially the average speed of our quadratic equation solver.

The third style of floating-point arithmetic enjoys a  Fused Multiply-Add  operation that evaluates  
X·Y±Z  to obtain an  8-byte  result from three  8-byte operands with only one rounding error.  This  
FMA  came into existence two decades ago with  IBM’s Power  architecture and is now provided 
also by  Apple’s  Power Macs  and by  Cray/Tera’s  MTA  and by  Intel’s Itanium.  An  FMA  is 
partially accessible from a version of  MATLAB  on  Power Macs,  so it will be exploited to bring 
the speed of our quadratic equation solver nearly up to the speed of a naively inaccurate solver 
using the formulas in  §1  unaltered.

Which of the three styles of arithmetic may your version of  MATLAB  use sometimes on your 
hardware?  You can answer this question with a test like the following:

x = [1+4.656612873e-10, 1]*[1-4.656612873e-10; -1] ;
y = [1, 1+4.656612873e-10]*[-1; 1-4.656612873e-10] ;

If  x  and  y  are both zero,  MATLAB  follows the first style,  rounding every arithmetic operation 
to the same  8-byte  precision as is normally used for variables stored in memory.  If  x  and  y  are 

both  –2–62 ≈ –2.1684e–19 ,  MATLAB  follows the second style when computing scalar products 
of vectors and of rows and columns of matrices;  these are accumulated to  64  sig. bits in  10-byte 
registers before being rounded back to  53  sig. bits when stored into  8-byte  variables.
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MATLAB 6.5  on  PCs  follows the first style by default;  to enable the second style execute the 
command

system_dependent( 'setprecision',  64 )

A similar command
system_dependent( 'setprecision',  53 ) 

restores the default first style.

If  x  is zero and  y  is  –2–62 ≈ –2.1684e–19 ,  MATLAB  follows the third style to evaluate a scalar 
product  [q, r]*[s; t]  as  ( p + r·t  rounded to  53  sig. bits)  where  p = ( q·s  rounded to  53  sig. 
bits) .  If  x  and  y  take any other values the test for arithmetic style has failed.

The style of arithmetic affects only the trickery used to compute the discriminant  D = B2 – A·C  
accurately enough.  The trickery will be hidden in a  MATLAB  program  dscrmt(A, B, C)  that 
computes  D .  Then the program  qdrtc(A, B, C)  that computes the roots will look like this:

function  [Z1, Z2] = qdrtc(A, B, C)
%  [z1, z2] = qdrtc(a, b, c)  produces the roots  z1  and  z2
%  of the quadratic equation  a*z^2 - 2*b*z + c = 0 .
D = dscrmt(A, B, C) ;  %...  See  dscrmt  below
if  (D <= 0),
    R = B/A ;  S = sqrt(D)/A ;  Z1 = R+S ;  Z2 = R-S ;
    return,  end  %... Complex or coincident real roots
R = sqrt(D)*(sign(B) + (B == 0)) + B ;
Z1 = R/A ;  Z2 = C/R ;  return  %... Real roots

function  D = dscrmt(A, B, C)
%  D = B^2 - A*C  computed accurately enough by a tricky scheme.

The tricky scheme’s details will be spread out below.
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§4:  When is a Tricky Scheme Necessary? 
Usually the obvious way to compute  D := B2 – A·C  is accurate enough.  Only when rounded 

values of  B2  and  A·C  cancel too many of each other’s digits must a tricky scheme be invoked.  
How many are  “too many”?  It depends upon the style of arithmetic.  This dependence will be 
encapsulated in a parameter  π  determined by the style as follows:

π := 3  for styles  #1  and  #3 ( 53  sig. bit accumulation of scalar products)
π := 1024  for style  #2 ( 64  sig. bit accumulation of scalar products)

Thus,  π = 1024  just when both test values  x  and  y  in  §3  above are  2–62 .  Then we compute  
D  as a scalar product to exploit  MATLAB’s  extra-precise accumulation,  if it is enabled,  thus:

D = [B, A]*[B; -C] ;  E = [B, A]*[B; C] ;
if  pie*abs(D) >= E  then return  %...  D  is accurate enough
%...  Otherwise use trickery to recompute  D  well enough  ...

If the quickly computed value of  D ≈ B2 – A·C  satisfies  π·|D| ≥ E = B2 + A·C  then roundoff’s 
contribution to  D’s  relative error during the scalar product computation of  D  can be shown to 
exceed the relative errors in multiplications by a factor no bigger than  π .  Then roundoff blights  
D’s  last two bits when  π = 3 ,  its last bit when  π = 1024.  This error is small enough not to 
require that  D  be recomputed.  The quickly computed  D  would be good enough most the time 
when  π = 3 ,  almost all the time when  π = 1024 ,  if coefficients  A,  B  and  C  were independent 
random variates.  But they aren’t.  Still,  when extra-precise accumulation of scalar products to  11  
more sig. bits than the operands’ precision is available,  it renders tricky and slow recomputation 
of  D  so nearly never necessary that the average computation time for accurate roots exceeds only 
imperceptably the time taken by the formula in  §1  that can lose half the digits carried.  This is the 
way  11  extra bits of precision usually pays off.

If the quickly computed value of  D ≈ B2 – A·C  satisfies  π·|D| < E = B2 + A·C  then roundoff’s 
contribution to  D’s  relative error during the scalar product computation of  D  may be intolerably 

big after cancellation.  In fact  1/2 ≤ (π–1)/(π+1) < A·C/B2 < (π+1)/(π–1) ≤ 2  can be deduced 

easily,  so cancellation causes the subtraction  B2 – A·C  to be performed exactly;  all the error in  
D  due to roundoff comes entirely from the two multiplications.  This is why they must be carried 
out exactly during the recomputation of  D  that will now be needed to get it accurately enough.
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§5:  Exact Multiplication and Tricky Addition 
The third arithmetic style with a fused multiply-add,  when test values  x = 0  and  y = 2–62  in  §3  
above,  can easily perform exact multiplication in  MATLAB  by splitting products thus:

P = B*B ;  dP = [P, B]*[-1; B] ;  Q = A*C ;  dQ = [Q, A]*[-1; C] ;

These assignments actually produce  P = ( B·B rounded to  53  sig. bits ) ,   dP = B·B – P  exactly,   
Q = ( A·C rounded to  53  sig. bits ) ,  and  dQ = A·C – Q  exactly.  Because rounding conforms to  
IEEE Standard 754,  dP  and  dQ  fit into  52  sig. bits;  each has at least one trailing zero bit.

The other arithmetic styles accomplish a similar splitting at the cost of more effort by using a 
tricky algorithm attributed to  G.W. Veltkamp  by  T.J. Dekker (1971).  It breaks operands into two 
half-width fragments barely narrow enough that the product of any two fragments is exact since it 
fits into  53  sig. bits.  Here is a  MATLAB  program that breaks operands:

function  [Xh, Xt] = break2(X)
%  [Xh, Xt] = break2(X)  produces  Xh = X rounded to  26 sig. bits
%  and  Xt = X - Xh  exactly in  26 sig. bits,  so products like
%  Xh*Xh,  Xh*Xt   and  Xt*Xt  can all be computed exactly.
bigX = X*134217729 ;  %... = X*(2^27 + 1)
Y = (X - bigX) ;  Xh = Y + bigX ;  %...  DON’T OPTIMIZE  Y  AWAY!
Xt = X - Xh ;  return

A proof that this algorithm works well enough in arithmetic style  #1  (every operation rounded 
correctly to  53  sig. bits)  can be found in  §5-6  of  Dekker (1971).  Then the next few  MATLAB  
statements produce the exact products  P+dP  and  Q+dQ  split as before,  and finally  D :

[Ah, At] = break2(A) ;  [Bh, Bt] = break2(B) ;  [Ch, Ct] = break2(C) ;
P = B*B ;  dP = ((Bh*Bh - P) + 2*Bh*Bt) + Bt*Bt ;
Q = A*C ;  dQ = ((Ah*Ch - Q) + (Ah*Ct + At*Ch)) + At*Ct ;
D = (P-Q) + (dP-dQ) ;   %...  DON’T OMIT PARENTHESES!

Arithmetic style  #2  (accumulating scalar products with  11  extra sig. bits)  requires a slightly 
different program because of two technicalities.  First,  MATLAB  rounds arithmetic operations  
not  in a scalar product twice,  once to  64  sig. bits and again to  53.  This double rounding spoils 
correctness proofs if not the results produced by  break2(X)  and the last four lines of  MATLAB  
code.  To protect results from spoilage they are computed as scalar products as much as possible.

 Then a second technicality intrudes:  Scalar products  [a, b, c, d]*[x; y; z; t] = a·x + b·y + c·z + d·t  
are normally accumulated left-to right,  but  MATLAB 5.3  on  PCs  accumulates them right-to-left.  
This really would spoil our results if  MATLAB 5.3  on  PCs  performed its arithmetic in style  #2,  
but its arithmetic style is  #1.  Still,  prudence obliges us to test for right-to-left accumulation:

rl = [eps, 9, -9]*[eps; 9; 9] ;

If  rl  is nonzero then accumulation is right-to-left and the foregoing scalar product should be 
rewritten  [d, c, b, a]*[t; z; y; x]  when the order of accumulation matters,  as it does here in the 
program for arithmetic style #2 :
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[Ah, At] = break2(A) ;  [Bh, Bt] = break2(B) ;  [Ch, Ct] = break2(C) ;
P = B*B ;  Q = A*C ;
if  (rl),  %..  Scalar products accumulate right-to-left

dP = [Bt, 2*Bh, P, Bh]*[Bt; Bt; -1; Bh] ;
dQ = [At, At, Ah, Q, Ah]*[Ct; Ch; Ct; -1; Ch] ;
D = [dQ, dP, Q, P]*[-1; 1; -1; 1] ;

    else   %...  Scalar products accumulate left-to-right
dP = [Bh, P, 2*Bh, Bt]*[Bh; -1; Bt; Bt] ;
dQ = [Ah, Q, Ah, At, At]*[Ch; -1; Ct; Ch; Ct] ;
D = [P, Q, dP, dQ]*[1; -1; 1; -1] ;

By now the reader should have some idea of how badly inflated are the costs of developing and 
maintaining high quality floating-point software without arithmetic precision twice as wide as the 
given data and desired results.  What about the cost of proving these tricky programs correct?

§6:  Proofs? 
The shortest proofs found so far for the correctness of the foregoing algorithms and programs are,  
as usual for floating-point,  far longer and trickier than the algorithms and programs in question.  
Particularly tricky is the proof that  “ D = (P–Q) + (dP–dQ) ”  works for arithmetic styles  #1  
and  #3.  The (re)discovery of such proofs is left to extremely diligent students.  Some day the best 
available proofs  (contributions are welcome)  will be appended to these notes with due credits.
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§7:  Tests 
At first sight an obvious way presents itself to generate coefficients to test any quadratic equation 
solver:  Choose coefficient  A  and roots  z1  and  z2  arbitrarily,  then compute  B := (z1 + z2)·A  
and  C := z1·z2·A ,  and then see how accurately the program in question solves the quadratic 

equation  Az2 – 2Bz + C = 0 .  This test’s fatal flaw arises from rounding errors in the computed 
coefficients for which the correct roots are no longer exactly  z1  and  z2 .

Another scheme would choose integer coefficients for which exact roots can be computed easily 
enough by automated algebra systems like  DERIVE,  MAPLE  and  MATHEMATICA.  The hard part 
of this scheme is choosing integer coefficients big enough  (with enough digits)  to induce typical 
rounding errors in the program under test,  and correlated enough to generate pathologically close 
roots that will challenge its accuracy.  For instance,  integer coefficients
     A := 2017810 · 8264001469 ,    B := 39213 · 229699315399 ,   C := 45077 · 107932908389
(they are products of integers small enough to be converted from decimal to  double  binary 
floating-point perfectly after  “.0D0”  is appended to their digits)  barely fit exactly into  double  

and should produce the tiniest possible negative discriminant  D := B2 – A·C = –1 .  The roots are

z = (B ± √D)/A = 0.54015588795707844… ± ı·5.9969350369679512…/1017 .
Examples with complex roots so nearly coincident as these are tedious to generate in quantity.

Competent tests are often more difficult to design than was the program under test.  Ideally,  tests 
should be arbitrarily numerous,  randomized,  prioritized to expose gross blunders soon,  filtered 
to avoid wasting time testing the same possibilities too often,  distributed densely enough along 
boundaries where bugs are likely to hide,  reproducible whenever tests that exposed a bug have to 
be rerun on a revised version of the program under test,  and fast.  It’s a lot to ask.

Tests to be proposed here have been simplified to focus upon accuracy in the face of roundoff.  
Omitted are tests that would exercise the full range of magnitudes of coefficients and roots,  or 
would check that exceptional coefficients like  ∞  or  NaN  or  A = 0  are handled correctly.  One 
of the questions to be addressed asks
      “How much more do accuracy tests cost if access to fast extra-precise arithmetic is denied?” 

The construction of one test battery begins with the  Fibonacci  numbers  Fn := Fn–1 + Fn–2  for  
n = 2, 3, 4, …, 78  in turn starting from  F0 := 0  and  F1 := 1 .  ( F79  is too big to fit into the  53  

sig. bits of a  double  number.)  Fn  is the integer nearest  τn/√5  where  τ := (1 + √5)/2 ≈ 1.618… .  

The quadratic equation   Fn·z2 – 2·Fn–1·z + Fn–2 = 0   has discriminant  Fn–1
2 – Fn·Fn–2 = (–1)n ,  

so its two roots are   ( Fn–1 ± In )/Fn ,  wherein

In := √( (–1)n )  =  { if  n  is even then  1  else  ı := √–1 } .

As  n → +∞  the roots become more nearly coincident,  approaching  1/τ ≈ 0.618… .  For smaller 
integers  n  the integer coefficients  Fn  are too small to generate typical rounding errors when 
acted upon by the quadratic equation solver’s arithmetic.  These coefficients have to be enlarged.
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To enlarge and randomize the test coefficients let  R  be a random number uniformly distributed 

between  252  and  253 – 1 .  Such a number  R  can be generated by a  MATLAB  assignment like

“ R = 1/eps + rand(1)*(1/eps - 1) ; ”  because  MATLAB’s  eps = 2–52 .  Then assign  
M = floor(R/Fn) ;  A = M*Fn ;  B = M*Fn–1 ;  C = M*Fn–2 ; 

to produce integer coefficients  A, B  and  C  whose somewhat scrambled bits still fit into  53  sig. 
bits without changing the quadratic equation’s roots   ( Fn–1 ± In )/Fn .  Recomputing  R  and  M  
for each new  n  randomizes as well as enlarges the coefficients,  though less so as  n  increases.

Another such battery of test coefficients can be constructed by replacing  Fibonacci  numbers  Fn  by members of a 
shorter sequence  ƒn := α·ƒn–1 + ƒn–2  for any small integer  α > 1  starting from  ƒ0 := 0  and  ƒ1 := 1 .  Further 
exploration of such test batteries will not be pursued here since we have other fish to fry.

The accuracy of the program under test will be gauged from the differences between its roots  z  
and the correct roots   ( Fn–1 ± In )/Fn .  Ideally the latter should be computed at least a few bits 
more accurately than  z  before subtraction from  z .  This is straightforward if the correct roots 
and the differences can be computed extra-precisely.  Otherwise,  if the same  double  arithmetic 
as was used to compute  z  is the only arithmetic available,  tricks must be incorporated into the 
test lest its own roundoff obscure the accuracy of a finely crafted program under test.  Again,  the 
lack of convenient access to extra-precise arithmetic inflates costs.

One trick exploits the correct roots’ approach to  1/τ ≈ 0.618… .  This is approximated closely 
enough by  5/8 = 0.625  that the difference between a correct root and the root  z  being tested can 
be recast when  n ≥ 6  to  (z – 0.625) + (0.125·Fn–6 ± In)/Fn  with an apt choice for  ± .  Validation 
of this unobvious expression for the desired difference is left again to the diligent student.  Its 
advantage comes from exact cancellation in the subtraction  (z – 0.625) ,  which depresses a 
subsequent contribution from the division’s roundoff by an order of magnitude.  This trick does 
nothing to enhance the assessment of the accuracy of a root’s imaginary part when  n  is  odd;  
then more trickery along the lines explored in  §5  for the computation of  D  has to be employed.  
But our tests will cheat by assessing instead the accuracy of the computed value of  D ,  since the 
imaginary part cannot be much more accurate than that.

An altogether different kind of accuracy assessment can be inferred indirectly but very quickly from the quadratic  

Ax2 – 2Bx + C  and its derivative evaluated extra-precisely at the approximate roots  x  being tested without ever 
computing the correct roots.  This kind of assessment loses its appeal if extra-precise arithmetic has to be simulated in 
software,  in which case correct roots of the quadratic might as well be computed extra-accurately.  For more 
complicated equations whose roots cannot be computed explicitly from a simple formula,  this kind of indirect 
assessment is the only kind available,  and it is trustworthy in critical cases only if performed with extra-precise 
arithmetic.
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§8:  MATLAB Programs 

function  [Z1, Z2] = qdrtc(A, B, C)
%  [z1, z2] = qdrtc(a, b, c)  solves the quadratic equation
%  a*z^2 - 2*b*z + c == 0  for roots  z1  and  z2  computed
%  accurately out to the last sig. bit or two.  Real arrays
%  of coefficients  a, b, c  yield arrays of roots  z1, z2 .
%  To ease root-tracing,  real roots are ordered:  Z1 <= Z2 .
%  NO PRECAUTIONS AGAINST PREMATURE OVER/UNDERFLOW,  NOR NANS
%  NOR INFINITIES AMONG THE COEFFICIENTS,  NOR  a == 0 ,
%  HAVE BEEN TAKEN IN THIS VERSION OF THE PROGRAM.
%                                        (C) 2004  W. Kahan

sA = size(A) ;  sB = size(B) ;  sC = size(C) ;
sZ = max([sA; sB; sC]) ;  Z1 = ones(sZ(1), sZ(2)) ;
if any( [sZ-sA, sZ-sB, sZ-sC] ) %...  mix scalars and arrays
    if     (sum(sA)==2),  A = A(Z1) ;
    elseif (sum(sB)==2),  B = B(Z1) ;
    elseif (sum(sC)==2),  C = C(Z1) ;
    else  error('Sizes of  qdrtc(A,B,C)''s  arguments mismatch.')
  end,  end
A = A(:) ;  B = B(:) ;  C = C(:) ;  Z1 = Z1(:) ;
if any(imag([A; B; C]))
    error('qdrtc(A, B, C)  accepts only real  A, B, C.'),  end
Z2 = Z1 ;  %...  Allocate initial memory for roots.

D = dscrmt(A, B, C) ;  %...  Discriminant:  see file  dscrmt.m

nD = (D <= 0) ;
if any(nD)  %... Complex conjugate or coincident real roots
    Z1(nD) = B(nD)./A(nD) + sqrt(D(nD))./A(nD) ;
    Z2(nD) = conj(Z1(nD)) ;  end

nD = ~nD ;  if any(nD)  %...  Distinct real roots
    S = B(nD) ;
    S = sqrt(D(nD)).*( sign(S) + (S==0) ) + S ;
    Z1(nD) = S./A(nD) ;  Z2(nD) = C(nD)./S ;  end

nD = (Z1 < Z2) ;  if any(nD)  %...  Sort real roots
    S = Z1(nD) ;  Z1(nD) = Z2(nD) ;  Z2(nD) = S ;  end

Z1 = reshape(Z1, sZ(1), sZ(2)) ;
Z2 = reshape(Z2, sZ(1), sZ(2)) ;

return  %...  End  qdrtc.m
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  [Z1, Z2] = qdrtc0(A, B, C)
%  [z1, z2] = qdrtc0(a, b, c)  solves the quadratic equation
%  a*z^2 - 2*b*z + c == 0  for roots  z1 and z2 .  Real arrays
%  of coefficients  a, b, c  yield arrays of roots  z1, z2 .
%  To ease root-tracing,  real roots are ordered:  Z1 <= Z2 .
%  NO PRECAUTIONS AGAINST PREMATURE OVER/UNDERFLOW,  NOR NANS
%  NOR INFINITIES AMONG THE COEFFICIENTS,  NOR  a == 0 ,  NOR
%  INACCURACY HAVE BEEN TAKEN IN THIS VERSION OF THE PROGRAM.
%                                        (C) 2004  W. Kahan
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Program  qdrtc0  differs from  qdrtc  in only two ways:  First  “qdrtc0”  appears everywhere in 
place of  “qdrtc”.  Second,  the line

“D = dscrmt(A, B, C) ;  %...  Discriminant:  see file  dscrmt.m”
in  qdrtc  has been replaced by the obvious formula in a line

“D = B.*B - A.*C ;  %...  Discriminant,  perhaps inaccurate.”
in  qdrtc0 .  Thus,  tests can compare this obvious way to solve a quadratic with the elaborate 
and,  we hope,  more accurate way embodied in  dscrmt  within  qdrtc .
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  D = dscrmt(A, B, C)
%  dscrmt(A, B, C) = B.*B - A.*C  computed extra-precisely
%  if necessary to ensure accuracy out to the last sig. bit
%  or two.  Real columns  A, B, C  must have the same size.
%  This program is intended to work with versions  3.5 - 6.5
%  of  MATLAB  on  PCs,  Power Macs,  and old  680x0 Macs.
%                                     (C) 2004  W. Kahan

%  Determine  Matlab's  Arithmetic Style  AS :
y = 0.5^31 ;  z = -y*y ;
x = [1+y, 1]*[1-y; -1] ;  y = [1, 1+y]*[-1; 1-y] ;
x0 = (x==0) ;  xz = (x==z) ;  y0 = (y==0) ;  yz = (y==z) ;
AS = x0*y0+ 2*xz*yz + 3*x0*yz + 4*xz*y0 ;

%  Determine whether  MATLAB  adds scalar products right-to-left :
rl = ( [eps, 9, -9]*[eps; 9; 9] > 0 ) ;

if  (AS == 0) | ( (AS == 3) & rl ) | ( (AS == 4) & (~rl) )
  ArithmeticStyle = AS ,  RightToLeft = rl ,
  disp(' Something strange has happened!  Please inform  W. Kahan')
  disp(' about your computer and your version of  Matlab  because')
  error(' dscrmt  did not recognize  Matlab''s  arithmetic style.')
  end

%  Is the obvious way to compute  D  adequately accurate?
if  (AS == 2)  %...  Sum scalar products to  64  sig. bits
    pie = 1024 ;  n = length(A) ;  D = zeros(n,1) ;
    for  j = 1:n
        D(j) = [B(j), A(j)]*[B(j); -C(j)] ;
      end  %...  of loop on  j
  else  %...  All arithmetic rounds to  53  sig. bits
    pie = 3 ;  D = B.*B - A.*C ;  end
E = B.*B + A.*C ;
k = ( pie*abs(D) >= E ) ;
if all(k),  return, end  %... If the obvious way was good enough.

%  Recompute those values of  D  too inaccurate the obvious way.
k = ~k ;
a = A(k) ;  b = B(k) ;  c = C(k) ;
p = b.*b ;  q = a.*c ;  n = length(a) ;
dp = p ;  dq = q ;  %... allocate memory.

if  (AS > 2)  %...  Use the hardware's Fused Multiply-Add
    if rl,  for  j = 1:n 

       dp(j) = [b(j), p(j)]*[b(j); -1] ;  
   dq(j) = [a(j), q(j)]*[c(j); -1] ;  end
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      else  for  j = 1:n 
       dp(j) = [p(j), b(j)]*[-1; b(j)] ;

   dq(j) = [q(j), a(j)]*[-1; c(j)] ;  end
      d = (p-q) + (dp-dq) ;  end
  else  %...  Break operands into half-width fragments
    [ah, at] = break2(a) ;  [bh, bt] = break2(b) ;
    [ch, ct] = break2(c) ;
    if  (AS < 2)  %...  All arithmetic rounds to  53  sig. bits
        dp = ((bh.*bh - p) + 2*bh.*bt) + bt.*bt ;
        dq = ((ah.*ch - q) + (ah.*ct + at.*ch)) + at.*ct ;
        d = (p-q) + (dp-dq) ;
      else  %...  Arithmetic may round to  64  and then  53 s.b.
        if rl  %...   Sum scalar products right-to-left
            for j = 1:n
                dp(j) = [bt(j), 2*bh(j), p(j), bh(j)]* ...
                        [bt(j);  bt(j);   -1,  bh(j)] ;
                dq(j) = [at(j), at(j), ah(j), q(j), ah(j)]* ...
                        [ct(j); ch(j); ct(j);  -1;  ch(j)] ;
              end %...  of loop on  j
            d = [dq, dp, q, p]*[-1; 1; -1; 1] ;
          else  %...  Sum scalar products left-to-right
            for j = 1:n
                dp(j) = [bh(j), p(j), 2*bh(j), bt(j)]* ...
                        [bh(j);  -1;   bt(j);  bt(j)] ;
                dq(j) = [ah(j), q(j), ah(j), at(j), at(j)]* ...
                        [ch(j);  -1;  ct(j); ch(j); ct(j)] ;
              end %...  of loop on  j
            d = [p, q, dp, dq]*[1; -1; 1; -1] ;
          end  %...  of extra-precisely summed scalar products
      end  %...  of arithmetic with half-width fragments
  end  %...  Now  d  is fairly accurate.

D(k) = d ;  return  %... End  dscrmt.m
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  [Xh, Xt] = break2(X)
%  [Xh, Xt] = break2(X)  produces  Xh = X rounded to 26 sig. bits
%  and  Xt = X - Xh  exactly in 26 sig. bits,  so products like
%  Xh.*Xh,  Xh.*Xt,  Xt.*Xt  can all be computed exactly.  But if
%  arithmetic double-rounds to 64 and then 53 sig. bits,  some of
%  Xt  or  Xh  may require 27 sig. bits for all I know.   W. K.

bigX = X*134217729 ;  %... = X*(2^27 + 1)
Y = X - bigX ;  Xh = Y + bigX ;  %... DON'T OPTIMIZE  Y  AWAY!
Xt = X - Xh ;  return  %... End break2
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

%  qdrtctst.m  is a Matlab script that tests  qdrtc.m
%  and puts its results into a diary file  qdrtctst.res

diary qdrtctst.res
format long e %... or  long g  on later versions of Matlab
format compact

'Test roots with extremely tiny imaginary parts:'
A = 2017810*8264001469,  B = 39213*229699315399,  C = 45077*107932908389
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Z = (B + sqrt(-1))/A
D = -1
Derr = dscrmt(A, B, C) - D ,  Derr0 = (B*B - A*C) - D
[Z1, Z2] = qdrtc(A, B, C),  [z1, z2] = qdrtc0(A,B,C)
qdrtcerr = Z1-Z,  qdrtc0err = z1-Z
'- - - - - - - - - - - - - - - - - - - - - - - - - -'

'Produce test results for  Table 2:'
B = 94906267 ;  A = B - 1.375 ;  C = B + 1.375 ;
B = [B; B+0.375] ;  A = [A; A+0.75] ;  C = [C; C] ;
ABC = [A, B, C]
D = [121/64; 1]
Derr = dscrmt(A,B,C) - D,  Derr0 = (B.*B - A.*C) - D
[Z1, Z2] = qdrtc(A, B, C),  [z1, z2] = qdrtc0(A,B,C)
dZ = [-1, 1]*[Z1, Z2],  dz = [-1, 1]*[z1, z2]
'- - - - - - - - - - - - - - - - - - - - - - - - - -'

%  Time  qdrtc  and  qdrtc0  on large random arrays:
A = rand(100) - 0.5 ;
B = rand(100) - 0.5 ;
C = rand(100) - 0.5 ;
' Running  qdrtc  on  10000  random coefficients'
T = clock ;
[Z1, Z2] = qdrtc(A, B, C) ;
T = etime(clock, T) ;

' Running  qdrtc0  on  10000  random coefficients'
t = clock ;
[z1, z2] = qdrtc0(A, B, C) ;
t = etime(clock, t) ;

TIMEqdrtc_vs_qdrtc0 = [T, t]

'- - - - - - - - - - - - - - - - - - - - - - - - - -'
'Generate test coefficients from  Fibonacci  numbers  F_n :'
F = ones(79,1) ;  I2 = F ;  F(1) = 0 ;  I2(2) = -1 ;
for n = 3:79,  F(n) = F(n-1)+F(n-2) ;
              I2(n) = -I2(n-1) ;  end
%  F(n+1) = F_n ;  I2(n+1) = F(n)^2 - F(n+1)*F(n-1) = (-1)^n

% ...  To check on the test, ...
% 'Display the first dozen  Fibonacci  numbers in a row:'
% F0_11 = [ [0:11]; F(1:12)']
% 'Check the first  20  values  F(n)^2 - F(n+1)*F(n-1) - I2(n+1)'
% Derr = norm( F(2:21).*F(2:21) - F(3:22).*F(1:20) - I2(3:22) )

%  I = sqrt( I2(3:79) ) ;  % THIS FAILS BECAUSE OF A BUG IN MATLAB 6.5

J = sqrt(-1) ;  %...  This is an alternative way to get  I .
I = ones(1,39) ;  I = [I; I*J] ;  I = I(:) ;  I = I(1:77) ;

A = F(3:79) ;  B = F(2:78) ;  C = F(1:77) ;  D = I2(3:79) ;

%  Compute first six  [cZ1, cZ2] = [Roots] - 5/8  crudely,
%     and the rest closely:
c = 0.625 ;  cZ1 = I ;  cZ2 = I ;  %...  to allocate memory
j = [1:6]' ;
cZ1(j) = B(j) - c*A(j) ;
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j = [7:77]' ;
cZ1(j) = -0.125*A(j-6) ;
cZ2 = (cZ1 - I)./A ;
cZ1 = (cZ1 + I)./A ;

%  Enlarge and randomize the test coefficients:
M = 1/eps ;  M = rand(77, 1)*(M-1) + M ;
M = max(1, floor(M./A)) ;  %...  Let's not let  M == 0 .
A = M.*A ;  B = M.*B ;  C = M.*C ;
trueD = M.*M.*I2(3:79) ;  %... True Discriminant

%  Compute  77  roots with and without  dscrmt :
' Running  qdrtc  on  Fibonacci  coefficients'
T = clock ;
[Z1, Z2] = qdrtc(A, B, C) ;
T = etime(clock, T) ;

' Running  qdrtc0  on  Fibonacci  coefficients'
t = clock ;
[z1, z2] = qdrtc0(A, B, C) ;
t = etime(clock, t) ;

TIMEqdrtc_vs_qdrtc0 = [T, t]

%  ' Display the first dozen zeros to test the test:'
%  j = [1:12]' ;
%  TrueZ = [cZ1(j), cZ2(j)] + c
%  qdrtcZ = [Z1(j), Z2(j)]
%  qdrtc0z = [z1(j), z2(j)]

%  Compute no. of correct sig. bits in roots:
L2e = 1/log(2) ;  eta = eps*eps ; %...  to prevent  .../0
S1 = max( abs(c + cZ1)',  eta ) ;
S2 = max( abs(c + cZ2)',  eta ) ;
Zbits = max([ abs((Z1-c)-cZ1)'./S1; abs((Z2-c)-cZ2)'./S2 ]) ;
Zbits = min( 54, -log(Zbits' + eta)*L2e ) ;
zbits = max([ abs((z1-c)-cZ1)'./S1; abs((z2-c)-cZ2)'./S2 ]) ;
zbits = min( 54, -log(zbits' + eta)*L2e ) ;

%  Plot no. of correct sig. bits in roots:
N = [2:78]' ;
plot(N, Zbits,  N, zbits)
xlabel(' n ')
ylabel(' Correct sig. bits ')
title(' Accuracy of Roots from Fibonacci Coefficients ')
pause

%  Compute no. of correct sig. bits in discriminants:
D = dscrmt(A, B, C) ;
d = B.*B - A.*C ;
Dbits = min(54, -log(abs((D-trueD)./trueD) + eta)*L2e ) ;
dbits = min(54, -log(abs((d-trueD)./trueD) + eta)*L2e ) ;
plot(N, Dbits,  N, dbits)
xlabel(' n ')
ylabel(' Correct sig. bits ')
title(' Accuracy of Discriminants from Fibonacci Coefficients ')
pause
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§9:  Test Results  
The test script  qdrtctst  has been run on  MATLAB  versions  3.5  to  6.5  on  PCs,  versions  3.5  
to  5.2  on  both current  iMacs  and  Power Macs,  and on an old  68040-based  Mac Quadra.  The 
results differ significantly from one computer to another,  and from one version to another,  only 
in the relative speeds of the tricky  qdrtc  vs.  the obvious  qdrtc0 .  Some combinations of 
version and hardware run loops of the form    for  j = ... ...;  end   slower than other 
combinations by an order of magnitude,  thus penalizing severely the schemes in  dscrmt  that are 
forced to access  11  extra sig. bits or fused multiply-adds only through awkward scalar products 
when the given coefficients  A, B, C  are arrays.  This  “feature”  of  MATLAB  undermines its 
ability to compare the intrinsic speeds of the algorithms from which the programs were derived.

A(nother)  nasty bug in  MATLAB 6.5  was exposed by the test script.  Its attempted computation 
of   I = sqrt([1  –1  1  –1  1  –1 ...]) = [1  ı  1  ı  1  ı ...] ,  where  ı = √–1 ,  
produced instead  [1  NaN  1  NaN  1  NaN ...]  as if the script’s  sqrt  had not been told 
about the complex numbers that  MATLAB’s  other  sqrts  produce in all other contexts I tried.  
The bug has been bypassed in  qdrtctst .

The accuracies of the algorithms compare very much as might be expected.  The graphs below 
plot accuracies,  gauged in sig. bits,  against the subscript  n  of the  Fibonacci  number  Fn  from 
which the quadratic’s coefficients  A = M·Fn ,  B = M·Fn–1 ,  C = M·Fn–2   were derived.  The first 
graph exhibits the accuracies of the computed roots;  the second … discriminants.  The second 
graph also reveals the accuracies of the imaginary parts of complex roots when  n  is odd.  In both 
graphs the upper line belongs to  qdrtc  and its tricky  dscrmt ,  and the lower line to  qdrtc0 .

   
These graphs,  which came from  MATLAB 5.2  on an old  Mac Quadra,  are typical of graphs 
from other versions on other hardware produced by the same test script  qdrtctst .  In these tests  
qdrtc  produced roots always accurate to more than  52  sig. bits in both real and imaginary parts,  
while  qdrtc0  produced roots whose real parts were accurate to roughly  27 + 0.7·|n – 41|  sig. 
bits,  imaginary parts  (like discriminants when  n  is odd)  to roughly  max{0, 1.38·(41 – n)} .

How often does accuracy lost by a simple program like  qdrtc0  hurt someone later?  Not often.  
Nobody knows for sure.  Nobody is keeping score.  And users of  qdrtc  wouldn’t care.
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§10:  Conclusions and Recommendations 
People who drive cars nowadays no longer have to know how to crank an engine by hand to start 
it,  how to double-clutch when changing gears,  how to change a spark-plug or tire,  nor how to 
drain water from a carburettor bowl,  though such knowledge used to be prerequisite.  And now 
cars have tempered glass windows,  seat-belts and air-bags to protect us somewhat against our 
own mistakes and others’.  A heavier burden borne by automobile manufacturers lightens burdens 
for the rest of us.  This kind of redistribution of burdens advances civilization.  Usually.  I hope.

The essence of civilization is that we benefit from others’ experience without having to relive it.

Those of us who have grown old fighting against the vagaries of floating-point arithmetic and ill-
conceived compiler  “optimizations”  take pride in our victories in that battle.  But bequeathing 
the same battle to the generations that follow us would be contrary to the essence of civilization.  
Our experience indicts programming languages and development systems as sources of too many 
of the vagaries against which we have had to fight.  Too many are unnecessary,  as are certain of 
the tempting  “optimizations”  safe for integers but occasionally fatal for floating-point.  Ill-
advised optimizations inspired by benchmarks oblivious to all but speed constitute a story for 
another day.

If the designers and implementors of programming languages and development systems wish to 
diminish their systems’ capture cross-section for mistakes made by clever but numerically naive 
programmers,  as are almost all of us,  we must build two kinds of capabilities into those systems:

First are augmented aids towards debugging floating-point software distressed by roundoff.  Some 
are described in my tract posted at  http://www.cs.berkeley.edu/~wkahan/Mindless.pdf .  They 
would change that debugging task from nearly impossible for almost all programmers,  as it is 
now,  to merely difficult.  Difficult is still costly.  To further reduce costs to both end-users and 
developers of floating-point software,  we must reduce the incidence of bugs due to roundoff.

A second capability,  if easy enough to use that almost all programmers use it by default,  would 
reduce by orders of magnitude the incidence of distress caused by roundoff.  That capability is 
extra-precise arithmetic not too slow.  By far the majority of laptop and desktop machines today 
have such a capability in their hardware going unused for lack of apt linguistic support.  Now 
atrophy threatens that capability in tomorrow’s machines.  Someone has to persuade hardware and 
language designers and implementors to supply and support extra-precise arithmetic in a way that 
will be used routinely by most programmers regardless of benchmarks oblivious to all but speed.

Precision higher than double,  albeit too slow,  is better than no higher precision at all.

A little more precision than double,  and not too slow,  is better than far higher precision too slow.

Who shall persuade hardware and language designers and implementors to do what needs doing?

Not market forces generated by the community of programmers and end-users of floating-point 
software.  In  1998  Dr. James Gosling,  an architect of  Java,  characterized that community well:

     “ 95% of the folks out there are completely clueless about floating-point.”
A closer estimate may be  99.9% .  The clueless folks cannot be expected to know nor demand 
what needs doing.  The demand has to come from project managers concerned with costs,  and 
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from actuaries and engineers concerned with risks,  and most of all from thoughtful professionals 
in the computing industry.  They all have to be alerted to costs and risks of which most appear 
unaware nowadays though these costs and risks weighed upon the minds of an older generation.  
The older generation has to enlighten the younger as best we can.  It is the essence of civilazation.

And,  if skeptical about civilization’s advances,  think about self-defence.
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§12:  Proofs  —  TO  BE  APPENDED  SOME  DAY 
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