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Abstract:   

 

No;  that is not my message.  Rather,  in so far as our technological activities have 
become ever more mathematical as well as market-oriented,  mathematics and 
marketing have come to depend upon each other,  and therefore must appreciate 
each other’s needs,  more than ever.  This growing interdependence is illustrated 
in what follows by the design and implementation of floating-point arithmetic.

 

This document is at

 

  http://www.cs.berkeley.edu/~wkahan/MktgMath.pdf

 

(The title  “Marketing versus Mathematics”  was chosen by  Prof. Alan Jay Smith.)

Marketing  is  Bad;   Mathematics  is  Good.

 



 

Prof. W. Kahan                                                                                                                                                              August 27, 2000 6:44 pm

MktgMath                                                                                                                                                                                               Page 2

 

Contents:

 

Mathematics for Marketing and  

 

vice-versa

 

 page  3
A Good Example:  The 

 

Intimidation

 

 Factor  5
Good and Bad  in  Marketing  and in  Mathematics  7

A Good Example:  HP-92, …, HP-12C  Financial Calculators  9
Market-motivated Mathematics  is a  Gamble 12
A Bad Example:  QPRO 4.0  and  QPRO for Windows 13
Why is Floating-Point almost all  Binary  nowadays? 18
Example:  … literal constant  “ 25

 

.

 

4 ” ;  what’s its nationality? 19
What is worth learning from the story about  “ 25

 

.

 

4”, … ? 23
Besides its massive size,  what distinguishes today’s market for floating-point … ? 24
Case study:  Kernighan-Ritchie  C  vs.  ANSI C  &  Java 26

Example:  Find the nearest point … 27
Old  Kernighan-Ritchie  C  works better than  ANSI C  or  Java 

 

!

 

 28
The Intel 8087 Numeric Coprocessor’s Marketing Vicissitudes 29
Floating-Point Arithmetic  for a  Mass Market …  What was Best? 30
How do Errors get Amplified?  By Singularities Near the Data. … 33
Testing floating-point software …  A Frightening Example 36
What else should we remember about the foregoing examples? 42
A Bad Example  of a Programming Language Ostensibly for a Mass Market 43
Appendix: How Directed Roundings  May  Help Locate Numerical Instability. 45

Over/Underflow Undermines Complex Number Division in  Java 46
Four Rules of Thumb for Best Use of Modern Floating-point Hardware 47

Conclusion  &   Acknowledgement 48



 

Prof. W. Kahan                                                                                                                                                              August 27, 2000 6:44 pm

MktgMath                                                                                                                                                                                               Page 3

 

Marketing  is to the  Laws of Economics  as
High Technology  is to the  Laws of Mathematics

 

,  but …

 

Some  Laws of Economics  can be suspended for a while,  though not repealed.

Every violation of a  Law of Mathematics  is always punished sooner or later.
(Alas,  the punishment does not always befall the perpetrator.)

 

Why do I care?  How are  Marketing  and  Mathematics  connected?

 

Without market forces on its side,  technology is impotent.

By itself,  technological superiority has never guaranteed commercial success,  
despite what  R.W. Emerson  may have said about building a better mousetrap.

Marketing is needed both before and after technological innovation,
  first to descry what

 

 

 

a

 

 

 

targeted market needs and desires

 

  

 

(though

 

 

 

desire

 

 

 

is

 

 

 

fickle),   
   then to appraise how much a proposed innovation is worth to that market.

 

The crucial first step is understanding that market’s needs.

 

Afterwards,  the follow-through will inevitably entail mathematical analysis too.
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How does mathematical analysis figure in a  “Creative Activity”?

 

Much of what passes for  imagination,  innovation  and  invention
is actually  perspiration,  exploration  and

painstaking elimination of the unfeasible and the unsuitable.

 

“… when you have eliminated the impossible,  whatever remains,
 

 

however improbable

 

,  must be the truth …”
Sherlock Holmes in  

 

The Sign of Four

 

  by  Sir Arthur Conan Doyle.

 

Only after the needs of a targeted market are well analyzed and understood
can unsuitable proposals be rejected before too late,

freeing up time to pursue a successful design.

Therefore,  successful technical marketing depends upon mathematics,
and  vice-versa.

 

How can  Mathematics  depend upon  Marketing ?   We’ll see later.
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A Good Example:    

 

The 

 

Intimidation

 

 Factor,   

 

or
what a mathematician learned from a marketing man

In the early 1980s,  the  HP-15C  Shirt-Pocket Programmable Calculator  …
for students of  Engineering,  Physics,  Chemistry,  Statistics,  …

all of the first two years of  College Math.  but  Divs,  Grads & Curls:

 

Easy to program despite  Reverse Polish  (Stack)  notation
All elementary transcendental functions,   x

 

!

 

 ,  Combinatorial,  …
Potent and easy-to-use  [S

 

OLVE

 

]  and  [I

 

NTEGRATE

 

]  keys
Complex  arithmetic as convenient as  Real
[

 

+

 

], [

 

–

 

], [

 

x

 

], [

 

/

 

], [1/x]  keys work on small matrices too;  Determinant, Norms,  …

 

Since I expected freshmen who got the calculator to encounter its nonelementary 
mathematical capabilities before learning about them in classrooms,  I proposed 
that its manual be augmented by some tutorial material about inverse functions,  
integrals,  complex variables,  matrices,  and roundoff; —  in short,  a math. text.

A competent  HP  marketing man  (I have forgotten his name,  alas)  asked me to 
contemplate how a potential buyer will react when the storekeeper shows him a 
box containing a tiny shirt-pocket calculator dwarfed by its instruction manual.

 

(My proposed tutorial became a separately purchaseable  

 

HP-15C Advanced Functions Handbook

 

  
containing also a  39-page  graduate micro-course on  Error-Analysis.)
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The 

 

Intimidation

 

 Factor

 

   continued …

Intimidation rears up nowadays when software comes with a  400 KB  executable 
and a  3 MB  

 

Help

 

-file written in  

 

html

 

  hypertext.  The trouble is less with the 
size of that  

 

Help

 

-file than with the burden upon a reader forced to wade through 
too big a portion of it to learn coherently  (if he ever can)  what the software does,  
whence its information comes and whither it goes,  and where some of it stays  
(in hidden files?).   No wonder people disincline to  “Read the F— Manual.”

The  

 

html

 

  format for  

 

Help

 

-files  invites a  

 

Stream-of-Consciousness

 

  style of 
disorganization,  as if no single mind ever grasped what a reader needs to know.

 

Disorganized technical documentation,  albeit comprehensive,
signals a failure of the marketing department

since it alone  (if any)  can hire  English  majors.
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Not all marketing is competent marketing.

 

But bashing the marketing department is too much like shooting fish in a barrel.

It is more constructive for technically and,  especially,  mathematically trained 
personnel to collaborate with marketing people,  and for these to accept such 
collaboration and,  better,  to know when to ask for it.  This last requires a little 
mathematical competency within the marketing department.

 

How do you tell good marketing from not so good
before it is too late?

 

I wish I knew.  Instead,  I can only offer examples of good and bad.
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“Things are seldom what they seem;  skim milk masquerades as cream.”
Act II,  

 

H.M.S. Pinafore

 

 (1878) Gilbert & Sullivan

 

Not all mathematics is competent mathematics.

 

Some of it,  even if logically correct,  merely fills long-needed gaps.

 

How do you tell the good math. from the not so good?

 

Good mathematics promotes   

 

Intellectual Economy

 

   by helping us
 understand more while obliging us to memorize less without violating …

 

Einstein’s Dictum:

 

“Everything should be as simple as possible,
but no simpler.”

Disregard whatever I say that flunks this test.
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A Good Example:  

 

HP-92, …, HP-12C  Financial Calculators

 

       n    = number of payment periods all of  “equal”  length  (month, year, …)
        i    = interest rate  (%)  compounded in each period
      PV  = “Present Value”  or special  (“fee”)  payment at the beginning of the first period
    PMT = each of  n  equal  PayMenTs,  one per period
 [Begin/End]  selects the beginning or end of every period for payments  PMT
      FV  = “Future Value”  or special (“balloon”)  payment at the end of the last period

 

Before  1976,  these terms were used but interpreted differently for loans,  leases,  
mortgages,  amortizations,  annuities,  savings plans, …;  consequently users of 
financial calculators and software had to look up different protocols for each kind 
of transaction.  Besides,  calculators and software could not handle some variants 
of these transactions,  like balloon payments at the end,  or fees at the beginning.  
Mistakes were common,  and so were violations of  

 

Truth in Lending

 

 regulations.

Since relatively few  “experts”  understood the protocols,  the market for do-it-
yourself financial calculators was small,  and many a purchaser was dissatisfied.

n i PV PMT FV Begin/End
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HP-92, …, HP-12C  Financial Calculators

 

   continued …

In  1976  Roy Martin,  a mathematician and programmer interested in marketing,  
proposed simpler interpretations of  PV,  PMT  and  FV  that seem obvious now:

Give each a positive sign for cash flowing in,
   a negative sign for cash flowing out.

Then the protocol became uniform for all transactions:
•  Set the  [Begin/End]  switch as required for the intended transaction;
•  Enter known values for four of the five variables  n,  i,  PV,  PMT,  FV ;
•  Press the fifth key to display the not-yet-known variable’s value.

All the calculator had to do next was solve one equation for that fifth unknown:

PV + PMT

 

/

 

(1+

 

I

 

 

 

)

 

1–ß

 

 + PMT

 

/

 

(1+

 

I

 

 

 

)

 

2–ß

 

 + … + PMT

 

/

 

(1+

 

I

 

 

 

)

 

n–ß

 

 + FV

 

/

 

(1+

 

I

 

 

 

)

 

n

 

 = 0
where  

 

I

 

 = i/100   and  ß = 1  for  Beginning,  0  for  End.
But nobody knew how to do so except in special cases or else intolerably slowly.

A calculator restricted to these special cases would have limited appeal.

n i PV PMT FV Begin/End

PV

PMT PMT PMT PMT PMT PMT PMT PMT PMT PMT+FV. . .
n
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HP-92, …, HP-12C  Financial Calculators   continued …

PV + PMT/(1+I )1–ß + PMT/(1+I )2–ß + … + PMT/(1+I )n–ß + FV/(1+I )n = 0
(where  I = i/100   and  ß = 1  for  Beginning,  0  for  End .   n  can be many thousands.)

A calculator that solved this equation for only the known special cases would be
a marketing failure for lack of follow-through.  Instead,  Roy Martin  engaged a
better mathematician  (me)  to help devise an equation-solving algorithm*  that 
handled  all  cases quickly  (under  250  arithmetic operations)  and accurately,  
and could fit into the  ROM  available for micro-code.  The resulting  HP-92  
became the progenitor of a very successful line of  Hewlett-Packard  financial 
calculators including the  HP-12C,  a shirt-pocket programmable calculator still 
being sold after  18  years and now the standard accessory for real estate brokers,  
financial planners, … .  (Roy’s write-up is pp. 22-8  of the Oct. 1977 HP Journal.)

    *For the market-motivated mathematics behind such an algorithm see my web-page
http://www.cs.berkeley.edu/~wkahan/Math128/RealRoots.pdf

n i PV PMT FV Begin/End

PV

PMT PMT PMT PMT PMT PMT PMT PMT PMT PMT+FV. . .
n
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Market-motivated mathematics  is a  gamble:

It may reveal what you seek; - A CLEAR WIN

it may reveal that what you seek is not to be had; - PARTIAL WIN

it may fail to determine whether what you seek is feasible.- A DRAW

Mathematics cannot lose so long as it enhances your understanding of the issues.

Failure to follow through with market-motivated mathematical analysis is like a 
failure of due diligence,  and can spoil market prospects and incur extra costs.

Here is a  Bad Example,
extracted from    “Bug Watch”,  p. 30  of  PC World,  20 May 1993,
concerning what were then  Borland’s  Quattro Pro  spreadsheets:

(Extract begins.)  “· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 
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QPRO 4.0  and  QPRO for Windows

Users report and  Borland  confirms a bug in the  @ROUND  function in  QPRO 
4.0  and  QPRO for Windows:  @ROUND  may round decimal numbers ending 
with the digit  5  inconsistently.  The number  31.875  rounded to two decimal 
places,  for example,  should always yield  31.88  but instead is sometimes 
rounded to  31.87 .

Although  Borland  says the problem is more likely to occur on systems lacking a 
math coprocessor,  PC World  was able to duplicate the problem on coprocessor-
equipped systems.

Instead of using the  @ROUND  function,  Borland  recommends using the 
@INT  function as shown in the following example:

To round the number in cell  A1  to two decimal places,  enter
@INT( (A1 + 0.005)*100 )/100 .

No fix is available for the bug;  Borland  plans to repair it in the next major 
release of both packages.
 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·” (Extract ends.)

This recommended cure is worse than the disease.
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The recommended cure is worse than the disease.

@ROUND(A1, 2)  actually works correctly for numbers  A1  near … 31.875 ,
rounding numbers  A1  slightly less than  31.875  down to … 31.87 ,

numbers  A1  equal or slightly bigger than  31.875  up to … 31.88 .

@INT( (A1 + 0.005)*100 )/100  malfunctions,  yielding  31.88  wrongly for five 
numbers  A1  strictly between   31.8749999999999822  and  31.875 .

Trouble arises partly because  Quattro  displays at most  15  sig. dec.,  so that   29  
numbers from   31.87499999999947…  to   31.875000000000046…   all display 
as  “ 31.87500…00 ”  but  14  @ROUND  up to  31.88  and  15  down to  31.87 .

What  QPRO  shows you  (decimal)  is not what you get  (binary).

This is a marketing department’s blunder.  They boasted about  Quattro Pro's  
“fully integrated WYSIWYG display”  feature without mentioning that it does 
not work for numbers the way a user should expect.  In almost  1200  pages of 
documentation supplied with  QPRO  there is no mention of binary floating-
point arithmetic nor of roundoff.  Instead the reader can too easily misinterpret 
a few references to  15  or  16  sig. dec of precision as indications that no more 
need be said about  QPRO's  arithmetic.  Actually much more needs to be said 
because some of it is bizarre.   …
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Decimal  displays of  Binary  nonintegers cannot always be  
WYSIWYG.

Trying to pretend otherwise afflicts both customers and implementors with bugs 
that go mostly misdiagnosed,  so  “fixing”  one bug merely spawns others. …

QPRO’s  @INT  Bug,  a  Pious Fraud  Exposed:
@INT(x)  should yield the integer nearest  x  and no bigger in magnitude.  E.g.,

we expect  @INT(1.00…001) = 1   and   @INT(0.999…999) = 0 .
More  generally,  whenever  0 < x < 2  we expect   @INT(x) == (x ≥ 1) .

But QPRO’s  @INT  does something unexpected:

The discrepancy marked  “BAD!”  insinuates into spreadsheets inconsistencies 
almost impossible to debug.  How can it be explained?

Range of Stored Values  x x  displays as … @INT(x) (x ≥ 1) Notes

1 – 14/253  to  1 – 6/253 0.999999999999999 0 0

1 – 5/253 1.000000000000000 0 0 SAD

1 – 4/253  to  1 – 1/253 1.000000000000000 1 0 BAD!

1  to  1 + 21/252 1.000000000000000 1 1
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QPRO’s  @INT  bug,  a  Pious Fraud  Explained:

Perhaps users of earlier versions of  Quattro  complained about a bug:  For many 
an argument  x  displayed as an integer  N ,  function  @INT(x)  yielded not  N  
but  N–1  whenever  x  was actually slightly smaller than  N .  To  “fix”  this bug,  
implementors of  Quattro  chose to round  @INT(x)’s  argument  x  to  53  sig. 

bits,  multiply this by  1 + 1/251 ,  round the product to  53  sig. bits,  and finally 
discard its fractional part.  The line marked  “SAD”  shows that this kludge did 
not quite work;  the line marked  “BAD!”  shows how  @INT’s  mystery was 
deepened instead of hidden.

The right quick fix for the  @ROUND  and  @INT  (and other)  bugs is to allow 
Quattro’s  users to display up to  17  sig. dec.  instead of no more than  15 .

Range of Stored Values  x x  displays as … @INT(x) (x ≥ 1) Notes

1 – 14/253  to  1 – 6/253 0.999999999999999 0 0

1 – 5/253 1.000000000000000 0 0 SAD

1 – 4/253  to  1 – 1/253 1.000000000000000 1 0 BAD!

1  to  1 + 21/252 1.000000000000000 1 1
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The correct cure for the  @ROUND  and  @INT  (and some other)  bugs is not 
to fudge their argument but to increase from  15  to  17  the maximum number 
of  sig. dec.  that users of  QPRO  may see displayed.  Then distinct floating-
point numbers in memory must appear distinct when displayed to  17 sig. dec.
( 16  sig. dec. are too few to distinguish seven consecutive  8-byte  floating-point numbers between 
  1024 – 4/243 = 1023.9999 9999 9999 5453…  and   1024 + 4/243 = 1024.0000 0000 0000 4547… .)

But no such cure can be liberated from little annoyances:
“0.8” entered would display as   0.80000000000000004         to  17  sig. dec.;
“0.0009875” entered would display as   0.00098750000000000001  to  16  sig. dec.,

annoying users who did not expect  QPRO  to alter what they entered.
“32200/32.2” entered would display as   999.99999999999989         to  17  sig. dec.,

annoying users who expected roundoff to degrade only the last displayed digit 
of simple expressions,  and confusing users who did not expect roundoff at all.

Decimal  displays of  Binary  nonintegers cannot always be  WYSIWYG.

For  Quattro’s  intended market,  mostly small businesses with little numerical 
expertise,  a mathematically competent marketing follow-through would have 
chosen either to educate customers about binary floating-point or,  more likely,  
to adopt decimal floating-point arithmetic even if it runs benchmarks slower.

But  Decimal  is unlikely to supplant  Binary  hardware in the near future.
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Why is Floating-Point almost all  Binary  nowadays?
Every finite conventional floating-point number has the form   s·ße+1–P   where

ß = Radix,  fixed at  Two  for  Binary,  Ten  for  Decimal;
e = Exponent,  a small signed integer within fixed limits;
s = Significand,  a signed integer in the range  -ßP < s < ßP ;  normally  |s| ≥ ßP–1  too;
P = Precision,  fixed at the number of  “Significant Digits”  carried by  s .

•  Binary is Better than any other radix for  Error-Analysis (but not very much)
because the relative density of floating-point numbers fluctuates by a factor
of  ß ,  which is rather less  ( 2 )  for  Binary  than  ( 10 )  for  Decimal.
E.g.:  ( Gaps among  1.000…000x ) = 10·( Gaps among  .9999…999x ) .

•  Binary is Intrinsically Simpler and Faster than Decimal (but not very much)
because,  to compete with the storage economy of  Binary,  Decimal  has to
be compressed,  3 dec. digits to  10  bits,  when moved from arithmetic
registers to memory,  and decompressed when loaded back into registers.

Technical advantages may be more than offset by one marketing disadvantage:
Decimal  displays of  Binary  nonintegers cannot always be  WYSIWYG.

Even experienced programmers make mistakes frequently when they forget that  
Decimal  and  Binary  nonintegers round off differently,  and that converted 
literal  Decimal  constants lack qualities that are too often taken for granted.

Example:  A program contains literal constant  “ 25.4 ” ;  what’s its nationality?
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Example:  A program contains literal constant  “ 25.4 ” ;  what’s its nationality?

This is an example Contrived out of subtleties that programmers typically overlook and misdiagnose.

How Many  Millimeters  in an Inch ?

Regardless of the program’s nationality,  compilation  may well convert its  “ 25.4 ”   
from decimal to binary and round it to a slightly different number.  Which?  It varies 
with the language and its compilers,  all on the same  IEEE 754 - compliant hardware:

     As a  4-Byte  float      25.4E0 = 25.399999619…  ,
     As an  8-Byte  double      25.4D0 = 25.39999999999999858…  ,
     As a  10-Byte  long-double     25.4T0 = 25.399999999999999999653…  ,
     As a  16-Byte  quadruple      25.4Q0 = 25.3999999999999999999999999999999877… .

Compared with historical variations,  such discrepancies probably don’t make headlines 
the way  mi. vs. km.  or  knots vs. kmph.  did when a  Mars-bound  spacecraft got lost.

Still,  discrepancies tiny as these can provoke mysterious malfunctions in software.

Inch nationality Era Millimeters Authority

British Imperial Early 1800s 25.39954… French
Late 1800s 25.39997… British

U.S.A.
(now international)

Early 1900s 25.40005… 39.37 in./m.

Late 1900s 25.4 exactly Congress
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Imagine a software project to collate the last two centuries’ careful geodetic surveys of 
seismically active regions under the aegis of various past governments  (some colonial),  
and now the  U.N.,  undertaken to help predict volcanic eruptions and earthquakes.  This 
software takes account of different units of length,  most of them obsolete today.

What if irregularities in geodetic markers’ movements seem to correlate with changes of 
the administrations in power when the markers moved?  Do political upheavals influence 
continental drift?  No;  the irregularities are traced first to changes in units of length,  and 
then to their associated constants like  “ 25.4 ”  converted by a compiler from decimal to 
binary as if they had been written  “ 25.4E0 ”.  Experts blame a programmer,  who is 
now long gone,  for not writing every such non-integer literal constant thus:  “ 25.4D0 ”  
or  “ 25.4000000000000000 ”.  After source-texts are corrected and recompiled so that 
accuracy  improves,  severe and mysterious misbehavior arises on very rare occasions 
when different subprograms disagree upon the locations of maximal ground movements.

Disagreements arise because the constant  “ 2.54D0 ”  appears in a subprogram written 
by someone who worked with  cm.  instead of   mm.  even though compensatory factors  
“ 10 ”  were introduced correctly:

25.4       =  10 · 2.54        exactly,  and
25.4E0   =  10 · 2.54E0    exactly,   and
25.4T0   =  10 · 2.54T0    exactly ;   but
25.4D0  ≠  10 · 2.54D0    quite exactly because …
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25.4 = 10 · 2.54   and   25.4E0 = 10 · 2.54E0   and   25.4T0 = 10 · 2.54T0  exactly ;
but   25.4D0  ≠  10 · 2.54D0    quite exactly because …

25.4D0 – 25.4 ≈ –1.4210–15   but   2.54D0 – 2.54 ≈ +3.5510–17 .

Not exactly a factor of  10 .

These coincidences collide with another:  Distances measured in inches to the nearest  
1/32"  are representable exactly in binary if not too big.  If  d  is such a distance,  10·d   is 
representable exactly in binary too.  Consequently …

     25.4·d    and      2.54·(10·d)     are exactly the same;
(25.4E0)·d  and  (2.54E0)·(10·d)  round to the same value ;
(25.4T0)·d  and  (2.54T0)·(10·d)  round to the same value.   But
(25.4D0)·d  and  (2.54D0)·(10·d)  round differently occasionally.

For example,  after they are rounded to  53 sig. bits the values of
(25.4D0)·(3.0)   and   (2.54D0)·(30.0)   differ by  1/246 ≈1.4210–14.

This difference between    (25.4D0)·d   and   (2.54D0)·(10·d)    suffices sometimes to put 
these values on different sides of a comparison,  leading to different and inconsistent 
branches in subprograms that treat the same datum  d .  “Corrected”  with more accurate 
constant literals  “25.4D0”  and  “2.54D0” ,  the program would malfunction at a rare 
sprinkling of otherwise innocuous data  d  that the  “incorrect”  program with intended 
but paradoxically less accurate literals  “25.4”  and  “2.54”  had handled almost perfectly.

Could you have debugged the  “Corrected”  program?
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Protest!    “ Only an overly naive programmer could expect the binary approximation
    of  25.4  to be exactly  10  times the binary approximation of  2.54 .”

This protest is mistaken.  Here is how to make  10  happen:

c0  := 2.54  rounded to the precision intended for all variables;
f0  := 4·c0 ; …  exact in  Binary  floating-point.
f1  :=  f0 + c0 ; …  rounds  f1  to very nearly  5·c0 .
c1  := f1 – f0 ; …  exact in any  decent floating-point but not  exactly  c0 .
c10 := 10·c1 ; …  exact in  Binary  or  Decimal  (but  not   Hexadecimal).

Now,  unless the compiler has  “optimized”  f0  and  f1  away and taken  c0  and  c1  to be the 
same,  c10  and  c1  turn out to be respectively almost as good binary approximations of  25.4  and  
2.54  as are to be had,  and the first exactly  10  times the second.  Can you see why this trick always 
works in  Binary  (though not always in  Hexadecimal)  floating-point?  Many a programmer can’t.

Programmers aware of the importance of such a relationship and the need for its defence 
can figure out how to enforce it.  But because software tends to accrete like barnacles on 
a whale,  rather than growing according to plan,  obscure relationships and the rationale 
behind them tend to be forgotten as newly hired programmers take the places of the old.

The tale above about  mm. per in.  is a  fictional  didactically motivated over-simplified composite of
common and often misdiagnosed bugs in programs that use a little floating-point.  The point here is 
misdiagnosis.  Programming languages also attract other bugs easier to diagnose.  For example,  a  
Java  programmer who wrote wrongly  “ C=(F-32)*(5/9) ”  instead of  “ C=(F-32)*5/9 ”  
exposed a flaw worse in some languages than in himself. ( comp.lang.java.help  for  1997/07/02 )
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2.54       25.4         2.54D0       25.4D0        c1       c10
What is worth learning from the story about these numbers?

1:   Programs transform information while preserving relationships,  for instance loop-
invariants,  that connect input via intermediates to output strongly enough to imply its 
correctness.  Floating-point rounding errors,  as insidious as wood-rot because they are 
invisible in a program’s text,  weaken intended relationships among declared variables 
and literal constants,  thus undermining the output’s correctness.  More about this later.

If unable to know in advance which relationships most need preservation,  a programmer is obliged 
to try to preserve them  all  as well as possible by carrying  all  intermediate variables to the highest 
precision that does not run too slow  (lest it never get run at all).  On rare occasions this expedient 
fails,  and then a programmer must resort to tricks like …

redundant variables,   redundant parentheses,   redundant computations of zero,  …
to preserve crucial relationships like …

Symmetry,     Monotonicity,     Correlation,    10,    Orthogonality,   … .
These tricks may appear silly to a compiler writer tempted to  “Optimize”   them away.

2:   Binary  floating-point is best for mathematicians,  engineers and most scientists,  and 
for integers that never get rounded off.  For everyone else  Decimal  floating-point is best 
because it is the only way  What You See  can be  What You Get,  which is a big step 
towards reducing programming languages’ capture cross-section for programming errors.

But  Binary  will not soon go away.  Trying to hide it  (as  QPRO’s @INT  did)  can 
only make matters worse,  especially for today’s mass market.
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“In every army big enough there is always somebody who does not get the message,
or gets it wrong,  or forgets it.”  … (a military maxim of unknown provenance)

Besides its massive size,  what distinguishes today’s market for 
floating-point arithmetic from yesteryears’ ?

Innocence

( if not inexperience,  naïveté,  ignorance,  misconception,  superstition,  … )

A mainframe costs so much to purchase and maintain that its owner can easily 
afford a numerical expert attached to the computer by an anklet like the one that 
stops an elephant from wandering away from its keeper at night.  This expert can 
exploit the machine’s idiosyncracies to extract the best performance compatible 
with tolerable reliability.  But in a mass market computers and software cost too 
little to include an attached expert,  so every practitioner must fend for himself.  
No matter how clever he may be about everything else,  his amateur judgment 
about floating-point is predisposed towards speed in the absence of striking 
counter-indications.  And published benchmarks pander to this predisposition.
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Innocence
What else  (besides a yen for  Decimal )  does marketing-motivated mathematics 
deduce from the mass market’s innocence concerning floating-point arithmetic?

•  Must Overdesign

•  Must Majorize Past Practice

•  Must Support Modern Rules of Thumb  (Four are listed in an  Appendix.)

Our vehicles,  roads,  appliances,  …  are all overdesigned a little to protect us 
from occasional inadvertence,  our own and others’.  If not for the sake of high 
professional standards,  then for self-defence against software from the  Internet  
that we use unwittingly we have to overdesign floating-point arithmetic,  in both 
hardware and compilers,  to diminish the incidence of avoidable malfunctions 
due to numerically inexpert but otherwise correct and clever programming.

Numerically expert software packages like  LAPACK  are so precious and costly 
to build that we dare not invalidate them by disabling some necessary hard-won 
arithmetic capability or property just because somebody thinks it not worth the 
bother.  Newly marketed capabilities must  majorize (match or surpass)  the old.
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Case study:  1970s  Kernighan-Ritchie  C  vs.  1980s  ANSI C  &  Java

Suppose  v, w, x, y  are four  4-byte  floats  and  Z  an  8-byte  double  
related by the assignment

“ Z = v*w + y*z ”.
What value does  Z  actually receive?   It depends upon the dialect of  C  thus:

1980s ANSI C  and  Java:
float   p = v*w  rounded to  4-byte  float;
float   q = y*z  rounded to  4-byte  float;
double  Z = p + q  rounded to   8-byte double.

Rounding  p  and  q  to  float  seems in accord with an old rule of thumb that 
said the accuracy of an arithmetic operation need not much exceed the precision 
of its operands;  and the precision of  Z  seems to exceed its accuracy.  However,  
that old rule of thumb,  inherited from the slide-rule era,  was never quite right.

1970s  K–R C :
double  P = v*w  exactly;
double  Q = y*z  exactly;
double  Z = P + Q  rounded to   8-byte double.

It seems like overkill to compute  Z  so accurately considering how much less 
precise the data  v, w, x, y  are,  but actually this is almost always the better way.
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Example:   Given the equations  pT·x = π  and  bT·x = ß  of two planes that
intersect in a line  £ ,  the point  z  in  £  nearest a given point  y  turns out to be
     z =  y + v×( p·(ß–bT·y) – b·(π–pT·y) )/||v||2  =  ( v·vT·y + v×(p·ß–b·π) )/||v||2 

wherein   v = p×b  (a cross-product in  3-space)  and  ||v||2  = vT·v .

Try this data:  pT = [ 38006,  23489,  14517 ] ,   π = 8972 ,
 bT = [ 23489,  14517,  8972 ] ,   ß = 5545 ,   and
 yT = [ 1,  –1,  1 ] , … all stored exactly as  floats .

This data defines  £  as the intersection of two nearly parallel planes,  so tiny changes in data can alter  
£  and  z  drastically.  More troublesome numerically are the many correlated appearances of the data  
p  and  b  in the formulas for  z ;  though mathematically crucial,  these correlations can be ruined by 
roundoff.  (We could compute  z  in a way harmed less by roundoff but not a simple rational formula.)

Evaluating both formulas above for  z  naively in  float  arithmetic yields  
z1

T = [ 1,  1,  –1 ]    and    z2
T = [ 1,  1,  –1.5 ] ;   but both points lie farther from

both planes than about  0.65 .  End-figure “errors” in data can’t account for that.
  This naive arithmetic produces geometrically impossible results. 

The correct point   zT = [ 1/3,  2/3,  –4/3 ]   is computed correctly rounded when 
all intermediate results  ( subexpressions and local variables )  are evaluated in  
double  before  z  is rounded back to  float .  This illustrates how …

Old  Kernighan-Ritchie  C  works better than  ANSI C  or  Java !
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Old  Kernighan-Ritchie  C  works better than  ANSI C  or  Java !

Old  K-R C  works more nearly the way experienced practitioners worked before 
the  1960s  when compilers,  supplanting assembly-language,  had to fit into tiny  
(by today’s standards)  memories and deliver executable code in one quick pass 
through a batch-oriented system.  Experienced practitioners tolerated these crude 
compilers because we had nothing better,  not because their arithmetic semantics 
conformed to widely taught rules of thumb we knew to be not quite right.  In fact,  
we took perverse pride in how we got around perverse compilers and hardware.

Now  C99  has appeared and offers implementors the opportunity to provide 
applications programmers the choice of floating-point semantics closer to their 
needs and better tuned to the capabilities of the most widely available hardware.

Almost all floating-point hardware nowadays conforms to  IEEE Standard 754  
for Binary Floating-Point Arithmetic.  (There is also an underexploited  IEEE 
Standard 854  for  Decimal,  but it will be mentioned no further here.)  IEEE 754  
was  NOT  designed exclusively for numerical experts  (nor exclusively for my 
students)  but was the result of a careful mathematical analysis of the needs of a 
mass market.  It began in  1976  with  Dr. John F. Palmer,  then at  Intel …
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The Intel 8087 Numeric Coprocessor’s Marketing Vicissitudes

It was a floating-point coprocessor to accompany  Intel’s  8086  and  8088  
processors,  which became ubiquitous later in  IBM PCs.  It was instigated by  
John Palmer,  who foresaw a mass market  (millions)  despite disparagement by 
people who felt there was little demand for it.  He offered to forego his salary if 
they would instead pay him  $1  for every  8087  sold;  they lacked the courage of 
their convictions,  so his project proceeded.  He hired me as a consultant.

John  planned to put a complete floating-point arithmetic facility,  including an 
extensive math. library of binary-decimal conversions and elementary functions 
like  SQRT,  LOG,  COS,  ARCTAN,  …,  all on one chip that a compiler writer 
could use instead of cobbling together his own facility of unpredictable quality.  
John  and I squeezed as much of his plan as we could into  40,000  transistors.
( Simultaneously the same mathematical design went into  Intel’s 432,  but this chip fell by the market’s wayside.)

In  1980  we went to  Microsoft  to solicit language support for the  8087,  for 
which a socket was built into the then imminent  IBM PC.  Bill Gates  attended 
our meeting for a while and then prophesied that almost none of those sockets 
would ever be filled!  He departed,  leaving a dark cloud over the discussions.

Microsoft’s  languages still lack proper support for  Intel’s  floating-point.
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Floating-Point Arithmetic  for a  Mass Market

Intel’s  floating-point,  now in  Pentiums,  AMD clones,  and the new  HP/Intel 
IA-64 Itanium,  comes in three formats,  all conforming to  IEEE 754:

The  Extended  format is intended not for data exchange but to enhance accuracy in  all  
intermediate computations with little loss of speed,  and to widen in response to future 
market demand.  Intel’s,  AMD’s  and  Motorola’s  Extended  formats can fit in a word  10  
bytes wide but avoid alignment delays if stored in  12- or 16-byte  words.  The  IBM S/390 
G5 processor’s  16-byte  Extended  is a quadruple-precision format,  with  113  sig. bits of 
precision,  somewhat faster than some others’ software implementations but still too slow.

( Some others’ hardware,  conforming to  IEEE 754,  lack any  Extended  format;  this is 
adequate for the market formerly served by mainframes and minis that ran floating-point 
software like  LINPACK  written by numerical experts who avoided slow  Extendeds.)

Format’s
Name

Wordsize
in bytes

Sign
bit

Exponent
bits

Leading
sig. bit

Sig. bits of
Precision

Single Precision 4 1 8 Implicit 24

Double Precision 8 1 11 Implicit 53

Double Extended at least 10 1 at least 15 unspecified at least 64
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What Floating-Point was Best for a Mass Market?

It was  Apple’s  Standard Apple Numeric Environment  (SANE)  implemented as 
early as  1983  on  Apple III  and then on  680x0-based  Macintoshes.  Besides 
supporting all three  IEEE 754  floating-point formats and its directed roundings 
and exception-handling  (Invalid Operation,  Overflow,  Underflow,  Divide-by-
Zero,   Inexact,  and their flags),  SANE  had an extensive library of elementary 
and financial functions,  and decimal-binary conversions.  It included advice for 
compiler writers,  leading to numerically superb compilers for  Pascal,  Fortran  
and  C  provided by other vendors.  When  Motorola’s  68881  floating-point 
coprocessor became available on the  68020-based  Mac II,  SANE  ran fast as 
well as accurately,  and applications programmers became enthusiastic boosters.  
The last machines to support  SANE  fully and well were the  68040-based  Mac 
Quadras  and Performas.  Then marketing madness befell  Apple.

John Sculley  decided to ally  Apple  with  IBM  and adopt the latter’s  RS/6000  
processor into  “Power Macs”.  This  RISC  processor lacks a third  Extended  
format,  so that was the end of  SANE.  It was also almost the end of  Apple,  
though for other reasons besides the abandonment of  SANE.
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Why does a mass market need the  Extended  format?

How can floating-point results be determined to be adequately accurate?

Error analysis can be too time-consuming even if carried out very competently.

Testing has proved too unreliable at revealing unsuspected numerical instability.

Computers have become so cheap that now most computations have little value,  
usually far less than the cost of establishing rigorously their (in)correctness.

Because arithmetic is cheap,  but worthless if too slow,  we have to try to design 
computer hardware and languages to ensure that vast amounts of approximate 
computations performed inexpertly,  but otherwise about as fast as possible,  will 
not misbehave intolerably often.  Higher precision not too slow is the simplest 
single step towards that end.  Extra precision beyond the data’s has to run fast 
enough most the time to be used for all anonymous variables  (subexpressions 
and literal constants)  by default,  and for almost all declared local variables.

The foregoing inference arises out of subtle mathematical analyses.  …
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How do Errors get Amplified?  By Singularities Near the Data. …
First let  ƒ(x)  be a function of a (possibly vector) argument  x ;  varying  x  a little  by  ∆x  alters  ƒ(x)  
by  ƒ(x+∆x) – ƒ(x) ≈ ƒ'(x)·∆x  roughly,  where  ƒ'(x)  is the first derivative  (or  Jacobian  array of first 
partial derivatives)  of  ƒ .  A little variation  ∆x  turns into a big alteration  ƒ'(x)·∆x  only if  ||ƒ'(x)||  is 
huge,  which can happen only if  x  is near a singularity where  ||ƒ'(x)||  becomes infinite.  In the space 
of all arguments  x  the locus of points where  ||ƒ'(x)|| = ∞  is some kind of (hyper)surface  (or curve or 
manifold or variety)  that we shall call  “Pejorative”.  If big,  ||ƒ'(x)||  is typically roughly proportional 
to some negative integer power of the distance from  x  to the nearest pejorative surface;  usually

||ƒ'(x)|| = O( 1/(distance from  x  to the nearest pejorative surface) ) .

Next let  F(x; y)  denote an idealized program intended to compute  ƒ(x) ;  here  y  stands for all the 
rounding errors in intermediate local variables and subexpressions subject to roundoff without which  
y = 0 .  For example,  if  ƒ(x) := ((3·x–2)·x–1)/(x–1)  for  x ≠ 1 ,  but  ƒ(1) := 4 ,  then

F(x; y) = ((3·x+y1 – 2 + y2)·x+y3 – 1 + y4)/(x–1+y5) + y6  for  x ≠ 1 .
In general  F(x; 0) = ƒ(x)  and,  if  y  is tiny enough,  F(x; y) – ƒ(x) ≈ H(x)·y  where  H  is an array of 
first partial derivatives of  F(x; y)  with repect to  y  evaluated at  y = 0 .  If  ||H(x)||  is huge then,  as 
before,  it is roughly proportional to a negative integer power of the distance from  x  to the nearest 
pejorative surface associated with  F ,  not with  ƒ .  In fact,  F  may have some pejorative surfaces that  
ƒ  lacks,  in which case we call them  “Undeserved”  or  “Disliked”  pejorative surfaces because the 
program  F  misbehaves there though the desired function  ƒ  does not.  In the example above,  F  
introduces an undeserved pejorative point  x = 1  because  ƒ(x) = 3·x + 1  is well-behaved there;  this 
artificial program  F  computes  ƒ  in a numerically unstable way that dislikes data  x  too near  1 .

In short,  intolerable losses of accuracy occur only at data  x  too near a pejorative surface,  which may 
be undeserved if the program’s algorithm is a numerically unstable way to compute the desired result.
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All Accuracy is Lost  if  Data  lie on a  “Pejorative” Surface

Accuracy is Adequate at Data Far Enough from Pejorative Surfaces
e.g.:

Numerically Unstable Algorithms introduce additional  Undeserved Pejorative Surfaces
often so  “narrow”  that they can be almost impossible to find by uninformed testing.

Data Points Computed Result Pejorative Data Threshold Data

Matrices Inverse Singular Matrices Not too ill-conditioned
Matrices Eigensystem Degenerate Eigensystems Not too near degenerate
Polynomials Zeros Repeated Zeros Not too near repeated
4 Vertices Tetrahedron’s Volume Collapsed Tetrahedra Not too near collapse
Diff’l Equ’n Trajectory Boundary-Layer Singularity Not too  “Stiff”

Pejorative Surface

Threshold of
Adequate Accuracy

Data-Points
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Carrying Extra Precision Squeezes Thresholds of Adequate Accuracy
Towards Pejorative Surfaces.

11 Bits of Extra Precision  (beyond the data’s)  for  All  Intermediate Calculations
Diminishes the Incidence of Embarrassment due to Roundoff

by a Factor Typically Smaller than  1/2000 .

A Good Example:   3  dec. digits of extra precision in all  HP  calculators since  
1976  make every keystroke function more reliable,  simpler to implement and 
faster than if no more precision were available to the microprogrammer than is 
provided for all the calculator user’s data and results.  Roy Martin’s  financial 
calculator would have been unfeasible without those three extra internal digits.

Pejorative Surface

Threshold of
Adequate Accuracy

Data-Points
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Testing Software to Detect Unsuspected Numerical Instability Requires Locating 
Data Closer to a Pejorative Surface than the Threshold of Adequate Accuracy.

Whether due to an intrinsically ill-conditioned problem or to the choice of an unstable 
algorithm that malfunctions for otherwise innocuous data,  mistreated data nearer a 
pejorative surface than the threshold of adequate accuracy can be ubiquitous and yet so 
sparse as hardly likely to be found by random testing!  A recent instance is the  1994 
Pentium FDIV bug;  lots of stories about it are on the web,  my web page included.

A Frightening Example:  EDSAC’s  original  arccos
This is the earliest instance I could find of an electronic computer program in 
full service for over a year before users noticed its  “treacherous nature”.

Pejorative Surface

Threshold of
Adequate Accuracy

Data-Points
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EDSAC’s  original  arccos  had errors of the worst kind:
•Too small to be obvious but too big to be tolerable

(half the figures carried could be lost),
•Too rare to be discovered by the customary desultory testing,  but

too nearly certain to afflict unwitting users at least weekly.
From  1949  until  A. van Wijngaarden  exposed its  “treachery”  in  1951,  the program 
computed   B(x) := arccos(x)/π   for users of  EDSAC  at  Cambridge,  England.
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Here is  EDSAC’s  simple program for   B(x) := B ,  somewhat edited:

Set  x1 := x = cos(Bπ) ;    ß0 := 0 ;   B0 := 0 ;   t0 := 1 ; …  Note  –1 ≤ x ≤ 1 .

While  (Bj–1 + tj–1 > Bj–1)   do  (for  j := 1, 2, 3, …  in turn)

    { tj := tj–1/2 ;   … = 1/2j .

µj := SignBit(xj) ;   … = 0  or  1  according as  xj ≥ 0  or not.

ßj := | µj – ßj–1| ;   … = 0  or  1  according as  µj = ßj–1  or not.

Bj := Bj–1 + ßj·tj ;   … = ∑1≤k≤j ßk/2k  < 1,  a binary expansion

xj+1 := 2·xj
2 – 1 } .   … = cos(2j·arccos(x)) = cos(2j·Bπ) .

No subscript  j  appears in the actual program.  The last equation  xj+1 = cos(2j·Bπ)

follows by induction from the identity   cos(2Θ) = 2·cos2(Θ) – 1 .  With each pass 
around the  While-loop,  the program commits at most one rounding error in the last 

statement   “ x := 2·x2 – 1 ”.  Each pass amplifies this error by a factor near  4·x  but its 
contribution in  ß·t  to  B  gets attenuated by a factor  1/2 .  Let’s see how bad it gets.

This program’s  B(x)  was computed in  float arithmetic for all two billion  4-
byte  float  arguments  x  between  –1  and  +1 .  ( EDSAC  ran its program in

fixed-point.)  For each of  2048  batches of nearly  220  consecutive arguments,  
the worst error in  B  was recorded and plotted in the following figure.  …
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Of  24  Sig. Bits Carried,  How Many are Correct in  EDSAC’s  B(x) ?

Accuracy spikes downward wherever  B(x)  comes very near  (but not exactly)  a small 
odd integer multiple of a power of  1/2 .  The smaller that integer,  the wider and deeper 
the spike,  down to half the sig. bits carried.  Such arguments  x  are common in practice.
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How could losing half the bits carried go unnoticed during tests?
The first explanation,  presented in  1951  by  Adrian van Wijngaarden (1953),  included 
an estimate under  1%  for the probability that one random test might expose the loss of 
more than  3  or  4  sig. bits.  M.V. Wilkes (1971)  said testers had laboriously compared  
EDSAC’s  B(x)  with published tables at about  100  more-or-less random arguments  x .
Their probability of finding no bad error exceeded  1/3 .  They were slightly unlucky.

How much worse is error in program  B(x)  than is inherited from its argument  x ?
It has been argued that if  x  is not worth distinguishing from  x + ∆x  then neither is  B(x)  worth 
distinguishing from  B(x+∆x)  nor from a computed value nearly as close to  B(x) .  The argument 

continues (wrongly*) thus:  Since  x  too is a computed value unlikely to be accurate down to its last 
bit,  we must tolerate errors in  B(x)  slightly bigger than variations in  B(x + ∆x)  arising from end-
figure changes  ∆x  in  x .  For instance  B(x)  is nearly  1  when  x  is very nearly  –1 ;  then tiny 
end-figure changes of order  ε  in  x  can alter  B(x)  as much as  √(2ε)/π ,  thus altering almost half 
the sig. bits carried.  Reasoning like this may explain why  Morrison (1956, p. 206)  seems to deem  
the program for  B(x)  about as accurate as the function  B(x)  deserves.  It’s all quite mistaken:

When  x  is near  1/√2 = 0.7071…  and  B(x)  is near  0.25 ,  then tiny changes in  x  induce roughly 
equally tiny changes in  B(x) ,  but  EDSAC’s  program can lose almost half the sig. bits carried.  So 
big a loss must be blamed not upon the function  B(x)  but upon a treacherous program for it that 
dislikes certain innocuous arguments  x  near  0,  ±1/√2 ,  ±√( 1/2 ± 1/√8 ) ,  … .

( * Backward error-analysis does not necessarily excuse errors by explaining them.)
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Annotated Citations concerning  EDSAC’s  arccos:

D.R. Morrison (1956) “A Method for Computing Certain Inverse Functions”  pp. 202-8 of  MTAC (Math. Tables 
and Aids to Computation) vol. X,  corrected in  1957  on  XI’s p. 314.  On  XI’s p. 204  is a short deprecatory  
“Note …”  by  Wilkes  and  Wheeler  who,  however,  seem to have overlooked  Morrison’s  explicit error-bound 
at the top of his  p. 206,  perhaps because he did not apologize for the loss of half the fixed-point bits he carried.

Adrian van Wijngaarden (1953) “Erreurs d’arrondiment dans les calculs systématiques” pp. 285-293 of  XXXVII: 
Les machines à calculer et la penseé humaine,  proceedings of an international conference held in  Paris,  8-13 
Jan. 1951,  organized by the  Centre National de la Recherche Scientifique.  This is among the earliest published 
error-analyses of a computer program,  and one of the first to mention floating-point if only in passing.  At that 
time,  floating-point error-analysis was widely deemed intractable.  Now we know it isn’t;  it’s just tiresome.

Maurice V. Wilkes (1971) “The Changing Computer Scene 1947 - 1957”  pp. 8.1-5  of  MC-25 Informatica 
Symposium,  Mathematical Centre Tract #37,  Mathematisch Centrum Amsterdam.  This symposium celebrated  
A. van Wijngaarden’s  25th  year at the  Math. Centrum.  His contributions to  Algol 68  are still remembered.
...................................................................................................................

How often do proficient practitioners’ tests uncover errors like  B’s  too late or never?  
Hard to say.  Nobody’s been keeping score.  Some error-analysis must figure in competent 
tests of numerical software to obtain an indication of its error and to know how much error 
is tolerable.  If these things are known to the testers for too few data sets,  undeservedly 
pejorative data may easily remain hidden until customers stumble upon them.

No wonder experienced engineers still distrust predictions by numerical simulations not 
corroborated by different numerical methods and by experiments with actual devices.
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“… the wages of sin is death; …” (Romans 6:23)  but payment may be long delayed.

What else should we remember about the foregoing examples?
•  Invisible yet ubiquitous,  roundoff imperils all floating-point computation.  However …

•  The need for a rounding error-analysis can easily go unnoticed or unheeded.

•  Rounding error-analysis is often too subtle or too costly for a programmer to perform.

•  Without error-analysis,  tests cannot reliably expose unsuspected numerical instability.

Therefore,  provided it is not too slow,  carrying extra arithmetic precision beyond the 
data’s offers numerically inexpert programmers the simplest way to dininish the incidence 
of embarrassment due to roundoff.  Designers of hardware and programming languages 
for a mass market can enhance their reliability by making this  “simplest way”  the default.

I am an error-analyst.  I do not condone neglecting error-analysis when I advocate defending against 
that negligence by making fast higher precision the default.  I do not condone reckless driving by 
advocating seat-belts and air-bags,  nor condone loveless  “recreational”  sex by advocating realistic 
sex education and contraceptive advice for teen-agers.  When we neglect precautions against disasters 
ensuing from predictable human folly,  we allow harm to befall innocents too,  maybe ourselves.

Not all designers appreciate the foregoing reasoning.

“No one … ever lost money by underestimating the intelligence of the great masses ….”
H.L. Mencken (1880-1956)  in the  Chicago Tribune.
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A Bad Example  of a Programming Language Ostensibly for a Mass Market
  +––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––+
  |                                            Anne  and  Pete  use the    |
  |                                            same program.               |
  |                                            But they do not use the     |
  |                                            same platform.              |
  | See  Pat.                                  How?  How can this be?      |
  | Pat  wrote one program.                                                |
  | It can run on all platforms.               They have  100% Pure Java.  |
  |                                            It works with the platforms |
  | Pat  used  100% Pure Java (TM)             they have.                  |
  | to write the program.                                                  |
  |                                            Anne  and  Pete  are happy. |
  | Run  program,  run!                        They can work.              |
  |                                            Work,  work,  work!         |
  |                                                                        |
  |                                                                        |
  |                       mul–ti–plat–form lan–guage                       |
  |                         no non  Java (TM)  code                        |
  |                    write once,  run a–ny–where (TM)                    |
  |                                                                        |
  |                             100% Pure JAVA                             |
  |                            Pure and Simple.                            |
  |                                 ...                                    |
  +––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––+

This parody of puffery promoting  100% Pure Java   for everyone everywhere filled page  C6  in 
the  San Franisco Chronicle  Business Section  of  Tues. May 6, 1997.

It was paid for and copyrighted by  Sun Microsystems.
Behind  Sun’s  corporate  facade must have twinkled a wicked sense of humor.



Prof. W. Kahan                                                                                                                                                              August 27, 2000 6:44 pm

MktgMath                                                                                                                                                                                               Page 44

There are three reasons why  Java’s  floating-point is ill suited to a mass market:

•  Java  supports  float  and  double,  but not in the preferable  Kernighan-
Ritchie C  style,  and lacks support for the wider  Extended  floating-point format 
built into the overwhelming majority of desktop machines running  Java.  This 
exacerbates the unreliability of  numerically inexpert programmers’ software.

•  Java  forbids use of the  Directed Roundings  mandated by  IEEE 754  and built 
into practically all hardware upon which  Java  runs.  Thus,  roundoff variation 
techniques that usually locate numerically unstable subprograms are unavailable 
to  Java  programmers and their clients.

•  Java  forbids use of the exception-signaling  Flags  mandated by  IEEE 754  
and built into practically all hardware upon which  Java  runs.  Thus,  floating-
point exceptions can ambush programs unless programmers introduce hordes of 
precautionary tests and branches that inflate a program’s capture cross-section for 
error.  For instance,  try to protect division of complex numbers from underflow 
while guaranteeing that a quotient computable exactly will be computed exactly.

In short,  despite  Java’s  initial claims to conformity with  IEEE 754,  ‘taint so.

( See  “How Java’s  Floating-Point Hurts Everybody Everywhere”  at
http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf )
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Appendix:  How Directed Roundings  May  Help Locate Numerical Instability.
When roundoff is suspected of causing occasionally incorrect results,  Directed Roundings  mandated 
by  IEEE 754  can help locate the offending subprogram by changing roundoff without changing 
disliked data that can be so hard to find.  Investigate first any subprogram whose results change a lot 
when it is rerun under different directed roundings.  Recall for example the nearest point’s formulas   

z =  y + v×( p·(ß–bT·y) – b·(π–pT·y) )/||v||2  =  ( v·vT·y + v×(p·ß–b·π) )/||v||2 ,  wherein   v = p×b   and  

||v||2  = vT·v .  Recall too the evidently disliked  float  data   yT = [ 1,  –1,  1 ]   and

 pT = [ 38006,  23489,  14517 ] ,   π = 8972 ,    bT = [ 23489,  14517,  8972 ] ,   ß = 5545  .
Let us compute  z  in sixteen ways:  two from both formulas,  times two from  float  and  double  
arithmetics,  times four for the rounding modes  “to Nearest”,  “Down”,  “Up”  and  “to Zero”.

Gross disparities with just  float  arithmetic corroborate a diagnosis of instability due to roundoff.

Caution:  Don’t always presume results to be correct just because they stayed almost unaltered as 
rounding modes changed.  For an assessment of risks see  “The Improbability of Probabilistic Error 
Analyses”,  http://www.cs.berkeley.edu/~wkahan/improber.pdf .  Interpreting 
alterations in results caused by perturbations in input data is risky too without an error-analysis.

Arithmetics z1 z2

float Nearest 1.0000000 1.0000000 -1.0000000 1.0000000 1.0000000 -1.5000000

float Down 0.5000000 -0.2000000 0.6000000 -0.0750000 0.5000000 0.2500000

float Up 1.0000000 -1.0000000 0.0 1.0000000 0.5000000 -0.2500000

float Zero 0.3333334 0.1904762 0.2380953 -0.0952381 0.5476190 -0.0476190

double (all) 0.33333333 0.66666666 -1.33333333 0.33333333 0.66666666 -1.33333333
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Appendix:  Over/Underflow Undermines Complex Number Division in  Java.
Given finite complex floating-point numbers  w = u + ıv  and  z = x + ıy ≠ 0,  naive formulas for the
quotient  q := w/z = r + ıs ,  namely   d := |z|2 :=x2 + y2,   r := (x·u + y·v)/d   and   s := (x·v – y·u)/d ,  
can be used safely only if  d ,  (x·u + y·v)  and  (x·v – y·u)  are not spoiled by over/underflow before  
r  and  s  can be computed.  This hazard,  which afflicts half the arithmetic’s exponent range,  would 
be mitigated by the over/underflow and other warning flags mandated by  IEEE 754  if  Java  did not 
deny them to programmers.  Instead,  since the naive formulas can deliver dangerously misleading 
results without warning,  conscientious  Java  programmers must try something else.  What?

Robert Smith’s  algorithm,  devised for this situation,  very nearly averts the hazard by computing …
if  |x| > |y| then { t := y/x ;   p := x + t·y ;   r := (u + t·v)/p ;   s := (v – t·u)/p }

else { t := x/y ;   p := t·x + y ;   r := (t·u + v)/p ;   s := (t·v – u)/p } .
But it runs slower because of a third division;  it still generates spurious over/underflows at extreme 
arguments;  and it spoils users’ test cases when  q  should ideally be real or pure imaginary,  or when
q,  z  and  w = q·z  are all small complex integers,  but the computed  q  isn’t.  Try these examples:

(27 – 21ı)/(9 – 7ı) ,   (3 – 19·ı)/(1 – 3·ı)   and   (31 – 5·ı)/(3 + 5·ı) ,  all in  double.

For  C99,  which does support  IEEE 754’s  flags,  Jim Thomas  and  Fred Tydeman  have coded fast 
and accurate complex division by saving and clearing  the flags,  computing  q  the naive way,  and 
then checking the flags for possibly spurious exceptions.  Only rarely,  just when necessary,  do they 
recompute  q  after applying multiplicative scale factors,  each a power of  2  to avert extra rounding 
errors,  so that no over/underflow occurs unless  q  deserves it.  To achieve a similar result in  Java,  
a programmer has to compute an appropriate scale factor  L  in advance,  set  Z := L·z = L·x – ıL·y ,  

and compute  q := (Z·w)/(Z·z)  with just two real divisions by  Z·z = L·|z|2 .  To determine quickly 
an appropriate  L  (it must be a power of  2 )  is a challenge left to the diligent reader.
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Four  Rules of Thumb  for  Best Use  of  Modern Floating-point Hardware
all condensed to one page,  to be supported by programming languages for a mass market

0. All  Rules of Thumb  but this one are fallible.  Good reasons to break rules arise occasionally.

1. Store large volumes of data and results no more precisely than you need and trust.
Storing superfluous digits wastes memory holding them and time copying them.

2. Evaluate arithmetic expressions and,  excepting too huge arrays,  declare temporary
   (local)  variables  all  with the widest finite precision neither too slow nor too narrow.
    Here  “too narrow”  applies only when a variable in a floating-point expression or assignment is declared more
     precise than the hardware can support at full speed,  and then arithmetic throughout the expression has to be at
     least as precise as that variable even if slowed by the simulation of its wider precision in software.  Then also
     round infinitely precise literal constants and integer-typed variables to this wider precision.  Elsewhere,  all
     expressions containing only  float  variables should be evaluated,  in the style of  Kernighan-Ritchie  C ,  in
     double  or,  better,  long double  if the hardware supports it at full speed.  Of course every explicit cast

and assignment to a narrower precision must round superfluous digits away as the programmer directs.

3. Objects represented by numbers should ideally have a parsimonious representation,
called  “fiducial”  and rounded as rule  1  says,  from which all other representations
and attributes are computed using wider precision as rule  2  says.

     For instance,  a triangle can be represented fiducially by  float  vertices from which edges are computed in
     double,  or by  float  edges from which vertices are computed in  double.  Computing either in  float  

from the other may render them inconsistent if the triangle is too obtuse.  In general,  a satisfactory fiducial
representation can be hard to determine.  Moreover,  an object in motion may require  two  representations,
both a moving  double  and,  obtained from it by a cast  (rounding down),  a  float  fiducial snapshot.
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Conclusion:

Slipshod marketing cannot identify its market well enough to guide technological 
development to a successful product,  nor defend customers against slipshod 
engineering.  To follow through properly,  high-tech marketing departments need

•  continuing close association with technicians developing products,   and
•  occasionally,  access to independent mathematical competency.

These diverse talents must learn how to cooperate if they don’t already know.

( Support graduate students at your local university’s  Mathematics  department! )
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