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Abstract:

 

Matlab  has become the software package most widely used by engineers and scientists for their 
numerical computations.  Part of its appeal arose from its early availability on  Intel x86-based  
IBM PCs  and their clones,  the hardware most widely used by engineers and scientists for their 
numerical computations nowadays.  Almost all these users are unaware of enhanced accuracy  
Matlab  used to enjoy on  PCs  but lost in its latest releases,  versions  5.x ,  under  Windows.  
Offered here is a function  

 

mxmuleps

 

  that,  when run on various versions of  Matlab  on various 
computers,  tells which ones have enhanced accuracy,  whose benefits are illustrated by examples.  
Also addressed are pervasive misunderstandings about how much that lost accuracy was worth.
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Matlab’s  Loss  is  Nobody’s Gain

 

Introduction:

 

A  Matlab  function  

 

mxmuleps

 

  has been programmed to reveal  Matlab’s  roundoff threshold 
for matrix multiplication.  This is smaller than  

 

eps

 

,  the roundoff threshold for almost all other 
expressions evaluated by  Matlab,  on certain machines whose  

 

extra-precise internal registers

 

  
carry more sig. bits than  Matlab  stores in the  

 

double

 

  ( 8-byte )  format it uses for its floating-
point variables.  Earlier versions of  Matlab  used these extra bits during matrix multiplication 
whenever they were available;  Matlab 5.x  continues to do so only on  680x0-based Apple 
Macintoshes,  and later versions of  Matlab  may not support these machines.  On the ubiquitous  
Intel Pentium-based  PCs  and their clones running under  Microsoft Windows

 



 

,  Matlab  now 
eschews use of extra precision that would enhance the accuracy of its results on these machines.  
Why  Matlab 5.x  abandoned the extra accuracy is a question not answered in this note,  which 
first explains how  

 

mxmuleps

 

  reveals whether  Matlab  accumulates matrix multiplication to 
extra precision and then illustrates its benefits by examples,  some of them surprising.

Example 1  shows how difficult is the task of designing a benchmark to compare the accuracies of 
different computer systems.  Two programs designed to compute the same integer-valued function 
of an integer argument,  but one program rather more accurately than the second,  are run on 
versions of  Matlab  some of which compute exponentials  

 

x^n

 

  rather more accurately than 
others.  Can you guess which programs and which versions of  Matlab  will produce the best and 
which the worst results?  Don’t bet on it.

Example 2  is a program that normally benefits from arithmetic with greater precision but,  when 
run on computers with a  

 

Fused Multiply-Accumulate

 

  ( FMAC )  instruction that commits fewer 
rounding errors than other computers do,  gets disconcertingly worse results.  However,  revising 
the program to exploit an  FMAC,  when it is available,  then produces impeccable results.

Example 3  applies  

 

Iterative Refinement

 

  to offset the effects of certain numerical pathologies 
upon computed solutions of linear systems  

 

A

 

·

 

z

 

 = 

 

b

 

 .  The process is reliable only if residuals  

 

A

 

·

 

x

 

–

 

b

 

  are accumulated extra-precisely;  but this interpretation of experimental and theoretical 
results is obscured by misunderstandings of  

 

Backward Error-Analysis

 

  spawned by treacherous 
mathematics.  A fair appraisal of accuracy’s worth is subtle;  it reduces risks though they are not 
random.  This is illustrated again by  Example 4,  a simple geometrical computation.

Modest modifications are proposed to restore  Matlab’s  superior accuracy when it runs on  Intel-
based PCs  and clones,  even if results from other platforms remain no better than they are now,  
without detracting from  Matlab’s  speed.  This proposal runs counter to a notion promulgated 
with  Java

 



 

  to the effect that all computers should deliver identical results;  but that notion is 
inimical to both speed and accuracy so long as computer architectures remain diverse.

An appendix presents a  Matlab  program  

 

divulge.m

 

  that divulges small divergencies among the 
arithmetic properties of different versions of  Matlab  on diverse platforms.
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What  

 

eps

 

  means:

 

Matlab’s  

 

eps

 

  is the difference between  1

 

.

 

0  and the next larger floating-point number stored in 
the  

 

double

 

  ( 8-byte )  format  Matlab  uses for all its floating-point variables.  Currently  

 

eps

 

 = 1/2

 

52

 

 

 

≈

 

 2

 

.

 

2/10

 

16

 

 for all computers on which  Matlab  runs;  earlier versions of  Matlab  ran 
on computers with diverse arithmetics and consequently diverse values of  

 

eps

 

 .  Currently all 
arithmetics on which  Matlab  runs conform to  IEEE Standard 754 for Binary Floating-Point 
Arithmetic  and round every rational  ( +, –, ·, / )  and square root  ( 

 

√

 

 )  operation upon  

 

double

 

  
operands by default to  53  sig. bits or more.  Most conforming hardware carries more,  at least  64  
sig. bits,  in an internal register file that provides extra accuracy for subexpression evaluation;  
however the extra  sig. bits can be turned off if a programmer doesn’t want them perhaps because 
he prefers to get the same results as he would get from computers that lack the  11  extra bits.

In the past,  Matlab  did not turn the  11  extra bits off,  but discarded them after evaluating all but 
a few kinds of (sub)expressions.  The difference between  “ discard ”  and  “ turn off ”  is subtle 
but can be detected easily.  In  Matlab,  compute

 

e = eps ,   z = 1 + (1 + e)*e/2 ,   d = z - 1

 

to see the following results displayed …
     if extra bits are turned off:  

 

e = 2

 

.

 

2204e-16 , z = 1.0000 , d = 2

 

.

 

2204e-16 

 

.
     if extra bits are discarded:  

 

e = 2

 

.

 

2204e-16 ,  z = 1 ,      d = 0 

 

.

( To distinguish extra bits turned off on an old  680x0-based Mac  from  nonexistent extra bits on 
other computers is impossible,  and on a  PC  requires an expression that barely underflows.  Such 
an expression can be found in the program  

 

divulge.m

 

  in an appendix at the end of this note.)

 

Here is the explanation for the results above.  If the extra bits are turned off or nonexistent,  the right-hand side 
expression computed for  

 

z

 

  exceeds  

 

1 + eps/2

 

  before it is rounded off to  53  sig. bits,  and consequently rounds 
to  

 

z = 1 + eps

 

 ,  the  

 

double

 

  number next larger than  1 .  If the  11  extra bits are active in the computer’s 
registers,  the right-hand side expression is first rounded to  

 

1 + eps/2

 

  in  64  sig. bits,  and then rounded again to 
the  

 

double

 

  number  

 

z = 1

 

  in  53  sig. bits when its last  11  bits are discarded as it is stored.

 

During non-sparse matrix multiplication,  and during exponentiation  (real)

 

integer

 

 ,  Matlab  used 
to keep the extra  sig. bits,  thus saving both time and higher accuracy on  Pentiums  and old  
Macs.  Now  Matlab  turns off the  Pentium’s  extra  11  sig. bits.  This will seems perverse to 
vastly many  Pentium  owners thus denied some of the accuracy they paid for when they bought 
their hardware.  Those  11  extra bits were not discarded to ensure  Matlab  will get identical 
results on all hardware since this is impractical for several reasons of which one comes next.
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The  Fused Multiply-Accumulate  ( FMAC )  Instruction:

 

Hardware conforming to  IEEE 754  is often augmented by features that can accelerate matrix 
multiplication if programmers exploit them.  One such feature is pipelined arithmetic;  it allows 
arithmetic operations to be initiated at the rate of one per computer clock cycle though each 
operation may take a few cycles to complete.  At any moment a few arithmetic operations can be 
simultaneously in progress through the pipeline.  A programmer can exploit this capability by 
computing at least two elements  p

 

ij

 

  of a matrix product  P = X·Y  simultaneously,  interleaving 
the products and sums in  p

 

ij

 

 = x

 

i1

 

·y

 

1j

 

 + x

 

i2

 

·y

 

2j

 

 + x

 

i3

 

·y

 

3j

 

 + …  with those of a neighbor,  thereby 
also reusing elements of  X  and  Y  fetched from slow memory into a cache or faster registers.

Expensive hardware with more than one floating-point pipeline can keep them all full only by 
issuing more than one instruction per cycle,  thus moving at least four operands per cycle from the 
register file to the pipelines and at least two results per cycle back.  Less expensive hardware can 
multiply matrices at the same speed by using a  Multiply-Accumulate  ( MAC )  instruction that 
moves three operands per cycle into the pipeline and one back after performing a multiplication 
and addition;  this instruction evaluates one expression of the form  

 

±

 

s 

 

±

 

 x·y  per cycle.  A  

 

Fused

 

  
Multiply-Accumulate  ( FMAC )  instruction evaluates this expression with one rounding error 
instead of two.  Few hardware architectures have a  FMAC;  a few more have a  MAC,  and most 
have neither.  How do results computed with a  FMAC  differ from those computed without?

The difference is subtle enough to require some notation to explain it.  Let  {x + y}  stand for the 
rounded value of  x + y ,  and  {x·y}  for the rounded value of  x·y ,  thus distinguishing values 
rounded to  53  sig. bits from exact values uncontaminated by roundoff.  The  

 

C

 

  programmer who 
writes  “ T = S + R*Q ”  intending to compute  s + r·q  actually gets instead  t = {s + {r·q}}  with 
two rounding errors,  except on a machine whose  FMAC  produces  t = {s + r·q}  with only one 
rounding error.  This  FMAC  has advantages and disadvantages.

 

The obvious advantage,  speed,  is shared with an unfused  MAC  that delivers a result with two rounding errors the 
same as slower separate multiplication and addition operations deliver.  A less obvious advantage of a  FMAC  is 
slightly more accurate matrix products,  which tend to an extra sig. bit of accuracy because they accumulate about 
half as many rounding errors.  An unobvious advantage of a  FMAC,  and the prime reason for its existence,  is a trick 
that computes correctly rounded quotients at adequate speed without division hardware built specifically for that 
purpose.  The trick can also be used to compute a product  r·q = s + t  exactly as a sum of two floating-point numbers 
with two  FMACs  thus:  Given  r  and  q  first obtain  s = {r·q + 0}  and then  t = {r·q - s} ;  it turns out that  t = r·q - s  
exactly.  This trick has many applications but here is not the place to explain them.

 

The  FMAC  has subtle disadvantages that argue against its indiscriminate use and hence deserve 
explanation.  The trouble is that  FMACs  render statements like  “ T = U*V – R*Q ”  ambiguous 
in languages like  

 

C

 

  or  Fortran.  Which of  t = {{u·v} – r·q}  and  t = {u·v – {r·q}}  does the 
programmer prefer?  Even if he can indicate his choice by inserting algebraically redundant 
parentheses,  say  “ T = (U*V) – R*Q ”  for the first outcome or  “ T = U*V – (R*Q) ”  for the 
second,  or by some other linguistic convention,  the trouble does not go away;  how shall he 
decide which to choose?  The choice almost never matters much,  but now and then it matters 
noticeably,  as we shall see.
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For instance,  the product of a complex number  z = x + 

 

ıy  and its complex conjugate  x – ıy  

should be the real number  x2 + y2 + ı(y·x – x·y)  =  x2 + y2 ,  and is real in rounded arithmetic 
without a  FMAC;  but a  FMAC  can deliver a tiny nonzero value  {y·x} – x·y  or  y·x – {x·y}  for 
the imaginary part.  This anomaly could probably be ignored if it did not have to be explained.

In  Matlab  the  FMAC’s  anomaly shows up when a complex column  c  turns out to have a 
squared norm  c’*c   that is a slightly complex number instead of the expected nonnegative real 
number.  The anomaly shows up again when,  for most complex matrices  C ,  the  hermitian  
products  A = C’*C   produce slightly nonzero differences  A–A’   instead of exactly vanishing 
differences obtained on machines with no  FMAC.  Resetting  A = 0.5*(A+A’)   cures that.

A simpler way to avoid its anomalies is to eschew the  FMAC;  but similar and equally avoidable 
anomalies would persist in  Matlab  even without  FMACs.  For instance,  although every 
complex  hermitian  matrix  A  = A’   has only real eigenvalues,   Matlab’s  eig(A)   still delivers,  
on all computers,  eigenvalues with tiny nonzero imaginary parts and occasionally with 

utterly non-orthogonal eigenvectors ;    this last defect is a blunder.
And if  B  has the same dimensions as  C  above then the  hermitian  character of  H = B*A*B’   
is slightly spoiled by roundoff no matter whether all data is real or no  FMAC  is used;  the best 
cure is to reset    H = 0.5*(H+H’)  .

Matlab’s  non-sparse matrix multiplication exploits a  FMAC  or  MAC  on any hardware that has 
one,  rather than forego a factor of  2  in speed;  and  mxmuleps   determines whether a  FMAC  is 
in use that way.  When evaluating most other expressions  Matlab  eschews the  FMAC.

How  mxmuleps   works:
The constant  eps ,  a constant function in  Matlab 5.x ,  used to be a global variable in earlier 
versions.  In case  eps   has been changed  mxmuleps   compares it with the computed value of

u  =  abs( (4 . 0/3 - 1)*3 – 1 )
which produces the same result as  u = 1.000…0001 – 1.000…0000  from binary floating-point 
arithmetic correctly rounded to the same precision as stored variables;  this difference  u  is one  
ULP  ( Unit in the Last Place stored )  of  double   numbers barely bigger than  1 .  If comparison 
reveals that  u ≠ eps   then  mxmuleps   issues a warning message asking whether  eps   has been 
changed.  Such a change could invalidate  mxmuleps ’s  computation,  as would non-binary or 
incorrectly rounded floating-point arithmetic.

How does the computation of  u  work?  In binary,  4/3 = 1.010101… .  The rounded quotient  z = {4/3}  differs from  
4/3  by  ±1/3 ULP .  Then  (z – 1)  suffers no rounding error;  its last two sig. bits are zeros.  Consequently  (z – 1)·3  
is computed exactly and differs from  1  by just  ±1 ULP .

The computation of  u  foreshadows the way  mxmuleps   works.  A  Matlab  scalar product
s  =  [ x1, x2, x3 ]*[ y 1; y2; y3 ]  =  x1·y1 + x2·y2 + x3·y3 

that would vanish in the absence of roundoff is designed to expose whatever roundoff occurs.
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For this purpose  x1·y1 = {x1·y1}  and  x3·y3 = {x3·y3}  have been chosen to be computable exactly;  and  x2·y2  has 
been chosen as close to  4/3  as possible so as to differ from its rounded value  « x2·y2 »  by very nearly  ±1/3 ULP  of 
the precision  Matlab  carries during matrix multiplication,  provided this precision is less than twice the precision of  
double  .  Otherwise,  or if  Matlab  uses a  FMAC,  the product  x2·y2  is carried forward exactly to the subsequent 
addition,  either  x1·y1 + x2·y2  or  x2·y2 + x3·y3   depending upon the order in which scalar product  s  is evaluated.

Since  s = 0  in the absence of roundoff,  both  x1·y1 + x2·y2  = –x3·y3  and  x2·y2 + x3·y3 = –x1·y1  are computable 
exactly;  thus the computed  s = 0  whenever  Matlab  uses a  FMAC  or at least twice the precision of  double   
during matrix multiplication.  Currently no hardware supports quadruple-precision floating-point fully,  so it runs too 
slowly for  Matlab  to use it routinely for matrix multiplication;  for the time being  s = 0  implies the use of a  FMAC.  
In this case  mxmuleps   returns  NaN  rather than suggest wrongly that matrix multiplication is exact.

A nonzero value computed for  s  is intended to expose the rounding error committed when  x2·y2  was rounded to a 
slightly different value  « x2·y2 »  perhaps more accurate than  {x2·y2} .  Now the order in which the scalar product is 
evaluated matters;  the computed value of  s  is either

{«  « x1·y1 + « x2·y2 » » + x3·y3  »}      or      {«  x1·y1 + « « x2·y2 » + x3·y3 »  »} .
Matlab  opts for the first on some machines,  the second on others,  so  mxmuleps   computes both.  The second 
happens to vanish.  In the first the choice  x1·y1 ≈ –{x2·y2}  implies that  x1·y1 + « x2·y2 »  mostly cancels and is 
therefore computed exactly.  Then,  since  x3·y3 = –x1·y1 – x2·y2 ,  the computation of  s  yields

{« ( x1·y1 + « x2·y2 » ) + x3·y3 »)  =  {« « x2·y2 » – x2·y2 »)  =  « x2·y2 » – x2·y2 
exactly,  whence  3·s  must be very nearly  ±1 ULP  of the precision  Matlab  carries during matrix multiplication.

Since  |3·s|  is very nearly a power of  1/2  no bigger than  eps  ,  rounding  eps /|3·s|  to the nearest integer must 
produce a power of  2  exactly,  and dividing  eps   by this power of  2  delivers the result  mxmuleps   promised:

  mxmuleps   =  1 ULP  of 1.xxx…  at the precision  Matlab  carries during matrix multiplication
unless it uses a  FMAC,  in which case  mxmuleps   returns  NaN .

If  mxmuleps   is the answer,  what is the question?  It concerns the difference between the intent 
behind a  Matlab  assignment  P = X*Y   and what it accomplishes.  The computed product  P  
usually differs from the exact matrix product  X·Y  slightly;  how much?  Elementwise,

|P – X·Y| ≤  (eps /2)·|P| + k·ç·|X|·|Y|
where  k  is the number of columns in  X  and rows in  Y ,  and  ç = mxmuleps /2  unless it is  NaN ,  
in which case  ç = eps /2 .  This inequality applies to real and complex non-sparse matrices.  ( For 
sparse matrices  k = max(max( (X ~= 0)*(Y ~= 0) ))   and  ç = eps /2 .)   However,  this 
inequality tends to overestimate the difference  |P – X·Y|  grossly;  rounding errors rarely conspire 
to reinforce each other as much as this inequality would allow.  A more realistic estimate would 
replace  k  by something smaller than  √k .

The details of the inequality matter to finicky error analysts more than to the rest of  Matlab’s  
users,  for whom the following summary should suffice:

If  mxmuleps  = eps   then the error in the computed  P = X*Y   is rarely much worse than if each
element of the data  X  and  Y  had been perturbed by an  ULP  or two,  or more if the
dimension  k  is huge.

If  mxmuleps   is  NaN  then the error in the computed  P = X*Y   is typically about  70%  of what
it would be were  mxmuleps  = eps   since  FMACs  commit fewer rounding errors.

If  mxmuleps  = eps /2048  then the computed  P = X*Y   rarely differs noticeably from what would
be obtained by rounding off each element of the exact matrix product  X·Y  once.
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The Program  mxmuleps.m  :

function  y = mxmuleps
%  mxmuleps  =  the roundoff threshold for  MATLAB's  matrix multiplication
%            =  eps     if no  Extra-Precise Accumulation occurs    ... (1)
%            =  eps/2048   if  Extra-Precise Accumulation occurs    ... (2)
%            is  NaN   if a Fused Multiply-Accumulate is enabled    ... (3)
%  on three important classes of computers conforming to  IEEE Standard 754
%  for  Binary Floating-Point Arithmetic.  These three classes include ...
%  1)  Sun SPARC;  H-P PA RISC-1;  SGI MIPS;  DEC Alpha;  and some others;
%           and  Matlab 5.x  running on  Intel x86-based  PCs  and clones.
%  2)  Old Apple Macintoshes based upon the  Motorola 680x0;  and
%           Matlab 3.5 and 4.x  running on  Intel x86-based PCs and clones.
%  3)  IBM RS/6000 & Apple Power Mac;  HAL SPARC;  SGI R8000;  H-P PA RISC-2.
%  Matlab 3.5  does not run on computers in class  3)  whereon later versions
%    of  Matlab  use  Fused Multiply-Accumulation  only during non-sparse
%    matrix multiplication so far as I have been able to determine.
%  On computers in class  2)  MATLAB  accumulates  Extra-Precisely  only
%    non-sparse matrix multiplication and perhaps exponentiation  ( y^n )
%    so far as I have been able to determine.    (C)  W. Kahan,  2 Aug. 1998.

e = eps ;  %  eps = 1/2^52  on all machines listed above.
z = 4/3 ;  u = (1-z)*3 + 1 ; % ...  |u| = 1 ULP of  1.xxxx ,  z = 4/3 - u/3
if  abs(u) ~= e,  % ...  Question whether arithmetic is anomalous:
      disp(' Has precision been altered?  Why do the following differ? ...')
      AnULPofOne = abs(u) ,  Eps = e
      disp(' Now  mxmuleps  cannot be trusted.'),  end % ...  if |u| ~= e .
z = (z-1)*4 ;  zzz = [z; z; z] ; % ...  z = (1 - u)*4/3
y = max(abs([-u, 1+u, -1 ; -1, 1+u, -u]*zzz))*3 ; % = 0 for Fused Mult-Acc.
if y == 0 ,  y = NaN ;  else  y = u/round(u/y) ;  end  %... End mxmuleps

mxmuleps   has delivered these results:

How well do these values of  mxmuleps   correlate with the accuracies achievable using  Matlab ?  
This question is explored in the following examples.  The first explains why  “… and perhaps 

exponentiation  ( y^n )  …”  appears in the comments above;  the accuracies of  Matlab’s  
exponentiation  y^n  ,  its matrix multiplication,  and the hardware’s arithmetic do not correlate.

Hardware  all with  eps = 1/252 Matlab 3.5 Matlab 4.2 Matlab 5.2

DEC Alpha,  H-P PA-RISC-1,
SGI MIPS not R8000,  Sun SPARC

— eps eps

Intel x86/Pentium-based PC & clones eps/211 eps/211 eps

68040-Macintosh ( Quadra 950 ) eps/211 eps/211 eps/211

Power Macintosh,  IBM PowerPC,  
SGI MIPS R8000

— NaN NaN
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Example 1 .  The  Fibonacci  Numbers:
The  Fibonacci  numbers  Fn  can be generated by the following recurrence:

F0 = 0 ,   F1 = 1 ,   and    Fn+1 = Fn + Fn-1   for  n = 1, 2, 3, …  in turn.
And this recurrence is a good way to compute them if all of  F1, F2, F3, …, Fn  are needed,  up to 
a point.  Two questions require attention:
     How accurately can these numbers be computed by  Matlab’s  floating-point arithmetic?
     How fast can  Fn  be computed for each  n  in a given set of nonconsecutive positive integers?
At first sight these questions may seem to have obvious answers since

F2 = 1 ,  F3 = 2 ,  F4 = 3 ,  F5 = 5 ,  F6 = 8 ,  F7 = 13 ,  F8 = 21 ,  F9 = 34 ,  …
are small integers computable exactly and quickly;  Fn  costs  n–1  additions.  But what about

F1471 = 11785114478791471849880…15229   ?
It has  308  decimal digits,  too many to fit into an  8-byte word,  so  F1471  must be rounded off.  
Must  1470  operations be performed to compute an approximate value?  We’ll find a faster way.

First the accuracy question.  F78 = 8944394323791464  is the last  Fibonacci  number that fits into  

Matlab’s  double   format.  F79 = 14472334024676221 > 253 = 9007199254740992  requires 
more than that format’s  53  sig. bits,  so it gets rounded off.  So does  Fn  for every  n > 78 .  Still,  
Matlab’s  floating-point can compute  Fn  exactly for larger values of  n ,  up to around  150 ,  as an 
unevaluated difference  Fn = fn – en  between two floating-point numbers.  Here’s how it’s done:

Approximate  F1, F2, F3, …, Fn  respectively by floating-point numbers  f1, f2, f3, …, fn  obtained in any way that is 
not excessively inaccurate.  Starting with  e1 = f1–1  and  e2 = f2–1 ,  compute  ek = ((fk – fk-1) – fk-2) + ek-1 + ek-2  for  
k = 3, 4, …, n  in turn.  Don’t disregard parentheses!  They ensure that the first two subtractions’ cancellations occur 
exactly;  then the additions occur exactly until  |ek|  gets too big,  which first occurs typically for some  k > 140 .  Until 
then,  ek = fk – Fk  exactly,  as can be confirmed by induction.  And  ek  can be shown to approximate the error  fk – Fk  
pretty well for larger values of  k  too because that error grows about as rapidly as  Fk  does.

In short,  given  approximations  fk  to the first  n  consecutive  Fibonacci  numbers  Fk ,  and 
provided they are not too inaccurate,  we can estimate their errors  ek = fk – Fk  adequately also.

Now we turn to two ways to compute an isolated  Fn  faster than by performing  n–1  operations.  
A simple way faster for very large integers  n ,  taking fewer than  16·log2 n  floating-point 
multiplications and additions,  is based upon an inductively verifiable formula

 .

Here the computation of  Yn-1  for a matrix  Y  and positive integer  n  is accomplished by repeated matrix squarings 

and multiplications;  for example,  Y259 = Y·Y2·(((((((Y2)2)2)2)2)2)2)2  in  10  matrix multiplications instead of  258 .

A way that goes several times faster than matrix multiplication uses approximate  ( not exact )  
floating-point arithmetic in an algorithm derived from another inductively verifiable formula

Fn =  (µn – (–1/µ)n)/(µ + 1/µ)   wherein   µ = (1 + √5)/2 = 1 + 1/µ = 1.61803398875… .

1 1

1 0

n 1– Fn Fn 1–

Fn 1– Fn 2–

=
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Since   µ + 1/µ = √5 > 2 ,  and   1/µn ≤ 1 ,  the foregoing formula simplifies to

Fn =  ( the integer nearest   µn/√5 )   for each nonnegative integer  n ,
and this is the formula upon which our algorithm is based.  Almost.  We need one more trick:

Instead of  µ  we obtain a rounded value  u  whose error  v = µ – u  is tinier than  eps   but gets amplified significantly 

when we compute  un  instead of   µn = un + un·n·(v/u) + un·n·(n–1)·(v/u)2/2 + …  for large  n .  To offset that error we 

estimate  v  and then compute the leading two terms in this series for  µn ,  ignoring the rest because they contribute 

less than  (n·eps )2·un  which is negligible for  n < 1475 .  ( For larger values  n ,  overflow beyond  Matlab’s  floating-
point range renders  Fn  inaccessible.)  We need only the first several sig. bits of  v ,  and they come from a formula

v =  ( 207/128 – u ) + 31/( 18304 + 8192·√5 )
whose validation is left to the diligent reader.  ( Don’t disregard parentheses!)  Matlab  gets

s = sqrt(5) … ≈ 2.23606797749979
u = (1 + s)*0.5 … ≈ 1.61803398874989
v = ( 207/128 – u ) + 31/( 8192*s + 18304 ) … ≈ -5.43185288415238e-17

Actually,  Matlab’s  u = 910872158600853/249,  and  Matlab’s  v  matches  u ’s  error  µ – u = –5.4321152…e–17  
beyond  3  sig. dec.,  which is more than good enough.

Here is  Matlab  function  fibon(N)   intended to deliver an array of  Fibonacci  numbers:

function  F = fibon(N)
%   F = fibon(N)  is the array of  Fibonacci  numbers corresponding to array
%   N of nonnegative integers.  Fibonacci  numbers are defined recursively:
%     fibon(0) = 0 ,  fibon(1) = 1 ,  and  fibon(n+1) = fibon(n) + fibon(n-1)
%   for  n = 1, 2, 3, 4, ...  in turn.  Fibon(N)  uses this recurrence if  N
%   is a long row or column of consecutive integers;  otherwise a faster but
%   sometimes less accurate direct formula is used.  The largest integer  n
%   for which  fibon(n)  can be computed exactly is  n = 78 ,  beyond which
%   roundoff cannot be avoided.  Some computers’ roundoff degrades  fibon(n)
%   for  n  as small as  71 .                       (C) W. Kahan 7 July 1998

if  any(any( (N ~= round(N)) | (N < 0) )),
      error(' fibon(n)  is defined only for nonnegative integers  n .'),  end
u = min(size(N)) ;  L = max(size(N)) ;
if ((u==1)&(L>5)),            %...  Cope with a long row or column  N ...
    if  (N(L)-N(1))==(L-1) ,  %...  of consecutive integers.
        F = N ;               %...  Allocate storage.
        F(1:2) = fibon(N(1:2)) ;  %...  Recursive call (!) to initialize  F .
        for k = 3:L ,  F(k) = F(k-1) + F(k-2) ;  end  %... Recurrence.
        return, end, end
%...  Otherwise  N  is not a long row nor column of consecutive integers:
s = sqrt(5) ;  u = (1+s)*0.5 ;             %...  u = rounded (1 + sqrt(5))/2 .
r = ((207/128 - u) + 31/(8192*s + 18304))/u ; %...  r = rel. error in  u .
F = u.^N ;  F = round(((r*N).*F + F)/s) ;     %...  F = round((u+r*u).^N/s) .
%  End fibon

How much does  fibon(N)   benefit from the trick compensating for the rounding error  µ – u ?  
It varies among different computers and different versions of  Matlab.  Let’s plot the relative error  
( fibon (n) – Fn )/fibon (n)  both with  (–)  and without  (x)  that compensation as computed by  
Matlab 4.2 and 5.x  on a  68040-based Macintosh Quadra 950  for  60 ≤ n ≤ 140 .  ( For  n ≤ 60  
that error is  0 .)  Shown too  (+)  is the error in  fibon (60:140)  computed by additive recurrence.
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A graph like the above was obtained on  Power Macs  and from  Matlab 3.5  on  x86-based  PCs.  
Something bizarre happens to  fibon (n)  with other versions of  Matlab  or on other computers:
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The first graph above makes a convincing case for the error compensation provided by variable
   r = ((207/128 - u) + 31/(8192*s + 18304))/u ; %...  r = rel. error in  u .

in the program  fibon(N)  .  Without it  ( or with  r = 0   instead ),  the error in  fibon (n)  
would grow roughly linearly with  n .  Compensated,  that error stays smaller than  2.5 ULPs,  
usually smaller than the error accumulated by the additive recurrence  ( which behaves somewhat 
like a random walk ).  But this exemplary accuracy is achieved by only certain versions of  Matlab  
on certain computer families,  namely  Matlab 4.2 and 5.x  ( not  3.5 )  on  Apple Macintoshes,  
and  Matlab 3.5  ( not  4.x nor 5.x )  on  Intel x86/Pentium-based PCs and clones.

The second graph above shows what happens with other versions of  Matlab  or other computers,  
though it was obtained from  680x0-based Mac Matlab 3.5.  They reverse the compensated and 
uncompensated errors;  their compensated error in  fibon (n)  grows linearly with  n  far faster 
than the uncompensated error,  which hardly grows at all.  This perverse phenomenon cries out for 
an explanation.  It has been figured out as follows:

Experiments suggest that,  for real scalars  y  and positive integers  n ,  Matlab  computes  yn  by repeated squarings 

and multiplications,  as illustrated above for  y259 ,  because larger integers  n  tend to take a little longer.  Matlab 4.2 

and 5.x  must accumulate those squarings and multiplications extra-precisely on a  680x0-based Mac  because its  yn  
is accurate to about an  ULP;  for instance,    t3(y,n) = y^(3*n) - (y*y*y)^n    cancels except perhaps for 

an  ULP   whenever  y  is so chosen  ( say  y = 1 ± m/2k  for small positive integers  m  and  k )  that  (y*y*y)   gets 

computed exactly.  Matlab 3.5  must  not  accumulate  yn  extra-precisely because  t3(y,n)   grows with  n  when  n  
is huge and  (y*y*y)   is still exact. though near  1  ( to avoid over/underflow ).  Our inferences about extra-precise 
multiplication are corroborated by the behavior of   t2(y,n) = y^(2*n) - (y*y)^n    for arbitrary scalars  y  
and positive integers  n :  it cancels to zero under  Matlab 3.5  but not under  Matlab 4.2 nor 5.x  on a  680x0-Mac.  

This occurs because  (y*y)   gets rounded to  {y2} ,  to  53 sig. bits,  before the second exponentiation.

Now recall  µ = (1 + √5)/2  and  u = {µ}  and  v ≈ µ – u .  Under  Matlab 3.5,  the first few squarings during attempted 

computations of  µ2,  µ4,  µ8, …  actually produce  u2 = {u·u},  u4 = {u2·u2},  u8 = {u4·u4}, …  rounded to  53 sig. bits  

( in the absence of extra-precise accumulation )  instead of  u2,  u4,  u8, …  respectively.  The errors committed by 
these first few roundings  {…}  are the crucial errors because they get amplified most by subsequent operations,  and 
these first few errors do something surprising.  Tabulated below in  ULPs  of  uk  are differences between computed 

squares  uk  and the true squares  µk  and  uk .  Apparently the first five  uk = {µk} ,  not  {uk} .

In short,  when  Matlab  exponentiates without extra-precise squarings and multiplications,  an 
accident of roundoff in the computed large powers of  u  makes them approximate corresponding 
large powers of  µ  far more closely than they approximate true powers of  u .  It’s magical,  as if 

the computer divined from an expression like  “ u^n  ”  the programmer’s intent to compute  µn .

This perverse phenomenon,  fibon (n)  more accurate without than with compensation for error  
µ–u  on computer systems whereon  Matlab  computes  u^n   less accurately,  occurs mainly for 
uncommonly big values  n .  Most applications of  Fibonacci  numbers  Fn  require them to be 
single  double   numbers computed exactly.  For how big an  n ≤ 78  can  fibon (n)  do that?

k : 1 2 4 8 16 32 64

uk – uk  in  ULPs : 0 0.27 0.85 1.86 2.95 6.17 14.05

µk – uk  in  ULPs : –0.24 –0.12 –0.18 0.09 0.35 0.56 1.00
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The next table exhibits the errors  Fn - fibon (n)  for five different computations:  with or without 
extra-precise arithmetic used or simulated during exponentiation,  with or without a compensating 
correction for the error  µ–u ,  and by the additive recurrence,  all for  0 ≤ n ≤ 82 .

Errors    Fn – Fibon (n)    Five Ways

From this table and the earlier graphs of the errors in  fibon (n)  come the following conclusions:
•  The most accurate floating-point  Fibonacci  numbers  Fn  are computed by the additive

recurrence unless  n  is huge,  in which case the recurrence is too slow.
•  For very large  n  or for a scattering of values  n ,  the best choice is that version of

fibon (n)  that compensates for the error  µ–u ,   run only on computer systems on which
Matlab  computes exponentials  u^n   accurately aided perhaps by extra-precisely
accumulated multiplications and squares.  But on other computer systems with inaccurate
exponentials this version of  fibon (n)  is too inaccurate.

•  For very large  n  or for a scattering of values  n ,  the second-best choice is that version of
fibon (n)  that does not compensate for the error  µ–u ,   run only on computer systems on
which  Matlab  computes exponentials  u^n   inaccurately by repeated multiplications and
squarings each rounded to  double .  But on other computer systems with accurate
exponentials this version of  fibon (n)  is too inaccurate.

These conclusions pose two dilemmas:

The first dilemma confronts anyone who wishes to distribute  fibon (n) ,  perhaps as part of a 
larger piece of software.  Which version should be distributed?  Distributing two versions is ill-
advised because it practically ensures that the wrong version will be installed fairly often and then 
poor results will be blamed on the software.  Devising a new version of  fibon (n)  that disables 
compensation for  µ–u  whenever a brief test of  Matlab’s  exponentiation exposes excessive 
inaccuracy is ill-advised because a new release of  Matlab  may invalidate the test.

This dilemma is unnecessary.  Matlab  could compute exponentials accurately without extra-precise arithmetic by 
using not a nondescript  C  compiler’s  math  library but algorithms promulgated with  4.2 BSD Berkeley UNIX  in 
the early  1980s  and easily available on the  World-Wide-Web  in the  Freely Distributed Math Library  fdlibm .

A second dilemma confronts anyone who would incorporate the computation of  Fn  for huge  n  
into a benchmark that tests a computer system’s floating-point for accuracy as well as speed.  An 
uncompensated algorithm could easily lead benchmark users to a faulty conclusion reminiscent of 
the  Stopped Clock Paradox:  Because a stopped mechanical clock is exactly right twice a day,  it 
is deemed more accurate than a running clock,  which is never quite right.

Extra-
Precise?

Corrected
for  µ – u ?

n = 
0:70

71 72 73 74 75 76 77 78 79 80 81 82

No
No 0 0 0 0 0 0 -1 -1 0 -3 -9 -10 -7

Yes 0 -1 -1 -2 -3 -6 -9 -15 -24 -41 -73 -106 -183

Yes
No 0 1 1 2 3 5 9 14 24 39 59 102 161

Yes 0 0 0 0 0 0 0 -1 0 1 -5 -2 -7

Additive Recurrence : 0 0 0 0 0 0 0 0 0 -1 -1 -2 -7
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Example 2 .  The  Zeros  of a  Real Quadratic:
Given real coefficients  a, b, c  should the zeros  x1  and  x2  of the real quadratic  a·x2 - 2·b·x + c  

be computed at least about as accurately as the data  [a, b, c]  deserve?  Of course!  The question 
seems silly until you try to figure out how much accuracy the data deserve;  it’s not obvious.  A 
programmer could reasonably decide instead to compute the zeros about as quickly as possible 
and hope that they are accurate enough.  To what extent does the phrase  “ about as quickly as 
possible ”  oblige the programmer to produce different programs each optimized for a different 
family of computers?  A programmer could reasonably decide instead to write one program nearly 
optimal for his own computer,  or for most of the computers to which he intends to promulgate his 
program,  and hope it runs fast enough and accurately enough on all other computers.  If it runs 
rather slower or rather less accurately on a few other computers than on his,  where should blame 
fall?  In other words,  if something has to change,  should it be his program,  or those few other 
computers?  Before resolving this moral dilemma let’s see what happens in our second example.

Our second example,  Matlab  function  qdrtc0 ,  has almost as simple a program as possible:

function  [x1, x2] = qdrtc0(a, b, c)
%  [x1, x2] = qdrtc0(a, b, c)  computes the zeros  x1  and  x2  of the real
%  quadratic  a*x^2 - 2*b*x + c  almost as accurately as a short simple Matlab
%  program can.  The zeros are ordered:   |x1| < |x2|  unless these differ by
%  less than a few  ULPs.  To keep it simple the program mishandles premature
%  over/underflow and infinite or complex coefficients but otherwise handles 
%  infinite zeros correctly.                        (C) W. Kahan 29 June 1998

if  b == 0 ,  x1 = sqrt(-c/a) ;  x2 = -x1 ;  %...  Zeros with opposite signs.
else  d = [b, -a]*[b; c] ;                    %...  =  Discriminant  b^2 - a*c .
      r = sqrt(d) ; 
      if  d > 0 ,
         if  b < 0 ,  s = b - r ;  else  s = b + r ;  end
         x1 = c/s ;  x2 = s/a ;              %...  distinct real zeros.
      else  x1 = b/a-r/a ;  x2 = conj(x1) ;  %...  complex or equal zeros.
end,  end                                    %...  End  qdrtc0

This program’s assignment  … d = [b, –a]*[b; c]    is slightly tricky;  by exploiting extra-
precise accumulation of the matrix product,  on computers so endowed,  it obtains the crucial 

discriminant  d = b2 – a·c  more accurately on these computers than on others.

To compare this program’s behavior on different computers we must generate exactly the same 
test data  [a, b, c]  on all of them,  and generate the correct results  [x1, x2]  accurately too.  Ideal 
test data should resemble  “ typical ”  data;  consequently small integer data should be avoided 
because they are atypical of data most often encountered in practice and generate atypically small 
rounding errors during the first few arithmetic operations.  However,  this ideal is so difficult to 
reconcile with exact data and correct results obtained accurately that we use integer data anyway;  
they are drawn from large  Fibonacci  numbers  Fn  generated exactly up to  F78 .  For  32 ≤ n ≤ 78  

we use the quadratics  Qn(x) := Fn·x
2 - 2 Fn-1·x + Fn-2  to test  qdrtc0  .  The zeros of  Qn(x)  are 

accurately   x1n = 1/2 + ( Fn–3/2 - √((–1)n) )/Fn   and   x2n = 1/2 + ( Fn–3/2 + √((–1)n) )/Fn .



Matlab’s Loss is Nobody’s Gain                                                          Created  Aug. 1998,  revised  July 31, 2004

http://www.cs.berkeley.edu/~wkahan/MxMulEps.pdf                                                                                Page 14/36

Differences between  x1n  and the smaller zeros computed by  qdrtc0   on diverse computers 
have been converted into assessments of accuracy measured in sig. bits and plotted on graphs.  
Instances when  qdrtc0   alleges that  x1n  and  x2n  are complex though they are actually real 
and distinct,  or  vice-versa,  are plotted as symbols  “ o ”  instead of  “ *  ”  on these graphs.

The first graph exhibits the accuracy obtained from  Matlab 3.5, 4.2 or 5.x  on  680x0-based 
Macintoshes,  or  Matlab 3.5 or 4.2  on  x86/Pentium-based PCs  or clones,  on all of which  
mxmuleps  = eps /2048 .  The worst accuracy shown,  about  32 sig. bits at  n = 49 ,  is also 
provably the worst that can arise from any data,  not just  Fibonacci  numbers,  on these systems.  
The worst cases arise when a quadratic’s zeros are nearly coincident,  in which cases the 

discriminant  d = b2 - a·c  mostly cancels.  These are the cases that benefit most from the  11  extra 
bits carried during  qdrtc0 ’s  computation of  d = [b, –a]*[b; c]   as a matrix product.

Similar worst cases yield only about  27  sig. bits,  as the second graph shows at  n = 41 to 43 ,  on 
a computer that lacks those extra bits,  for instance a  RISC-based computer like a  Sun SPARC,  
SGI MIPS,  DEC Alpha  or  HP PA-RISC-1,  or an  Intel-based PC  running  Matlab 5.x,  on all of 
which  mxmuleps  = eps  .  This poorer accuracy is to be expected from machines that round to  53  
sig. bits;  error analysis proves that up to half the sig. bits carried may be lost when zeros are 
nearly coincident.

Something bizarre happens on such a computer if it has a  Fused MAC  that is used during matrix 
multiplication.  This happens on the  IBM RS/6000 and PowerPC,  Apple Power Mac,  SGI MIPS 
R8000  and  HP PA-RISC-2,  the computers on which  mxmuleps   returns  NaN .  If their  FMAC  
is used naively to compute the discriminant as a scalar product  d = [b, -a]*[b; c]   then,  
besides delivering only about  27  sig. bits in worst cases,  such computers can deliver complex 
roots when they should be real and distinct,  and  vice-versa.  This anomaly shows up as  “ o ”  
instead of  “ *  ”  on the first of the next two plots.
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The left-hand graph’s  os  show that,  besides delivering only about  27  sig. bits in worst cases,  
the aforementioned computers with  FMACs  can deliver complex roots when they should be real 
and distinct,  and  vice-versa.  This can’t happen on other computers;  how does a  FMAC  do it?

Computers without a  FMAC  approximate discriminant  d = b2 - a·c  by either  {{b·b} – {a·c}}  or  {«b·b» – «a·c»}  
neither of which,  if nonzero,  can have a sign opposite to  sign(d)  because rounding is a monotonic nondecreasing 
function.  With an  FMAC,  d  is approximated by one of  {{b·b} – a·c}  or  {b·b – {a·c}}  which often have opposite 
nonzero signs when  d  mostly cancels.  Similarly  [1-eps, eps-1]*[1+eps; eps+1]   is positive if  Matlab  
evaluates scalar products left-to-right,  negative if right-to-left,  using a  FMAC;  otherwise this expression is zero.

As it happens,  Matlab  evaluates left-to-right on computers with a  FMAC  so their anomalous 
results  can be repaired,  without degrading results on other computers,  by another trick:

First replace  qdrtc0 ’s  line
else  d = [b, -a]*[b; c] ;                  %...  =  Discriminant  b^2 - a*c .

by the tricky line
else  d = [b, -a]*[b; c] - [b, -b]*[b; b] ; %...  =  Discriminant  b^2 - a*c .

Then wherever the name  “qdrtc0 ”  appears replace it by  “qdrtc ”,  and finally replace the word 
“almost ”  by  “about ”  in the comments.

On computers without a  FMAC,  the new program  qdrtc   gets the same results as  qdrtc0   
got;  on computers with a  FMAC,  qdrtc   always gets impeccable results,  at least  51  sig. bits 
correct out of  53 ,  as is illustrated by this example’s last graph above on the right-hand side.

We have just made a silk purse out of a sow’s ear.  It won’t happen again.

How much opprobrium is deserved by a programmer whose program eschews the tricks in  qdrtc   
and therefore delivers results sometimes less accurate than they could have been?  Perhaps it’s the 
other way round;  perhaps program  qdrtc   deserves opprobrium for making some computers and 
the latest versions of  Matlab  look worse than the others.  How do you feel about that?
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Example 3.  Iterative Refinement  for  Linear Systems:
The method most often used to solve a given linear system  A·z = b  for  z = A-1·b  is called  
“ Triangular Factorization ”:  First a matrix factorization  A = L ·U  is computed;  here  U  is an 
upper-triangular matrix and  L  is a unit lower-triangular matrix with rows permuted to reflect 
pivotal row exchanges.  Then  L ·c = b  is solved for  y  by forward substitution,  and  U·x = c  is 
solved for  x  by backward substitution.  This is roughly how  Matlab  gets  x = A\b  .  Because 
rounding errors intervene,  x  merely approximates the exact solution  z ,  sometimes poorly.  No 
matter how poorly  x  approximates  z ,  the method’s residual  r  = A·x - b  usually so nearly 
cancels out that it is overwhelmed by rounding errors accumulated during its own computation.

Occasionally,  for unobvious technical reasons,  the method’s residual  r   is rather bigger than 
usual,  and then  x  is a rather poorer approximation than usual.  Such occasions are not frequent 
enough to weigh upon our minds,  nor are they rare enough to ignore.  Instances will be presented 
shortly.  On such occasions the simplest and cheapest remedy is  Iterative Refinement :

•  Factor  A = L ·U  and solve  L ·c = b ,  U·x = c  for  x  as usual;  in  Matlab  compute
[L,U] = lu(A) ;  x = U\(L\b) ;   .

•  Obtain residual  r  = A·x – b .  Its accuracy is crucial so use extra precision where available;
in   Matlab  compute   r = [A, b]*[x; –1]    with one matrix multiplication.

•  Solve  L ·d = r  ,  U·∆x = d  for  ∆x ,  re-using factors  L  and  U  obtained earlier.
•  The refined solution  y = x – ∆x  should approximate  z  better than  x  did,  we hope.

This process can be iterated:  replace  x  by  y  and repeat the last three steps;  but we shall not do 
so here since the first refined solution  y  is usually about as good as it’s ever going to get.

Our objective here is to assess the benefit extra-precise accumulation confers upon a once refined 
solution  y .  We assess it twice:  We compare errors  z–y  and  z–x ,  and we compare residuals  
r  = A·x – b  and  s = A·y – b .  Ideally the refined solution  y  should have a smaller error than  x  
has,  and a smaller residual too,  except for the effect of roundoff during refinement.  But what do 
we mean by  “smaller”  vector errors and residuals?  We could mean  ||s|| < ||r ||  for some vector 
norm  ||…||  but there are infinitely many of these and they are arbitrarily different;  which would 
we choose?  “Smaller”  could mean  “ |s| < |r |  elementwise ”  but this is too much to ask if,  say,  
an element of  r   vanishes by accident.  ( Such accidents occur surprisingly often.)  Accuracy 
much better than the data deserve adds little to a computation’s value;  how do we take this into 
account?  Meaningful assessments require careful thought to which the next digression is devoted.

How accurately does  A·z = b  deserve to be solved?  Robert Skeel’s  answer to this question in the late  1970s  is now 
accepted widely:  We suppose,  for a known and sufficiently tiny nonnegative matrix  ∂Â ,  that  A  can be considered 
practically indistinguishable from every perturbed matrix  A + ∂A  with  |∂A| ≤ ∂Â  elementwise;  then we call  ∂Â  
the  “ Uncertainty ”  in  A .  ( For simplicity’s sake  b ’s  uncertainty is ignored here because it would add little to our 
conclusions.)  When  A ’s  elements are obtained from floating-point computations with uncorrelated rounding errors  
A ’s  uncertainty  ∂Â  cannot be much smaller elementwise than  eps ·|A|  and is probably bigger,  except for elements 
of  A  computed exactly because they are small integers or half-integers etc.

A ’s  uncertainty induces uncertainty in a residual  r  = A·x – b  which must be deemed practically indistinguishable 
from  r  + ∂r  = (A + ∂A)·x - b  whenever  |∂A| ≤ ∂Â  elementwise.  Since  |∂r | ≤ |∂Â|·|x|  for all such  ∂A  and no 
smaller elementwise bound is valid,  we regard  |∂Â|·|x|  as the uncertainty  r   inherits from  A ’s  uncertainty.  It 
provides a natural unit by which to measure how big  r   is:  define  ß(x) = max( |r |/(|∂Â|·|x|) elementwise ) ,  and deem  
r   to be negligible whenever  ß(x) ≤ 1 .  Otherwise  log2ß(x)  counts the number of sig. bits by which  r   is bigger than 

negligible,  perhaps because of roundoff.  Likewise for  log2ß(y) = max( |A·y – b|/(|∂Â|·|y|) elementwise ) .
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Similarly,  a natural unit by which to measure the error  z–x  in an approximation  x  to  z  is the uncertainty inherited 

by  z = A-1·b  from  A ’s  uncertainty  ∂Â .  Ideally this inherited uncertainty would be a tight outer bound for the 

region  z + ∂z = (A + ∂A)–1b  sweeps out as  ∂A  runs through  all  matrices constrained by  |∂A| ≤ ∂Â .  This region 
cannot be circumscribed simply  ( it can have disconnected unbounded components )  unless  ∂Â  is so tiny that no  
A + ∂A  with  |∂A| ≤ ∂Â  can be singular or too nearly so.  Consequently a simple and usable overestimate for  z ’s  

uncertainty is available only if  ∂Â  is sufficiently tiny,  the tinier the better.  In this case  ∂z =  –A–1·∂A·(z + ∂z)  

implies first  |∂z| ≤  |A–1|·|∂A|·(|z| + |∂z|)  ≤  |A–1|·∂Â·(|z| + |∂z|)  and then  |∂z| ≤  ∂u(z)  elementwise,  where we define

∂u(z)  =  ( I  – (|A–1|·∂Â) )–1·(|A–1|·∂Â)·|z|  .

∂u(z)  is our overestimate of  z ’s  uncertainty.  It is valid if and only if matrix   ( I  – (|A–1|·∂Â) )–1·(|A–1|·∂Â)   has no 
negative elements  ( we check this by computing the matrix );  this is what  “ ∂Â  is sufficiently tiny ”  means.  And 
then  ∂u(z)  can be proved to overestimate  z ’s  inherited uncertainty almost always only slightly.

Having in hand an adequate estimate  ∂u(z)  for the uncertainty  z = A–1·b  inherits from  A ’s  uncertainty  ∂Â ,  we 
define  µ(x) = max(|x–z|/∂u(z) elementwise)  to gauge how the error  z–x  compares with  z ’s  uncertainty,  and deem 
the error negligible when  µ(x) ≤ 1 .  Otherwise  log2µ(x)  counts the number of sig. bits by which the error in  x  is 

bigger than negligible.  Of course  µ(x)  costs more to compute than does  max(|x–z|/|z| elementwise) , the obvious 
measure of  x ’s  relative error,  but does not becomes problematic when an element of  z  vanishes accidentally.

Note how the constructs  ∂u(z) ,  µ(x)  and  ß(x)  distinguish respectively  ill-condition  from  numerical instability:  
Solving  A·z = b  for  z  is an ill-conditioned problem,  in view of  A ’s  uncertainty  ∂Â ,  to the extent that  ∂u(z)  is 
bigger than negligible compared with  z .  A program that produces an approximate solution  x  is numerically 
unstable,  in view of the uncertainty  ∂Â ,  to the extent that  µ(x)  and/or  ß(x)  far exceed  1 .  Triangular factorization 
is severely unstable on rare occasions.  We wish to see how well a pass of iterative refinement copes with such 
occasions,  reducing  µ(x) >> 1  to  µ(y) ≤ 1  and  ß(x) >> 1  to  ß(y) ≤ 1  we hope,  and with minimal arbitrariness in 
our measures of error vectors and residuals.

By positing a known uncertainty  ∂Â  in  A ,  we have avoided the choice of an arbitrary vector norm  ||z–x||  by which 
to measure error in  x .  Still,  some arbitrariness persists in the choice of  ∂Â .  Since  ß(x)  and  µ(x)  are monotone 
nondecreasing functions of every element of  ∂Â ,  increasing  ∂Â  makes the computed vectors  x ,  r  ,  y  and  s  look 
better without changing them.  For the most conservative appraisal of these vectors we need  ∂Â  to be as small as 
possible but not entirely  0 .  We have chosen  ∂Â = eps ·|A|  because it seems nearly minimal;  uncertainty much 
smaller than that seems implausible though it cannot be ruled out.  This thought will be revisited later.

The foregoing digression has explained how  log2ß(x)  and  log2µ(x)  measure the number of sig. 
bits by which roundoff worsens the residual  r  = A·x – b   and the error  x–z  respectively of a 

computed approximation  x  to  z = A–1·b  beyond their uncertainties inherited from the data.  
Next come applications to concrete instances.

Our first sequence,  for  k = 1, 2, 3, …  or  25 ,  of instances are  3-by-3  systems  A·z = b  with

A =     for  1/2 < s < 1 ,    and      b =   .

Here  s = 0.7  arbitrarily.  These systems are well-conditioned in the sense that changes smaller 
than an  ULP  in every element of  A  and  b  change no element of  z  by more than a few  ULPs;  
i.e.,  ∂u(z)  amounts to at most a few  ULPs  of  z .  But as  k  increases,  Matlab’s  x = A\b   loses 
almost  2k  sig. bits,  as if the systems became very ill-conditioned;  look at the graphs:
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Assessments of  Residuals  ( log2ß )  and  Errors  ( log2µ )  for our  3-by-3  Systems:

( In these plots,  lower is better.)
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The graphs’  []  marks plot  log2µ(x)  which shows how much the error in the unrefined solution  
x = A\b   exceeds its uncertainty  ∂u(z)  inherited from  ∂Â = eps ·|A| .  Were  ∂u(z)  unknown,  
ill-condition could be blamed mistakenly for the large error.  Indeed,  measured by any  norm(…)   
customarily offered by  Matlab,  the system would seem ill-conditioned for large  k ;  but such a 
norm is inappropriate for this system,  and its implicit use by  Matlab’s  triangular factorization 
causes  A11 = 2  to be chosen as the first pivot.  Any other choice would have avoided numerical 

harm.  Rescaling the system,  multiplying the first row down by  2-k  and the others up by  2k ,  
would have avoided harm too.  But how could we be expected to know all that?  There is a way.

The graphs’   X  marks plot  log2ß(x)  which shows how much the unrefined solution’s residual  
r  = A·x – b  exceeds its uncertainty  eps ·|A|·|x|  inherited from  ∂Â = eps ·|A| .  This measure is 
easy to compute;  if too big it indicates unmistakably that triangular factorization has 
malfunctioned.  The simplest remedy,  albeit not foolproof,  is iterative refinement.  One pass 
replaces  x  by a refined approximation  y .

The graphs of  log2ß(y) ,  plotted with  +  signs,  and  log2µ(y) ,  plotted with  ◊  marks,  show how 
one pass of refinement pushes both residuals and errors below their uncertainties for  1 ≤ k ≤ 14.  
Sufficiently repeated refinement would achieve the same effect for  15 ≤ k ≤ 25 ,  beyond which 
refinement is futile because roundoff damages the triangular factors too severely.

Bad scaling is not the only cause of damage to triangular factors,  but the foregoing results are 
typical of all of them to the following extent:  When an excessively big  ß(x)  indicates excessive 
damage,  iterative refinement counteracts most of it unless the damage is too severe,  which is 
very rare.  With that rare exception,  the once-refined  y  has  ß(y) < ß(x)  and usually  ß(y) ≤ 1 ,  
which seems about as small as the data deserves.  In short,  the refined solution  y  usually has a 
negligible residual  s = A·y – b ,  so it looks pretty good.  Moreover,  this behavior is practically 
independent of whether the residual is accumulated extra-precisely,  as is evident from the graphs.

An inescapable conclusion presents itself:
Since testing for  ß(x) >> 1  and subsequent iterative refinement cost relatively little,
they ought to be the default or at least a convenient option whenever a statement like
Matlab’s  x = A\b   is executed.

This is the conclusion  Robert Skeel  drew in the late  1970s,  and it is accepted widely nowadays.  
But it is not quite right.  Although the preceding paragraph is quite right,  it omits a consideration.  
Can you see what has been overlooked?  If not,  the next sequence of instances will surprise you.

For  n = 3, 4, 5, …  or  18  let  A = R·R'   where  R  is the leading  n-by-n  submatrix of

  ,

whose columns come from  Pascal’s  triangle.  It is not hard to prove by induction that  R–1 = R .

1 1 1 1 1 1 …
0 1– 2– 3– 4– 5– …
0 0 1 3 6 10 …
0 0 0 1– 4– 10– …
0 0 0 0 1 5 …
0 0 0 0 0 1– …
… … … … … … …
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Consequently  A–1 = R'·R ;  it is a well-known nonnegative integer matrix  pascal(n)   whose 
skew diagonals are also drawn from  Pascal’s  triangle.  For instance,  when  n = 6 ,

     A =     and    A-1 =    .

In short,  A  and  A-1  are known matrices of integers some of which grow huge as  n  gets big.

Next compute column  n-vector  z  by dividing the eigenvector of  A  belonging to its biggest 
eigenvalue by this vector’s last element and rounding all quotients to nearest integers.  Then  
b = A·z  is computed,  and suffers no rounding errors unless  n > 20 .  For example,  when  n = 6 ,
       z = [ -2   8   -14   12   -6   1 ]'     and     b = [ -629   2667   -4634   4098   -1837   333 ]'  .
As  n  increases,  the elements in the middle of  z  and  b  grow orders of magnitude bigger than 
those near the vectors’ ends,  but the first element of  z  is always  ±2  and its last always  1 .

Rounding errors begin when  x = U\(L\b)   is computed,  and continue when  x  is refined to get  
y .  Plotted below are assessments  log2µ(x)  ( [] )  and  log2µ(y)  ( ◊ )  of their respective errors  
z–x  and  z–y ,  and assessments  log2ß(x)  ( X )  and  log2ß(y)  ( + )  of their respective residuals  
r  = A·x–b  and  s = A·y–b ,  indicating the excess numbers  ( beyond inherited uncertainties )  of  
sig. bits lost to roundoff both with and without extra-precise accumulation of residuals.  In these 
plots lower is better because it indicates less loss  ( or more gain )  of accuracy.

So far as the accuracy and residual of  Matlab’s  unrefined  x = U\(L\b)   go,  there is little to 
choose between results computed with or without extra-precise arithmetic of which  Matlab’s  
triangular factorization appears to make little use.  Neither is there much to choose between the 
residuals of the refined  y  computed with or without extra-precisely accumulated residuals;  both 
ways  attenuate residuals adequately.  Evidently  y  is more accurate than  x  by roughly ten sig. 
bits with extra-precise accumulation,  but surprisingly  less  accurate without.  Also surprising is 
how far all errors,  refined or not,  fall below the uncertainty allegedly inherited from the data.

6 15– 20 15– 6 1–

15– 55 85– 69 29– 5

20 85– 146 127– 56 10–

15– 69 127– 117 54– 10

6 29– 56 54– 26 5–

1– 5 10– 10 5– 1

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56

1 5 15 35 70 126

1 6 21 56 126 252

2 4 6 8 10 12 14 16 18
-25

-20

-15

-10

-5

0

5

10

n

n-by-n Pascal  Refined  with  mxmuleps = eps/2048

Unrefined Residual
Refined Residual  
Unrefined Error   
Refined Error     

2 4 6 8 10 12 14 16 18
-25

-20

-15

-10

-5

0

5

10

n

n-by-n Pascal  Refined  with  mxmuleps = eps

Unrefined Residual
Refined Residual  
Unrefined Error   
Refined Error     



Matlab’s Loss is Nobody’s Gain                                                          Created  Aug. 1998,  revised  July 31, 2004

http://www.cs.berkeley.edu/~wkahan/MxMulEps.pdf                                                                                Page 21/36

The degradation of accuracy by iterative refinement without extra-precise accumulation is worse 
than surprising;  it is perplexing.  Is this phenomenon an artifact of the complicated way we have 
chosen to assess accuracy?  No.  Exhibited below are the accuracies,  in  sig. bits,  of the last  

( nth )  element of the unrefined  x  ( [] ) ,  of the once refined  y  ( ◊ ) ,  and of a twice refined 
approximation  ( *  )  to  zn = 1 ,  computed with and without extra-precise accumulation.  In these 

plots,  higher is better,  and accuracy is limited to the  53  sig. bits of  double ’s  precision.

Again,  one pass of iterative refinement improves accuracy by roughly ten sig. bits with extra-
precise accumulation,  degrades accuracy without.  A second pass doesn’t change things much.

The foregoing brief summary is contradicted occasionally when flukes of roundoff produce extraordinarily small 
errors.  In the left-hand plot,  once-refined results  y  are perfect when  3 ≤ n ≤ 6  and extraordinarily accurate when  
n = 15 ;  unrefined results  x  are extraordinarily accurate when  n = 7  or  n = 12 .  Similar flukes are less pronounced 
in the right-hand plot.  Trying to restrain rounding errors to smooth curves is like trying to herd cats.

The plots on this page reveal something that the previous page’s plots concealed:  The  Pascal  systems  A·z = b  are 
ill-conditioned.  Accuracy lost to roundoff when  x = U\(L\b)   is computed can range from roughly  3n–4  sig. 
bits using  Skeel’s  kind of assessment to roughly  4n–6  sig. bits using a customary norm.  With  Skeel’s  kind of 
assessment,  all  53  sig. bits of accuracy are lost when  z’s  uncertainty  ∂u(z)  cannot be computed,  which happens 
for  n > 18 .  In the graphs on this page all  53  sig. bits are lost when  n > 15 .  The different assessments are not so 
much inconsistent as they are reflective of the unreasonableness of attempts to capture ill-condition in a single 
number divorced from the provenance of the data and the purpose to which the result will be put.  For example,  as  n  
becomes large,  the last element  ( 1 )  of  z  becomes orders of magnitude more sensitive than the first element  ( ±2 )  
to roundoff-like perturbations in the data  [A , b] ;  a single number can’t convey two such different sensitivities.

In short,  iterative refinement almost always improves residuals  ( ß ;  x —› + )  but it can worsen 
solutions’ errors  ( µ ;  [] —› ◊ )  if applied to ill-conditioned systems without accumulating 
residuals extra-precisely.  With this extra-precision,  refinement usually shrinks solutions’ errors 

by factors like  1/210,  unless fewer than  10  sig. bits were lost to roundoff.  ( For an example 
whose errors shrink far beyond that see  http://http.cs.berkeley.edu/~wkahan/Cantilever.ps .)  However,  
the benefits of extra-precise accumulation are hidden if data are presumed uncertain by an  ULP  
or more,  because then solutions’ inherited uncertainties will be deemed to exceed their errors so 
much as to make smaller errors seem worthless.  Such presumptions can be too presumptuous.
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Treacherous Mathematics:
We based our estimate  ∂u(z) ,  of the uncertainty that the solution  z  of  A·z = b  inherits from 
uncertainty in the data  [A , b] ,  upon a plausible but dubious premise.  We presumed the elements 
of  A  to be uncorrelatedly uncertain by roughly an  ULP  in each element because an  ULP  
seemed nearly minimal.  They aren’t and it isn’t.  Integer elements need not be uncertain at all,  
unless they are so big that they must be rounded off to fit into the  double   format’s  53  sig. bits.

Our  n-by-n  Pascal  systems  A·z = b  have integer elements known exactly,  none too big.  At  
n = 15  none of those integers occupies more than  37  of the  53  sig. bits available,  yet all sig. 
bits are lost in  Matlab’s  computed last element of  x .  Therefore the difference between iterative 
refinement with and without extra-precise accumulation,  almost ten sig. bits,  is the difference 
between something and nothing revealed about a mathematically well-defined last element of  z .

More generally,  systems  A·z = b  often have data  [A , b]  in which many elements are known 
exactly or are correlated,  thereby inducing less uncertainty into  z  than our estimate  ∂u(z) ,  
sometimes far less than that.  Oversized estimates of  ∂u(z)  distract us from the purpose of our 
computation,  which is to obtain results about as accurate as the data deserve and at a tolerable 
price.  What good is a  ∂u(z)  that does not reveal how much (in)accuracy the data deserves?

It exposes how an explanation evolved into an exculpation,  into a plausible excuse for inaction.

In the  1950s  almost no programmers knew how to distinguish numerical instability from ill 
condition.  In other words,  the distinction between an algorithm’s hypersensitivity to its own 
internal rounding errors,  and a true solution’s hypersensitivity to roundoff-like errors in its 
problem’s data,  as contributors to wrongly computed solutions,  was obscure.  By the  1960s  the 
distinction had been clarified through  “ Backward Error Analyses,”  which showed how results 
produced by many important numerical computations  ( but not all )  suffer from their internal 
rounding errors little more than if their data had first been altered by roundoff-like perturbations 
and then these computation had been carried out exactly,  albeit to a wrong conclusion if the true 
solution is hypersensitive to perturbations in data.

For example,  the result  x  produced by  Matlab’s  x = A\b   to approximate  z = A-1b  almost always satisfies 
exactly some slightly perturbed equation  (A + ∂A)·(x + ∂x) = b + ∂b  in which none of  ||∂A||/||A|| ,  ||∂x||/||x||  or  
||∂b||/||b||  can be arbitrarily bigger than  eps  ,  though  x  can differ from  z  arbitrarily if  A  is very ill-conditioned.  
Here the norms  ||…||  must be chosen to suit the error-analyst if not the application.  Moreover,  no such backward 

analysis can be valid in general if the vectors  b,  z  and  x   are replaced by matrices  B,  Z = A-1B  and  X = A\B  ,  
because different columns of  X  may require different perturbations  ∂A ,  very different if  A  is ill-conditioned.  The 

appearance of  A-1  here is irrelevant;  the error-analysis of most matrix products  Z = C·B  is afflicted similarly.

Backed by flawed backward error-analyses,  the vendors of floating-point hardware and software 
used to respond to a complaint about a badly wrong result by averring that their handiwork could 
not reasonably be required to do any better since it had delivered a result scarcely worse than if 
the data had been perturbed negligibly.  To the complainant that response sounded like this:

“ We disliked your problem,  so we solved one with very slightly different data for you;
   since you can’t know your problem’s data exactly you have no grounds for complaint.”

This is as irksome as  Lily Tomlin’s  response in her radio/TV skit about a switchboard operator:
“ We don’t care.  We don’t have to.  We’re the  Phone Company.”
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Error-analysts irked by such responses began in the late  1960s  to reconsider the foundations of 
backward error-analysis.  The foundations seemed to rest upon choices of norms  ||…||  that led to 
conclusions error-analysts desired,  not necessarily choices that served software users’ needs.  For 
example,  the error-analyst would measure error with a norm  ||z–x||  that weighted all elements 
equally,  whereas a user might need  ||D·(z–x)||  for a diagonal matrix  D  of scale factors,  say 
reciprocals of the elements of  z .  Attempts to reconcile those choices led to better error-analyses 
and algorithms whose results are independent of scaling to a considerable degree;  an example is  
Skeel’s  analysis and iterative refinement,  and many more examples have turned up over the past 
two decades.  The better algorithms  ( available in  ScaLAPACK  but not yet built into  Matlab )  
cost little more than the old and produce accurate results over a greatly widened range of input 
data,  thereby vindicating the better analyses and reducing the incidence of complaints.  Are all 
remaining complaints groundless?

Regardless of complaints about inaccuracies,  there is something curious about the function  µ(x)  

by which we measured the error  z–x  in  Matlab’s  approximation x = A\b   to  z = A-1·b .  This 
function compares that error with  ∂u(z) ,  the lowest available estimate of the uncertainty induced 
in  z  by a backward error-analyst’s roundoff-like perturbation  ∂A  in the data.  Except when  
ß(x) >> 1   ( betraying an atypically big residual  r  = A·x–b  due to bad scaling or some other 
pathology ),  that error usually falls at least an order of magnitude below the alleged uncertainty.  
This disparity is visible in the plots of  log2µ(x)  ( [] )  above for  n-by-n  Pascal  matrices  A .

More pronounced disparities,—  errors orders of magnitude smaller than alleged uncertainties,—  
occur with other systematically ill-conditioned matrices  A .  ( I prefer to leave the distinction 
between  systematic  and accidental   ill-condition to the reader’s imagination rather than digress 
to define it here.)  These disparities cannot be explained away by pseudo-probabilistic reasoning,  
as if accumulations of rounding errors,  like random variables with mean zero,  should tend to 
cancel out on average.  The disparities persist for dimensions  n  so small that too few rounding 
errors are committed to comport with that explanation.  On the other hand,  to dismiss such 
persistent disparities as statistical flukes is to disregard a  Law of Statistics:

     If you’re lucky  ( or unlucky )  all  the time,  it isn’t luck.

If the disparate smallness of errors,  compared with uncertainties,  has a probabilistic explanation,  it probably goes 
like this:  Elements of the backward error-analyst’s roundoff-like perturbation  ∂A ,  an inverse image in the data of 
the computation’s internal rounding errors,  are correlated so strongly that in the derivation of uncertainty   ∂u(z)  the 

assertion   “ ∂z =  –A–1·∂A·(z + ∂z)  implies first  |∂z| ≤  |A–1|·|∂A|·(|z| + |∂z|) ”  becomes a gross overestimate.

In short,  the allegedly minimal uncertainty  ∂u(z)  is too often too much too big.  Consequently 
we have no satisfactory way to characterize the accuracy that  Matlab’s  computed  x = A\b   
deserves divorced from the provenance of its data and the purposes that the result will serve.  
Attempts to convert an error’s explanation,  provided by backward error-analysis,  into an excuse 
for such an error are misguided.  They turn an oversized alleged uncertainty  ∂u(z)  into a 
cosmetic that makes a numerical algorithm look good even when its result is poor.  Worse,  they 
promote indifference to errors smaller than that uncertainty thereby making light of the difference 
between refinement with and without extra-precisely accumulated residuals,  as if accuracy well 
beyond that uncertainty were never worthwhile.  In fact,  sometimes it is and sometimes it isn’t.
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How Much is Accuracy Worth?:
How do you put a price upon something of which you know neither how much you have nor how 
much you need?  Accuracy is like that.  Without specific and often tedious details,  only these 
three generalities about accuracy are worth uttering:

1•  Accuracy can’t be appraised meaningfully out of context,  which resembles a spider web.
2•  The intransitivity of accuracy can undermine the utility of software packages like  Matlab.
3•  Greater accuracy has greater value principally to the extent that it diminishes risk.

Each of these utterances will be explained briefly in turn.

1•  Approximate computation is sometimes likened to a chain no stronger than its weakest link,  
but with strength replaced by accuracy.  This analogy is misleading.  In fact many a computation,  
if interrupted in the middle,  may appear to have produced utterly inaccurate intermediate results 
none of them close to what would have been computed in the absence of roundoff,  and yet  
resuming this computation and completing it produces a result of exemplary accuracy.  Many 
matrix computations are like this.  They transform the given problem through a sequence of 
problems,  each with very nearly the same solution,  to one of a distinguished family of problems 
whose solution is obvious.  Roundoff alters the path through the problems’ sequence;  substantial 
alterations are tolerable provided the path ends soon enough and near enough to the solution of 
the given problem.  In general the accuracies of intermediate results can be assessed properly only 
in the context of mathematically coherent relationships they are intended to maintain.  The same 
goes for the  “final”  result insofar as it is an intermediate result in a larger context.

Approximate computation is like a web whose strands are mathematical relationships,  among 
computational variables and constants,  that connect these as strongly as the relationships are 
accurate.  The art of computation consists partly in finding such a web,  and partly in determining 
which of its strands can be weakened,  by how much,  and with what advantage to performance,  
while maintaining adequate strength overall in the web’s connection of output results to input 
data.  Matlab  and similar software systems provide their users with pieces of web ready-made.

2•  “ The intransitivity of accuracy ”  is a mathematically hifalutin way of saying this:  Suppose  
g(y)   and  h(x)   are programmed floating-point implementations of real functions  G(y)  and  
H(x)  respectively with fairly high accuracy.  Any reasonable interpretation of  “ accuracy ”  is 
acceptable here.  Then the composed program  f(x) = g(h(x))   may approximate the composed 
function  F(x) = G(H(x))  inaccurately in every useful sense!  Thus,  accuracy need not necessarily 
survive functional composition;  sometimes this chain is so much weaker than its weakest link 
that it is better likened to a strand in a cobweb.

For example,  take  G(y) = (–log(y))–1/4  for  0 < y < 1  and  H(x) = exp(–x–4)  for  x > 1 ,  so  F(x) = G(H(x)) = x .  As  

x  runs up to  (4/eps) 1/4 ≈ 11585.2375… ,  composed program  f(x) = g(h(x))   loses all resemblance to  F(x)  
despite that  programs  h(x) = exp(–x^(–4))   and  g(y) = (–log(y))^(–1/4)   are both accurate to 
almost their last sig. bits.  As computed by  Matlab 5.x  on a  Mac Quadra 950  ( 68040 ),  the graphs of  F(x)  and  
f(x)   are plotted on the next page except for  x > 11585.2375…  whereon their difference is infinite.  The trouble is 
caused by the singularity of  G(y)  at  y = 1 .  If not for a rounding error no bigger than half an  ULP  of  y ,  the 
singularity would have been smoothed away by  y = H(x)  as  x  approaches infinity.
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F(x) = x   vs.   f(x) = (-log(exp(-x –4)))) -1/4  

Only rarely is accuracy lost so severely to intransitivity;  otherwise numerical software would be 
impossible.  Some kinds of accuracy are more vulnerable than others to this kind of loss;  most of  
Matlab’s  operations fall into the more vulnerable category.  The explanation is subtle:

If programs  g(y)   and  h(x)   are accurate in the naive sense that  g(y) = (G + ∂G)(y)  and  h(x) = (H + ∂H)(x)  for 
acceptably tiny perturbations  ∂G  and  ∂H ,  then it follows that program  f (x) = (G + ∂G)((H + ∂H)(x))  suffers from 
two perturbations of which only one,  ∂H(x) ,  is capable of causing  f (x)  to lose accuracy severely,  and does so only 
when  y = H(x)  is too near a singularity of  G(y) .  Otherwise  f (x)   cannot be degraded by singularities of  H(x) .

Compare that with what happens when  h(x) = (H + ∂H)(x+∂x)  is accurate only in the sense of backward error-
analysis,  now for acceptably tiny perturbations  ∂H  and  ∂x .  Now program  f (x) = (G + ∂G)((H + ∂H)(x+∂x))  can 
be degraded by the singularities of  H(x)  as well as the singularities of  G(y) .  When  x  and  y  are not scalars but 
vectors or matrices something worse happens:  Now  ||∂H||  becomes acceptably tiny to the backward error-analyst if 
it is no bigger than  ||H(x+∂x) – H(x)|| ,  and now  f (x)  is degraded by the singularities of both  H(x)  and  G(y)  
though their composition  F(x) = G(H(x))  may have no singularity at all;  if so,  f (x)  is truly numerically unstable.

In short,  if programs are accurate only in the sense of backward error-analysis,  composing them 
tends to lose accuracy to intransitivity rather more often than if the programs were accurate in the 
obvious naive sense.  This is bad news for  Matlab  most of whose matrix operations are accurate 
only in a backward sense.  For several of these operations accuracy better than that is so costly to 
achieve that,  before we demand it,  we should perform a cost/benefit analysis.  Alas,  the cost 
must be borne initially by  Matlab’s  authors,  The Math Works Inc.,  in the hope that customers 
will appreciate the benefit enough to pay extra for it.  Can customers quantify benefit that way?

Do  Matlab’s  customers appreciate how easily they combine its operations and functions,  or do 
they take it for granted?  Do customers rely upon the accuracies of combined operations and 
functions,  taking them for granted too?  Perhaps it is unlikely that,  starting with  53  sig. bits,  so 
many would get lost as to leave too few,  fewer than a dozen,  to produce smooth graphs;  but the 
graph above shows how quickly it can happen.  Reliability is a delicate issue,  but crucial.  By  
improving operations’ accuracy we enhance their reliability,  which promotes their ease of use.

How much?
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3•  Accuracy is not like  Virtue,  which is its own and often sole reward.  Numerical accuracy is 
valuable only to the extent that it helps us avoid inaccuracy severe enough to cause loss or pain.

If severe inaccuracy occurs,  it occurs because numerical errors that seemed small when they were 
committed were amplified too highly while propagating through subsequent computation.  High 
amplification is always due to a singularity in some function evaluated during computation 
subsequent to the error.  Most often this amplification is roughly inversely proportional to the 
distance from that function’s argument to its nearest singularity.  This singularity may be an 
accident,  not a property of the final function that is the purpose of the whole computation but 
arising out of a latter part of the computation whose singularity would have been smoothed out by 
the earlier part had small errors not intervened.  Numerical instability is always due to such 
accidental singularities not intrinsic to the desired function but arising from the procedures chosen 
to compute it

For example,  the computation of  x = A\b   by triangular factorization entails divisions by numbers called  
“ pivots.”  Rounding errors get amplified by factors roughly proportional to the divisions’ quotients.  Prevention of 
unnecessarily big quotients is the motivation behind pivotal exchanges without which arbitrarily tiny pivots can arise 
accidentally,  causing numerical instability even if the data  A  is far from singular.  With pivotal exchanges,  rounding 
errors can get amplified greatly only if  A  is nearly singular;  in fact the amplification factor turns out to be about

cond(A) =  ||A||·||A–1||  =  ||A||/||A – (the singular matrix nearest A)|| .

Now suppose there is some tolerance  T  beneath which errors in the final result will be deemed 
negligible.  In the space of all admissible input data  ( real and complex )  there are points,  curves,  
surfaces,  hypersurfaces …  on which the factors by which errors get amplified become infinite;  
these loci are inverse images of the aforementioned singularities.  Surrounding these loci are 
balls,  tubes,  slabs,  sheets …  inside which some rounding errors get amplified to intolerable 
sizes in the final result,  outside which none can be amplified intolerably.  Let’s call these balls,  
tubes,  slabs,  sheets …  “ pejorative ”  to signify computation’s intolerable degradation by data 
inside them.  Their size depends upon the tolerance  T  and also upon the precision of floating-
point arithmetic,  which constrains the sizes of rounding errors.  Insofar as increasing precision 
diminishes rounding errors it diminishes the sizes of pejorative regions too.  How much?

For most computations,  pejorative balls,  tubes,  slabs,  sheets …  surround hypersurfaces of 
dimension one less than that of the space of all admissable input data,  and the amplification 
factors are roughly inversely proportional to the distance from the data to the nearest hypersurface 
if it is near enough.  Therefore,  if an increase of arithmetic precision by  K  sig. bits diminishes 

rounding errors by a factor roughly  1/2K ,  that increase also diminishes the thickness and volume 
of pejorative regions by roughly the same factor.  This factor applies to most computations with 
real data and arithmetic;  with complex data and arithmetic the volume of pejorative regions tends 

to shrink by a factor  1/4K .  Then,  provided the population of admissible data sets is distributed 
not too nonuniformly in the neighborhoods of pejorative regions,  the final result’s error becomes 
intolerable  ( exceeds tolerance  T )  for a smaller proportion of this population,  a proportion 

shrunk by roughly the same factor  1/2K  for real,  1/4K  for complex data.  Since data sets are 
discrete rather than distributed continuously,  a law of diminishing returns will set in as  K  gets so 
big that further increases liberate no more data sets from inside the shrinking pejorative regions.
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In short,  an increase of  K  sig. bits in an intermediate result’s accuracy usually attenuates by a 

factor roughly  1/2K  the incidence of numerical embarrassment attributable to the use later of that 
result.   For most computations,  and for a fixed population of data sets  ( stored to a precision that 
does not change ),  an increase of  K  sig. bits in arithmetic’s precision usually attenuates by a 

factor roughly  1/2K  the incidence of numerical embarrassment attributable to the use later of that 

computation’s result.  The factor  1/2K  is for real arithmetic and data;  for complex it is  1/4K .  
This is how increased accuracy pays off in diminished risk until it gets down to a level below 
which risk cannot be decreased further merely by increasing accuracy some more.

When  K = 11  the reduction factors are below  5/104  and  3/107 .  How much is that decrease in 
risk worth?  This is a personal question,  as must be evident from news reports of drunk driving,  
speeding and unused seat-belts on our highways.  Multiplying a calamity’s cost by its probability 
would estimate a premium to be paid for insurance against that risk.  Multiplying one guess by 
another is futile,  so I shall cite my own experience instead.

Finding and fixing my mistakes and others’ consumes ten to a hundred times as much of my time 
as is spent figuring out how to compute the solution to a problem.  At least half of those mistakes 
arise from underestimated rounding errors,  which lurk as invisible as  E. coli  until the harm they 
have done attracts notice.  Unlike some other people,  I never trust a numerical result computed by 
just one method without corroboration,  so I find discrepancies that others,  more trusting,  may 
overlook.  If I could become more trusting,  or if the incidence of computational malfunction due 
to rounding errors could be reduced by an order of magnitude,  I could spend more time with my 
grandchildren.

. . . . . . . . . . . . . . . . .

We should not be surprised if  Computer Science  students prefer a sliver under the fingernail to 
compulsory study of  Numerical Analysis.  It’s a horrible subject.  We have just been asked to 
believe paradoxical assertions about a composed program  f(x) = g(h(x))   that implements a 
composed function  F(x) = G(H(x)) :
•  If  h(x)  approximates  H(x)  badly,  f (x)  may still approximate  F(x)  well.
•  If  h(x)  and  g(y)  approximate  H(x)  and  G(y)  well,  f (x)  may still approximate  F(x)  badly.
We are assured that improvements in accuracy will usually reduce the risk of inaccuracy;  and we 
are told how much reduction to expect,  but not how bad the risks are nor how to ascertain when 
whatever might go wrong has gone wrong.  What is a conscientious programmer to do?

The best policy is to strive for as much accuracy as possible without unduly degrading speed.  
This policy will not avoid all dilemmas.  For instance,  the conscientious programmer knows that 
iterative refinement is probably the best way to reduce the size of an overly big residual so that a 
computed solution won’t look so bad.  However,  just when ill condition most jeopardizes that 
solution’s accuracy,  iterative refinement is likely to worsen it on machines that cannot or do not 
accumulate residuals extra-precisely.  And ill condition is seldom obvious.  To refine,  or not to 
refine?  That is the question,  a dilemma for the conscientious programmer.

Matlab  can alleviate this kind of dilemma for the overwhelming majority of computers on 
desktops by turning on extra-precise arithmetic for matrix multiplications and exponentiations 
whenever a computer has it.  What about benighted computers that lack it?  Tough.
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Example 4.  A Simple Geometry Problem:
If you believe that the weighty analyses above are for other people with weighty computations,  
not for people like yourself with computations too short and simple to be so terribly vulnerable to 
roundoff,  this example is for you.

Given are the coordinates of a point  y ,  and the equations  b'·x = ß  and  p'·x = π  of two planes 
that intersect in some line  £  in  Euclidean 3-space.  Sought are the coordinates of the point  z  on  
£  nearest  y .  The following neat text-book formula solves this problem:

z  =  ( v·v'·y + vX(p·ß–b·π) )/(v'·v)   wherein  v = pXb .
Here  vXu  stands for the cross-product that  Matlab  calls  cross(v, u)  .  Its elements are 
expressions like  v(2)*u(3)–v(3)*u(2)   that are vulnerable to cancellation when computed in 
the obvious way,  as  cross   does.  For our purposes the cross-product is better expressed as a 
matrix-vector product  crs(v)*u   where  crs(v)   is the skew matrix

 crs( [v1; v2; v3] ) = [  0, -v3,  v2 ;
  v3,   0, -v1 ;

 -v2,  v1,   0  ]   .
Besides running slightly faster,  crs(v)*u   differs from  cross(v, u)   in the following ways:  On 
computers that accumulate matrix products extra-precisely  crs(v)*u   is more accurate.  On 
computers with a  FMAC  crs(v)*u   commits six rounding errors instead of nine but violates the 
identity  vXu = –uXv  slightly.  On other computers there is no difference.  Now the formula to 
compute  z  becomes simply

 v = crs(p)*b ;   z = ([v, crs(v)]*[ v'*y ; [p, b]*[ß; – π] ])/(v'*v) ;

in  Matlab’s  notation.

The numerical data for our problem consists of  y := [1; –1; 1]  and,  for  n = 1, 2, 3, …, 50 ,
[p'  , π] := [Fn+4 , Fn+3 , Fn+2 , Fn+1]·un ,    [b'  , ß] := [Fn+3 , Fn+2 , Fn+1 , Fn]·vn 

where each  Fk  is a  Fibonacci  number,  and the multipliers  un ≈ 5/3  and  vn ≈ 4/5  are rounded 
short in such a way that their products with  Fk’s  are nonintegers computed exactly:

un := 1 + 2·({Fn+4 + 1/3} – Fn+4) ,    vn := 1 + ({Fn+3 – 1/5} – Fn+3) .
As  n  increases the line  £  stays unchanged as does the correct solution  z = [1/3; 2/3; –4/3] ,  but 
roundoff gradually degrades the computation of  z  as the two planes that intersect in  £  become 

more nearly parallel;  the angle between them is approximately  0.195/2.618 n .

How much accuracy does  z  deserve?  Intuition may suggest that  z ,  as the location of a function’s minimum,  
deserves to lose half the sig. digits carried by the arithmetic.  Alternatively,  imagine the line segment joining  y  to  z  
to be an elastic band stretched tight around  £  and  y ,  and unable to resist infinitesimal displacements of  z  along  £ .  
But intuition and imagination rarely accord with roundoff’s effect upon a formula.  The accuracy of  z  actually 
depends primarily upon the accuracy with which  £  can be located,  and this depends upon the accuracies of  v = pXb  
and of  p·ß–b·π .  Thus the computation’s several earliest rounding errors dominate the rest.

Plotted against  n  below are the relative accuracies of the computed solution vectors  z  and also 
how close they are to the given planes through  £ ,  all measured in  sig. bits,  as computed on 
systems with different values of  mxmuleps  .  The nearness of  z  to both planes matters because 
excessive departure from those planes can introduce intolerable geometrical inconsistencies into 
subsequent computation.  For a given error tolerance,  angles between planes can be roughly  
1/2048  smaller with extra-precise accumulation than without.  This is the bottom line.
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A Proposal for Modest Modifications to  Matlab :
The first proposal is to turn extra-precise accumulation back on for exponentiations and matrix 
multiplications on computers capable of the extra accuracy at negligible cost.  Also,  at least on 
these computers  ( and perhaps on all ),  offer iterative refinement as an option to  /  and  \ .  This 
proposal does not require that  Matlab’s  users be allowed to declare extra-precise  longdouble   
variables,  nor that  Matlab  evaluate all expressions extra-precisely.  Only atomic operations built 
into  Matlab’s  kernel need exploit  longdouble ,  and only when accuracy is enhanced at no great 
loss in speed,  so that users of these atomic operations  ( which a user could not easily replace by 
his own revised versions,  unlike  .m  files )  would enjoy more reliable results.  Foremost among 
these atomic operations are matrix multiplications for full and sparse matrices,  real and complex.  
Now many atomic operations give slightly different results on different computers anyway;  why 
not get different results that are better results whenever the hardware affords the opportunity?

Complacency about accuracy may be traceable to false presumptions like this:  Matlab  statement  P = X*Y   
intended to compute a matrix product  P = X·Y  produces instead  P  satisfying an equation  P+∂P = (X+∂X)·(Y+∂Y)  
in which perturbations  ∂P,  ∂X,  ∂Y  are widely presumed to amount to at most an  ULP  or two elementwise in their 
respective matrices  P, X, Y .  This is true for special cases,  as when  X  or  Y  is a vector,  but false in general;  the 
smallest perturbations that satisfy such an equation can be orders of magnitude bigger than an  ULP  or two.  Extra-
precise accumulation reduces those perturbations by enough to make that presumption almost always valid.

Matlab  is written in  C  and is therefore unable to do more than  C  compilers allow to be done.  
Microsoft’s  C  does not support the  longdouble   format on  PCs.  This does not excuse  
Matlab’s  decision to eschew  longdouble  ;  Borland’s  C  supports it,  and  Intel’s  VTUNE 2.5  
optimizes object code that uses it on  Pentiums.  On computers that lack  longdouble   it is treated 
just like  double   by  C  compilers.  Also,  different compilers have different  Math.  libraries of 

different qualities;  if a compiler’s  pow(y, x)   computes  yx  less accurately than   fdlibm ’s  does 
and not much faster,  then  Matlab  should replace the poor program by a good one.

Although exception handling has not been discussed in this document,  the second proposal is to 
provide access to the flags and modes mandated on all computers that conform to  IEEE Standard 
754  for Floating-Point Arithmetic.  The flags would permit the detection of,  and subsequent 
compensation for,  …
•  Invalid Operations  that now generate  NaNs  which can get lost during comparisons,
•  Divisions-by-Zero  and other operations that generate  Infinity  exactly from finite operands,
•  Overflows  that generate  Infinities  as often poor approximations for huge finite numbers,
•  Underflows  which can sometimes produce misleading results even though they are  Gradual,
•  Inexact Operations  whose results may be rounded unexpectedly or undesirably.
The modes would allow the direction of rounding to be altered at least for algebraic operations if 
not also transcendental functions.  The principal value of directed roundings is that their effect 
upon computational modules  ( functions and operations )  often exposes a module’s numerical 
instability,  helping thus to isolate the more likely sources of error in results suspected of gross 
inaccuracy due to roundoff.  In short,  the modes and flags permit programs and their users more 
easily to detect and diagnose difficulties that are otherwise practically inscrutable.

Finally,  on computers that offer extra-precise arithmetic,  provide the  IEEE’s  recommended 
modes to control its precision;  these would have made this work a lot easier.
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Ruminations and Conclusions:
The quality of a computer system depends upon more than just its speed and memory capacities.  
That quality or the lack of it is difficult to conceal completely;  it seeps through even software 
designed to hide it.  Does it come to the notice of the marketplace?  If not,  there is no economic 
incentive to design better systems nor deterrent to designing worse.

A mason was chastised for wasting  16%  of his time smoothing all six sides of a stone block destined for the 
outer wall of a mediæval cathedral.  “One of those sides will face inside the wall where it cannot be seen;  who 
will know or care if you leave it rough?”  asked his critic.  “God  will know”  was the reply.

Usually the inner compulsion to build better than barely good enough benefits us all regardless of 
whether we share it.  Computer arithmetic is different;  if a programmer cannot depend upon the 
presence of better arithmetic hardware he must presume its absence and program accordingly,  
leaving better qualities unexploited.  Something worse than that has happened to  Matlab.  In the 
overwhelming majority of computer systems on which it runs,  better arithmetic quality has been 
built into the hardware,  but  Matlab 5.x  has turned it off.  Why?

The current fad in software requires it to get the same result everywhere,  on all computers.  This 
is a good idea in most respects.  However,  computer arithmetics vary;  they always have and they 
always will despite conformity to standards that enforce a considerable degree of uniformity.  
Variations,  from one computer to another,  in the relative speeds of different arithmetic operations 
and memory accesses already suffice to induce a programmer and an optimizing compiler to alter 
numerical algorithms in ways that will best suit the target computer.  Such alterations would affect 
ideally only an algorithm’s speed;  often its roundoff is affected too.  The availability of a  Fused 
MAC  or extra precision may induce further alterations,  or not,  as we have seen.

Therefore computed results will vary,  from one computer to another,  unless that variation is 
inhibited by some conscious effort.  This effort is tantamount to a choice:  From the diverse 
results that diverse computers might deliver naturally,  one result is chosen for all computers to 
deliver no matter how unnatural it may be for some of them.  What principles should guide the 
choice of this distinguished result?

One principle is  “Majority rule”:  Choose the result that most computer systems get,  if there is 
one.  Another principle is  “Strive for Excellence”:  Choose the best result,  if there are good ones.  
Neither of these principles explains  Matlab’s  past choices so well as  “Expedience”  does.

Actually,  Matlab  hasn’t made all its choices yet because it does get different results for matrix 
products whenever it uses the  Fused MAC,  or when it sums scalar products in different orders on 
different machines.  However,  future versions of  Matlab  could,  for all we know,  be designed to 
get results identical on all computer systems though slower on some.  Do you think this would 
improve  Matlab ?  If so,  which distinguished result should  Matlab  choose?

If I have a vote,  I prefer that  Matlab  be designed to get about as good a result as can be gotten 
from the underlying hardware at nearly its full speed even if this result varies from one computer 
arithmetic to another.  Then people who buy better arithmetics will usually get better results,  and 
better results will help make computing more reliable instead of merely more uniform.
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For Further Reading:
A case study  “Miscalculating Area and Angles of a Needle-like Triangle”  posted on the web at  
http://http.cs.berkeley.edu/~wkahan/Triangle.ps   makes the case for extra-precise 
arithmetic by analyzing formulas for elementary trigonometric problems taught in high 
schools;   these formulas are numerically unstable and yet they continue to be taught in lieu of 
simple but little known stable formulas.  The formulas illustrate misconceptions about numerical 
analysis that continue to be taught in colleges and enshrined in programming languages.

Matlab’s  users may be less interested in triangles than in matrix computations.  Several recent 
publications by  SIAM  ( Society for Industrial & Applied Mathematics,  Philadelphia )  are 
devoted to numerical linear algebra and its error-analysis.  J.W. Demmel’s  419  page book  
Applied Numerical Linear Algebra (1997)  has an up-to-date  20-page  Bibliography  of  271  
items.  Its items  [10]  and  [34]  are the  Users’ Guide s  to  LAPACK (1995)  and  ScaLAPACK 
(1997)  wherein algorithms better than some of  Matlab’s  can be found.  N.J. Higham’s  book  
Accuracy and Stability of Numerical Algorithms 2d. ed. (2002)  provides the best coverage of a 
broader range of topics.

None of these works is light reading.  None say much about the use of extra-precise arithmetic 
with only  11  more sig. bits than  double ,  partly because experience with that arithmetic is 
limited for want of compiler support.  At this time,  Borland’s  C  and  C++  compilers are the 
only commercially significant compilers I know to support fully all three floating-point formats,  
float   and  double   and  long double ,  on  Intel x86/Pentium-based  PCs  and clones under  
Microsoft’s Windows.  The  gcc  compiler under  Linux  does less well.  Other compilers and 
programming languages are crippled by floating-point misconceptions similar to those that afflict 
the new language  Java  ;  see  “ How Java’s Floating-Point Hurts Everyone Everywhere,”  
http://www.berkeley.edu/~wkahan/JAVAhurt.pdf  .
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Appendix:  The Program  divulge.m  :
This program divulges interesting details about the way  Matlab  uses floating-point arithmetic.  
Following the program are a few examples of its output.

function  [c,v,d,lr,meps,y2n,y2xx,epd] = divulge(machine)
%  [c,v,d,lr,meps,y2x,y2xx,epd] = divulge('machine')  divulges some of  Matlab's
%  arithmetic properties.  The string  'machine'  is echoed for the record.
%    c = computer  as reported by  Matlab
%    v = version  and  d = release date    as reported by  Matlab.
%    lr = direction on which scalar products are summed.
%    meps = mxmuleps ,  q.v.
%    y2n  assesses the ULP accuracy of  (Real)^(Integer)  exponentiation,  and
%    y2xx = 0  unless  (Real)^(Integer)  accumulates products extra-precisely.
%    epd = 1  if extra-precision exists but is discarded from most expressions,
%        = 0  if extra precision is turned off or does not exist,
%        = -1  if extra precision exists but is turned off  ( on a  PC ).
%                                                    (C)  W. Kahan,  4 Aug. 1998
disp(['Matlab  divulges its arithmetic when run on a  ', machine ]) ;
c = computer;
disp(['Matlab  says it is running on a  ', c]) ;
[v, d] = version ;
disp(['Matlab''s  version  is  ', v, '  released on  ', d]) ;
x = ( [eps, 9, 9]*[eps; 9; -9] ~= 0 ) ;
if  x ,
         lr = 'right-to-left';
    else
         lr = 'left-to-right' ;
    end
disp([' Scalar product  a''*b = a(1)*b(1) + a(2)*b(2) + a(3)*b(3)']) ;
disp(['          is summed from  ', lr, ' .']) ;
y = [1-eps,  eps-1]*[1+eps; eps+1] ;
meps = mxmuleps ;
if isnan(meps),
        me = ' is NaN ' ;  y = (y==0)|((y<0)~=x) ;
   elseif  meps==eps
        me = ' = eps' ;
   else
        me = [' = eps / ',num2str(eps/meps)] ;
   end
disp([' mxmuleps', me, ' .' ]) ;
if y ,
    disp([' Something about the previous two statements is wrong.']) ;
   end
x = ones(128,1)*([1:2:127]/65536 + 1) ;
N = [65501:2:65755]'*ones(1,64) ;
x3N = x.̂ (3*N) ;
y2n = max(max(abs( ( x3N - (x.*x.*x).̂ N )./x3N )))/eps ;
Y2N = num2str(y2n) ;
disp([' y^N  errors as big as  ', Y2N, ' ULPs  have been seen.']) ;
x = 0.5 + rand(32,32) ;
N = round(256*rand(32,32)) + 7 ;
y2xx = any(any(  x.̂ (2*N) - (x.*x).̂ N  )) ;
if  y2xx,  not = '' ;
    else,  not = 'not' ;  end
disp([' y^N  is ', not, ' accumulated extra-precisely.']) ;
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y = 1 + eps ;  d = 1 - eps/2 ;
x = 1 + y*eps/2 ;  epd = (x == 1) ;
x = y + d*eps/2 ;  epd1 = (x ~= y) ;
if  (epd~=epd1),
    disp([' Something about the next statement is wrong.']) ;
  end
if  epd,
    epds = 'discarded from most (sub)expressions' ;
  else
    if v(1) > int2str(3) ,   t = realmin ;
         else                t = 0.5^1022 ;  end
    z = ( t*(2 - 2*eps) )/(2 - eps) ;
    if  z < t ,  epds = 'turned off or do not exist' ;
         else    epds = 'turned off' ;  epd = -1 ;  end
  end
disp([' Extra-precise digits are ', epds, '.']) ;

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

divulge('Mac Quadra 950')
Matlab  divulges its arithmetic when run on a  Mac Quadra 950
Matlab  says it is running on a  MAC2
Matlab's  version  is  5.0.0.4075  released on  Dec 13 1996
 Scalar product  a'*b = a(1)*b(1) + a(2)*b(2) + a(3)*b(3)
          is summed from  left-to-right .
 mxmuleps = eps / 2048 .
 y^N  errors as big as  0.99903 ULPs  have been seen.
 y^N  is  accumulated extra-precisely.
 Extra-precise digits are discarded from most (sub)expressions.

divulge('PowerMac 8500')
Matlab  divulges its arithmetic when run on a  PowerMac 8500
Matlab  says it is running on a  MAC2
Matlab's  version  is  5.2.0.3084  released on  Jan 26 1998
 Scalar product  a'*b = a(1)*b(1) + a(2)*b(2) + a(3)*b(3)
          is summed from  left-to-right .
 mxmuleps is NaN  .
 y^N  errors as big as  0.99942 ULPs  have been seen.
 y^N  is  accumulated extra-precisely.
 Extra-precise digits are turned off or do not exist.

» divulge('Pentium II under WinNT/DOS')
Matlab  divulges its arithmetic when run on a  Pentium II under WinNT/DOS
Matlab  says it is running on a  PC386
Matlab's  version  is  3.5m  released on  Aug 12 1992
 Scalar product  a'*b = a(1)*b(1) + a(2)*b(2) + a(3)*b(3)
          is summed from  left-to-right .
 mxmuleps = eps / 2048 .
 y^N  errors as big as  0.9942 ULPs  have been seen.
 y^N  is  accumulated extra-precisely.
 Extra-precise digits are discarded from most (sub)expressions.



Matlab’s Loss is Nobody’s Gain                                                          Created  Aug. 1998,  revised  July 31, 2004

http://www.cs.berkeley.edu/~wkahan/MxMulEps.pdf                                                                                Page 35/36

>> divulge('hp-715')
Matlab  divulges its arithmetic when run on a  hp-715
Matlab  says it is running on a  HP700
Matlab's  version  is  5.0.0.4064  released on  Nov 15 1996
 Scalar product  a'*b = a(1)*b(1) + a(2)*b(2) + a(3)*b(3)
          is summed from  left-to-right .
 mxmuleps = eps .
 y^N  errors as big as  52101.6199 ULPs  have been seen.
 y^N  is not accumulated extra-precisely.
 Extra-precise digits are turned off or do not exist.

divulge('Pentium II under WinNT')
Matlab  divulges its arithmetic when run on a  Pentium II under WinNT
Matlab  says it is running on a  PCWIN
Matlab's  version  is  4.2c.1  released on  Oct 03 1994
 Scalar product  a'*b = a(1)*b(1) + a(2)*b(2) + a(3)*b(3)
          is summed from  left-to-right .
 mxmuleps = eps / 2048 .
 y^N  errors as big as  5.214e+004 ULPs  have been seen.
 y^N  is not accumulated extra-precisely.
 Extra-precise digits are discarded from most (sub)expressions.

divulge('Pentium under Windows 98')
Matlab  divulges its arithmetic when run on a  Pentium under Windows 98
Matlab  says it is running on a  PCWIN
Matlab's  version  is  5.2.0.3084  released on  Jan 17 1998
 Scalar product  a'*b = a(1)*b(1) + a(2)*b(2) + a(3)*b(3)
          is summed from  right-to-left .
 mxmuleps = eps .
 y^N  errors as big as  52101.6199 ULPs  have been seen.
 y^N  is not accumulated extra-precisely.
 Extra-precise digits are turned off.

Compared with previous versions of  Matlab  on  Wintel PCs,  version  5  sums matrix products in 
the opposite direction,  computes exponentials inaccurately,  and no longer accumulates matrix 
products extra-precisely  ( mxmuleps = eps  ),  and all because it left the hardware’s extra digits 
turned off.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Addendum  (July 2003):  Matlab 6.5  on  PCs  reverts to summing matrix products left-to-right,  as in version  4,  and 
provides a way to re-enable extra-precise accumulation of matrix products:

>>  system_dependent(‘setprecision’, 64)
On  Wintel PCs  the default is  “53”  rather than  “64”.  Another alternative is  “24”,  which rounds at least matrix 
product accumulation to  24  sig. bits.  Rounding direction is influenced by …

>>  system_dependent(‘setround’, r#)
rounding  Up  if  r# = inf  ,  Down  if  r# = –inf  ,  To Zero  if  r# = 0  ,  To Nearest  if  r# = 0.5   or  ‘nearest’   
(the default).  All this comes from a footnote on  p. 55  of  Mike Overton’s  book  Numerical Computing with IEEE 
Floating Point Arithmetic  (2001,  SIAM, Philadelphia).  I wonder:  what else can  system_dependent(…)   do?
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Here are results from  divulge   when it ran in  Matlab 6.5  on an  IBM PC  under  Windows 2000:

divulge('Win2000pc')
Matlab  divulges its arithmetic when run on a  Win2000pc
Matlab  says it is running on a  PCWIN
Matlab's  version  is  6.5.0.180913a (R13)  released on  Jun 18 2002
 Scalar product  a'*b = a(1)*b(1) + a(2)*b(2) + a(3)*b(3)
          is summed from  left-to-right .
 mxmuleps = eps .
 y^N  errors as big as  0.83399 ULPs  have been seen.
 y^N  is  accumulated extra-precisely.
 Extra-precise digits are turned off or do not exist.

system_dependent('setprecision', 64)
divulge('Win2000pc64')
Matlab  divulges its arithmetic when run on a  Win2000pc64
Matlab  says it is running on a  PCWIN
Matlab's  version  is  6.5.0.180913a (R13)  released on  Jun 18 2002
 Scalar product  a'*b = a(1)*b(1) + a(2)*b(2) + a(3)*b(3)
          is summed from  left-to-right .
 mxmuleps = eps / 2048 .
 y^N  errors as big as  0 ULPs  have been seen.
 y^N  is  accumulated extra-precisely.
 Something about the next statement is wrong.
 Extra-precise digits are turned off or do not exist.

system_dependent('setprecision', 24)
divulge('Win2000pc24')
Matlab  divulges its arithmetic when run on a  Win2000pc24
Matlab  says it is running on a  PCWIN
Matlab's  version  is  6.5.0.180913a (R13)  released on  Jun 18 2002
 Scalar product  a'*b = a(1)*b(1) + a(2)*b(2) + a(3)*b(3)
          is summed from  left-to-right .
 Has precision been altered?  Why do the following differ? ...
AnULPofOne =
     0
Eps =
     2.22044604925031e-016
 Now  mxmuleps  cannot be trusted.
 mxmuleps is NaN  .
 Something about the previous two statements is wrong.
 y^N  errors as big as  2.609722e+013 ULPs  have been seen.
 y^N  is  accumulated extra-precisely.
 Extra-precise digits are discarded from most (sub)expressions.

Deciphering the results above for  Win2000pc64  and  Win2000pc24  will take some time.


