

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 1 /49

MATHEMATICS WRITTEN IN SAND -

the hp-15C, Intel 8087, etc.

W. Kahan,
University of California @ Berkeley

__

This paper was presented at the Joint Statistical Meeting of the
American Statistical Association with ENAR, WNAR, IMS and SSC
held in Toronto, Canada, August 15-18, 1983. Then the paper
appeared in pp. 12-26 of the 1983 Statistical Computing Section
of the Proceedings of the American Statistical Association. It
had been typeset on an IBM PC and printed on an EPSON FX-80 at
draft speed with an unreadable type-font of the author’s devising,
and then photo-reduced. The paper is reproduced here unaltered
but for type fonts, pagination, and an appended Contents page.
__

ABSTRACT:

 Simplicity is a Virtue; yet we
continue to cram ever more complicated circuits
ever more densely into silicon chips, hoping all
the while that their internal complexity will
promote simplicity of use. This paper exhibits
how well that hope has been fulfilled by several
inexpensive devices widely used nowadays for
numerical computation. One of them is the
Hewlett-Packard hp-15C programmable shirt-
pocket calculator, on which only a few keys need
be pressed to perform tasks like these:

 Real and Complex arithmetic, including the elementary transcendental
 functions and their inverses; Matrix arithmetic including inverse,
 transpose, determinant, residual, norms, prompted input/output and
 complex-real conversion; Solve an equation and evaluate an Integral
 numerically; simple statistics;

Γ

 and combinatorial functions; ...

For instance, a stroke of its [1/X] key inverts
an 8x8 matrix of 10-sig.-dec. numbers in 90 sec.
This calculator costs under $100 by mail-order.

Mathematically dense circuitry is also found in
Intel’s 8087 coprocessor chip, currently priced
below $200, which has for two years augmented
the instruction repertoire of the 8086 and 8088
microcomputer chips to cope with ...

This document was created with FrameMaker 4 0 4

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 2 /49

 Three binary floating-point formats 32, 64 and 80 bits wide; three
 binary integer formats 16, 32 and 64 bits wide; 18-digit BCDecimal
 integers; rational arithmetic, square root, format conversion and
 exception handling all in conformity with p754, the proposed IEEE
 arithmetic standard (see "Computer" Mar. 1, 1981); the kernels of
 transcendental functions exp, log, tan and arctan; and an internal
 stack of eight registers each 80 bits wide.

For instance, the 8087 has been used to invert
a 100x100 matrix of 64-bit floating-point numbers
in 90 sec. Among the machines that can use this
chip are the widely distributed IBM Personal
Computers, each containing a socket already wired
for an 8087. Several other manufacturers now
produce arithmetic engines that, like the 8087,
conform to the proposed IEEE arithmetic standard,
so software that exploits its refined arithmetic
properties should be widespread soon.

As sophisticated mathematical operations come
into use ever more widely, mathematical
proficiency appears to rise; in a sense it
actually declines. Computations formerly
reserved for experts lie now within reach of
whoever might benefit from them regardless of how
little mathematics he understands; and that
little is more likely to have been gleaned from
handbooks for calculators and personal computers
than from professors. This trend is pronounced
among users of financial calculators like the
hp-12C. Such trends ought to affect what and how
we teach, as well as how we use mathematics,
regardless of whether large fast computers,
hitherto dedicated mostly to speed, ever catch
up with some smaller machines’ progress towards
mathematical robustness and convenience.

INTRODUCTION:

 As a schoolboy in Toronto I was
taught to cherish each advance in Science in so
far as it enabled us to know more while obliging
us to memorize less. By that criterion, albeit
oversimplified, the technological advances that
now rain computer hardware and software upon us
do not yet constitute an advance in Science, not
so long as they are accompanied by a hail of
needless inconsistencies and incompatibilities.

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 3 /49

Hardest to explain, in devices presumably
dedicated to numerical computation, are the
arithmetical anomalies that arise from defective
mathematical doctrines rather than from mere
oversights. For instance, the following table
was printed out by VisiCorp’s spread-sheet
program called "VisiCalc 1.10" run on an IBM
Personal Computer :

 A B

≈

 A/3 C = 3*B A - C A/2 - C + A/2
   ~~~~~~~~~~  ~~~~~~~~~~~~~  ~~~~~~~~~~~~~  ~~~~~~~~~  ~~~~~~~~~~~
          100  33.3333333333  99.9999999999  

 

.00000001

 

  .0000000001
         1000   333.33333333   999.99999999  .00000001    .00000001
        10000  3333.33333333  9999.99999999    

 

.000001

 

    .00000001
       100000   33333.333333   99999.999999    .000001      .000001
      1000000  333333.333333  999999.999999      

 

.0001

 

      .000001
     10000000   3333333.3333   9999999.9999      .0001        .0001
    100000000  33333333.3333  99999999.9999        

 

.01

 

        .0001
   1000000000   333333333.33   999999999.99        .01          .01

 

Perhaps roundoff could account plausibly for the
second column’s jaggedness;  but how can errors
in the fourth column be reconciled with correct
values in the fifth?  Imagine explaining them to
a Computer Science class in programming:
 "To calculate  (A - C)  much more accurately,
  evaluate  (A/2 - C + A/2)  instead because ..."
Since a far-fetched explanation is undignified,
one might prefer to believe these anomalies are
inconsequential and need no explanation.  That
belief induced some anonymous programmer to deem
them acceptable as a side-effect of a shortened
and faster program that performs arithmetic for
VisiCalc  in radix  100 instead of 10  and drops
a digit prematurely.  Actually,  the program is
only imperceptibly shorter and faster,  but its
anomalies are manifest and,  as examples below
will show, malignant.  Fortunately, a wide range
of calculators and computers,  especially those
that conform to the  IEEE’s  proposed standards
p754 and p854  for floating-point arithmetic, do
not suffer from paradoxical roundoff like that
displayed above.  Those machines and standards
are part of what this paper is about.



 

Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 4 /49

 

Anomalies generally undermine economical thought,
thereby undermining the integrity of software and
inflating its cost.  The worst anomalies can be
kept out of computers.  When they do intrude they
are not always accidental;  too often they follow
from design decisions induced by misconceptions
widely taught as rules of thumb about what to
neglect in approximate computation.  Refutations
of those misconceptions abound in the literature
[1,2,3,4,5,6]  but cannot help someone who has 
not read them,  who believes every elementary 
subject must be obvious,  and whose mathematical
experience is too narrow to support sound
judgments.  Here is another domain where our
failure to teach mathematics effectively to a
past generation comes home to roost.

I do not allege that mathematical education has
failed entirely.  For most, education succeeds as
soon as they can follow a formula chosen for them
by  Experience  or  Authority.  A few,  captivated 
by the beauty or abstractness of the subject,
espouse mathematics to escape the mundane,  and
then need little help from the likes of me.  But
many who endure two years of  College Mathematics
do so in the hope that it will help them explore
and conquer other domains.   They would crown
Mathematics  "Queen of the Sciences"  more for
her power to illuminate her applications than for
her beauty or abstractness.  Alas,  they lack the
mathematical experience out of which grow first
the abstractions and then the conviction that
these are the source of illumination.  Lacking
too is time we can spend together exploring
examples instead of exchanging mere formalities.

So,  when I try in class to illuminate for them
the power and the beauty of the subject I love,
abstractions that sum up lifetimes of experience
turn to chalk dust faster than my students can
copy,  much less learn.  What will defend them
against me and my kind?



 

Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 5 /49

 

Rather than have to copy the received word,
students are entitled to experiment with
mathematical phenomena,  discover more of them,
and then read how our predecessors discovered
even more.  Students need inexpensive apparatus
analogous to the instruments and glassware in
Physics and Chemistry laboratories,  but designed
to combat the drudgery that inhibits exploration.

This role is the first that I envisaged for the
hp-15C  shirt-pocket calculator when it was being
designed.  Later,  among students who find it
helpful for their Engineering and Science
assignments,  I hoped a few might wonder how it
works and why;  some of these would become
computer scientists and applied mathematicians
all the more comfortable with important ideas and
techniques for having encountered them in their
own calculators.  Those ideas are part of what
this paper is about

This paper does not say just that computers are
smaller, cheaper, faster and more capacious.  It
tells how some machines convey mathematical ideas
to a far wider audience than used to benefit from
them.  What  Archimedes  wrote in sand* could be
read by only a few before it blew away.  Written
on paper, his ideas have been read by myriads and
will be read by myriads more.  When written into
silicon chips,  his ideas and their cousins serve
the needs of hundreds of thousands now,  and soon
millions.
                     (*

 

 Sand is mostly Silicon Dioxide.

 

)

 

WHO’S TO BLAME?

 

  Conventional wisdom says that
in those rare and pathological instances when
computed results are found to be wrong because of
roundoff,  the right results can always be gotten
by recomputation, either carrying more figures in
what is otherwise the same procedure as before,
or via a different and more  "stable"  numerical
algorithm that could be very hard to find.  This
conventional wisdom begs three questions:



 

Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 6 /49

 

   How can anybody tell when and why
        results are wrong?

   Who is responsible for finding and
      correcting wrong results?

   Will carrying more figures  

 

always

 

        attenuate roundoff? ?

 

The same imperatives that move us to share
scientific knowledge force us to share computer
software.  When we share knowledge we share an
understanding that leaves intact each individual’s
responsibility for the consequences of the use of
that knowledge.  But when we share software,
responsibility diffuses;  were you obliged to
understand in detail the program you got from me,
you might as well have written it yourself.  If
you pay me for a program that I let you believe
correct,  but it misleads you into misdirecting a
client,  who should be held responsible?

Imagine a courtroom scene wherein four of us are
embroiled in a lawsuit brought, despite customary
disclaimers, by your client.  The manufacturer of
your computer is the fourth party.

In my defence I prove that,  on all reasonable
computers,  my program copes properly with all
data in a reasonable domain and delivers at least
half as many correct leading significant figures
as the computer carries.  You prove that your
input data is reasonable and the output,  though
wrong,  so plausible that you had no reason to
withhold it from your client,  who would have
been happy with results half as accurate as I
promised.   The computer manufacturer’s testimony
affirms conventional wisdom:  First,  my program
is defective because it uses algorithms generally
regarded as  "Numerically Unstable"  and fails to
take account of the computer’s  

 

special features

 

.
Second,  you are remiss for using hardware and
software less accurate than you should have known
you needed and could have bought.  The judge is
baffled by expert testimony;  whom will he blame?

All the testimony in this scenario could be true.



 

Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 7 /49

 

Lest you think a contradiction must lurk in it
somewhere,  here is an example drawn from [3] and
designed to undermine faith in the foregoing kind
of conventional wisdom:

A program is needed to compute a polynomial  f(x)
of degree 504 defined by composition thus:
  h(y) := ( 1/3  -  y )*( 3  +  3.45*y ) ;

  g(z) := 1 + z + z

 

2

 

 + z

 

3

 

 + ... + z

 

125

 

 + z

 

126

 

 ;

  f(x) := g(h(x

 

2

 

))   for all  |x| < 1/

 

√

 

3 .
The program must run fast, the faster the better.

My program runs fast because it computes

   g(z) := ( 1 - z

 

127

 

 )/( 1 - z )  if  z 

 

≠

 

 1 ,
        :=  127  otherwise.
On machines whose arithmetic is decimal  (or
hexadecimal,  but not binary)  I save space and
time by omitting to test whether  z = 1 ;   since
rounding  1/3  to  0.3333...3333  guarantees that

z := h(y) < 1   for all  y := x

 

2

 

 

 

≥

 

 0 ,  I know

g(z) := ( 1 - z

 

127

 

 )/( 1 - z )  is always safe.

When  z  is very close to  1  my program may look
like just another fast way to calculate not  g(z)
but  

 

Junk

 

  := 

 

Roundoff

 

/

 

Roundoff

 

 .  However,  tests
reveal and proof confirms that my program cannot
lose more than about half the significant figures
carried on any machine whose every rational
arithmetic operation introduces into its last
significant digit delivered no more error than if
the result had been chopped  or correctly rounded
or even rounded up by as much as  0.9  of a unit
in its last digit.  The program works correctly

regardless of whether  z

 

127

 

  is calculated by
repeated squaring thus ...

   z

 

2

 

 := z*z ;  z

 

4

 

 := z

 

2

 

*z

 

2

 

 ;  z

 

8

 

 := z

 

4

 

*z

 

4

 

 ;

   z

 

16

 

 := z

 

8

 

*z8 ;  z32 := z16*z16 ;  z64 := z32*z32 ;

   z127 := z*z2*z4*z8*z16*z32*z64  ;  ... ,

or from the formula  z127 := exp(127*ln(z))  used
by many calculators,  provided  exp  and  ln
suffer no worse error than my program allows for
each rational operation.  Since it does not need
"correctly rounded" arithmetic,  my program runs



Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 8 /49

properly on  IBM  370’s  and early  DEC  PDP-11’s
as well as on machines that round very carefully,
as do  DEC  VAX’s  and recent  H-P  machines and
those that conform to the rigours of the proposed
IEEE  floating-point standards  p754  and  p854.

But my program fails on  CDC  Cybers  and  UNIVAC
1108’s  and  TI calculators,  among others.  Here
is a table reporting results from a sampling of
machines that perform only decimal arithmetic:

    Names of                        Sig. Dec.           Calculated
  Calculators                       carried                f(0)
  ~~~~~~~~~~~~~~                    ~~~~~~~~            ~~~~~~~~~~
 hp-10C,11C,12C,15C,16C,19C,22 \
 27,29C,31E,32E,33E/C,34C > 10 127.00
 37E,38E/C,41C,67,91,92,97 /
 hp-75,85,86,87 12 127.000

 hp-21,25,35,45,55,65 10 127. *
 Commodore SR4148R 12 127. *

 hp-80 Financial 10 13.
 TI Business Analyst, SR-30,40 11 100.
 Commodore SR4190,5190 12 12.
 Commodore SR1400, TI-MBA 12 0/0 Error
 TI SR-52,56,51-II 12-13 128.
 TI SR-50,50A,51,51A,58,58C,59 13 14.
 Monroe 326 13 12.

 VisiCalc 1.10 on the IBM PC 12 114.
 __
 The two entries marked * are the right answers for
 the wrong reasons, not proof of arithmetic quality.

Evidently this computation’s accuracy depends not
just on how many figures are carried but also on
the manner in which figures are discarded. But
the results seem to cry out for a value judgment:
 Faulty Brand X calculators? Or a pathological
 program rigged to cast undeserved aspersions?

I admit that, on all computers, my program is
less accurate and not a lot faster than others
that compute g(z) from expressions like

 (1+z)(1+z2)(1+z4)(1+z8)(1+z16)(1+z32)(1+z64) .

Similar schemes work for gn(z) := (1 - z
n)/(1-z)

when n is an arbitrary integer instead of 127,
though they are not so obvious; one such scheme

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 9 /49

figures in financial calculations in the portable
work-sheet computer "WorkSlate" just introduced
by Convergent Technologies Inc. When n is not
an integer the problem becomes truly interesting;
see [3] and [6]. But the possibility that g(z)
might be computed on all machines by some other
scheme better than my short program, even if no
better scheme were visible yet, inhibits fair-
minded folks from uttering premature condemnation
and distracts them from the important question:
 If a simple program works and is proved
 mathematically always to work well enough
 on all but a few commercially significant
 computers, who should bear the onus of
 adapting it to the aberrant machines?
In the past, the onus has fallen mostly upon the
owners of aberrant machines or upon the creator
of the program, rather than upon the creators of
aberrant arithmetics. The future is unlikely to
be different.

For the present, our best defence against
arithmetic anomalies is some awareness of how
certain computers generate them. The arithmetic
aberration most common among computers, the one
responsible for most of the anomalies exhibited
so far in this paper, arises when a digit is
jettisoned prematurely from the right-hand side
of an internal register during an arithmetic
operation. For example, consider the subtraction
d := 1 - z carried to five significant decimals
with z = 0.99999 but otherwise performed as
four machines do it:

 Styles: correct CDC 7600 TI 59 TI MBA
 ~~~~~~       ~~~~~~~       ~~~~~~~~        ~~~~~~~       ~~~~~~~
 z =          0.99999       0.99999         0.99999       0.99999

 1 =          1.0000        1.0000 00000    1.0000        1.0000

 z → Z =     0.99999       0.9999 90000    0.9999_       1.0000_
 1-Z =        0.00001       0.0000 10000    0.0001_       0.0000_

    →        0.00001       0.0000 _____    0.0001         0
 d =          1.010-5        0               1.010-4        0

 Digits dropped prematurely have been replaced by underscores __ .



Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 10 /49

CRAYs’ and UNIVAC 11XXs’  subtractions resemble
in binary the  TI 59’s  in decimal.  CDC’s  Cyber
205  differs from all the above;  it may allege
z - 1 = 0 ≠ 1 - z .  Although these disparities
seem perverse,  they are no worse than if either
1.00009 - z  or  0.99999 - z   replaced   1 - z .
Combining this insight with the mantra  "Backward
Error-Analysis"  sometimes allays indignation,
but not mine;  for more on that subject see  [6].

Premature abandonment of a digit defiles other
arithmetic operations too.   Multiplication  is
neither commutative nor monotonic on the  TI 59 ;
try   e·π – π·e .   Division on the  TI  Business
Analyst  gets a different quotient for  1/3  than
for  9/27 .   Double precision division in  BASIC
on the  IBM PC  alleges often that   X/1 ≠ X  ,
and   1.000...0000 / 1.000...0001  ≥  1  .

After learning how these things happen,  we can
learn to look out for them and program around
them,  though they impose a deadening burden upon
mathematical thought.  To lift that onus from all
of us,  we must persuade the designers and
builders of computer arithmetics that  ...
 1: aberrant designs can invalidate certain
     familiar calculations performed by most
     other machines without any trouble;
 2: to compensate for aberrant arithmetic,
     software must become more complicated,
     costly and unreliable;  and
 3: their customers are aware of these truths.
     (I am not quite sure about item 3.)

THE AREA OF A TRIANGLE:  Here is a familiar
and straightforward task that blows up when
subtraction is aberrant:   Devise a program to
compute the area  A(x,y,z)  of a triangle given
the lengths  x, y, z  of its sides.  The program
below will perform this calculation almost as
accurately as  floating-point  multiplication,
division  and  square root  are performed by the
computer it runs on only provided the computer’s
subtraction is free from the anomalies mentioned



Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 11 /49

above.  Consequently the program works correctly,
and provably so despite roundoff, on an extremely
wide range of machines:
 APPLE III Pascal but not BASIC;  Burroughs B6500 single precision;
 DG MV8000;  DEC PDP-11 and VAX, and 10 and 20 single precision;
 ELXSI 6400;  H-P 3000, 9000, 9836, 85-87, and all handheld machines
 except the hp-80;  Honeywell 6000;  IBM 370 and imitators, and recent
 IBM PC BASIC and FORTRAN;  INTEL 8087, 86/330, 432;  National 16081;
 recent PR1ME machines;  ZILOG S8000;  ... .

But the program miscalculates the areas of some
needle-shaped triangles on those machines that
discard a digit prematurely during subtraction.
Among those egregious machines are ...
 CDC Cybers and 7600;  Cray I;  early IBM PC BASIC;  early PR1ME in
 double precision;  TI calculators;  UNIVAC  1108 and successors; ... .

Of course,  for each of those machines a method
can be found to compute  A(x,y,z)  as accurately
as you like;  but if the program must use only
the machine’s native floating-point equipment
then nobody knows a fast program that can be
proved to work on  all  machines, egregious or not.

The classical formula due to Heron of Alexandria,
namely   A(x,y,z) = √(s(s-x)(s-y)(s-z))  where
s = (x+y+z)/2 ,  is numerically unstable for
needle-shaped triangles regardless of whether
every arithmetic operation is correctly rounded.
For example,  here is an extreme case worked out
carrying just five significant decimals:
   Given are  x := 100.01 ,  y := 99.995 ,  z := 0.025  .   Then
   s := (x+(y+z))/2 = (200.03)/2 = 100.015   must round to either
   S := 100.01  or  S := 100.02  to five sig. dec.  Substituting  S
   for  s  in Heron’s formula yields either  A = 0  or  A = 1.5813
   respectively,  not the correct   A = 1.000025... .
Evidently Heron’s formula could be a very bad way
to calculate, say, ratios of areas of nearly
congruent needle-shaped triangles.

A good procedure, numerically stable for all but
egregious machines, is the following:

  Sort  x, y, z  so that  x ≥ y ≥ z  ;
  If  z < x-y  then no such triangle exists ;  else
  A := √((x+(y+z))*(z-(x-y))*(z+(x-y))*(x+(y-z)))/4 .
                        ... DON’T REMOVE PARENTHESES! ...

How can so innocuous an algorithm fail on several
egregious machines yet be provably successful on
all the rest?



Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 12 /49

Success depends upon the following easily proved ...

Theorem:  If  p  and  q  are represented exactly
in the same conventional floating-point format,
and if   1/2 ≤ p/q ≤ 2 ,   then   p - q   too is
representable exactly in the same format,  unless
p - q   suffers exponent underflow.

(We shall ignore exponent over/underflow here lest its complications,
which are avoidable,  needlessly distract us from our discussion of
roundoff problems;  besides,   p - q   cannot underflow in arithmetic
conforming to the latest drafts of  IEEE  p754  and  p854 .)

The theorem merely confirms that subtraction is
exact when massive  cancellation occurs.  That is
why each factor inside   √( ... )   is computed
correct to within a unit or two in its last digit
kept,  and  A  is not much worse,  on computers
that subtract the way most people expect them to.
Egregious machines do much worse; they miscompute
some of the differences the theorem says they
could calculate exactly.   Watch what happens
again in arithmetic to just five sig. dec.:

  Styles:      correct       CDC 7600         TI 59         TI MBA
  ~~~~~~       ~~~~~~~       ~~~~~~~~         ~~~~~~        ~~~~~~
 y = 99.995 99.995 99.995 99.995

 x = 100.01 100.01 100.01 100.01

 y → 099.995 099.99 50000 099.99_ 100.00_

 x-y → 000.015 000.01 _____ 000.02_ 000.01_

 z = 0.025 0.025 0.025 0.025

 z-(x-y) → 0.010 0.015 0.005 0.015
 ...

 A → 1.0000 1.1456 0.74997 1.1457

 as if x → 100.01 100.005 100.015 100.005

 Digits dropped prematurely have been replaced by underscores __ .

So, some procedure better than the "good" one
above is needed to calculate reliably ratios of
areas of nearly congruent needle-shaped triangles
on egregious machines. Programmers, powerless to
change these machines and reluctant to write a
different program for each of them, might seek
another "better" algorithm that works on all
egregious machines as well as the rest. No such
algorithm is known. My closest approach to it

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 13 /49

replaces every instance of a subtraction like
p - q by a call to a programmed function
Diff(p,q) designed to compute a satisfactory
difference on all machines whether they jettison
digits prematurely or not. Here is my attempt:

 Real Function Diff(y,x): ... = y-x with adequate accuracy.
 Real values y, x ; real d, e ;
 If |y| < |x| then begin d := -x ; x := -y ; y := d end;
 ... now |y| ≥ |x|
 e := |x| ;
 While signum(x) = signum(y)
 do begin d := 0.53*y ; d := y - d ;
 ... DON’T do d := y - 0.53*y ! ...
 x := x - d ; y := y - d
 until |y| ≤ e endwhile;
 Return Diff := y - x end Diff.

I believe this program works on all computers
built in North America with hardware floating-
point, egregious or not, except the CDC Cybers
203 and 205 and maybe some old WANG machines.
I doubt that it works with every implementation
of floating-point in software. I believe the
multiplication by a magic number near 0.53 is
unavoidable, and so is the necessity for a loop
somewhat like the "While ... do ... until ..."
loop in this program. And when it does work, how
shall we decide which adds and subtracts in
other programs to replace by calls to Diff ? If
a program like Diff is the cure, the disease
must be horrible.

In general, calculations near the singularities
of functions of several variables are tricky at
the best of times, so much so that they are
described in pejorative terms, like degenerate,
ill-conditioned, ill-posed and unstable, that
tend to rub off onto whoever has to cope with
them. My dismay at the way anomalous arithmetic
makes the trickiest calculations trickier, often
trickier than I can handle, is not shared by
people who seem to think that only perverse
calculations can be affected adversely, not the
everyday world of dollars and cents. For their
edification I turn now to dollars and cents.

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 14 /49

FINANCIAL CALCULATORS: Four of these, the
hp-92, -37E, -38C and -12C , are used now by
several hundred thousand people to perform
calculations concerning loans, leases, mortgages,
sinking funds, annuities, amortisation schedules,
depreciation, bonds, notes, net present value and
internal rate of return of investments, and Truth
in Lending regulations, among other things. The
calculators were microcoded principally by Roy
Martin [7], Dr. Dennis Harms [8] and Rich Carone,
with some help from me to overcome mathematical
difficulties. Businessmen are oblivious to these
difficulties; to cope with, say, mortgages they
need understand only the legends on five keys:

[n] the number of periods, typically months.
[i] the periodic interest rate, entered as a percentage.
[PV] the Principal Value of the mortgage at the start.
[PMT] the amount of each of n equal periodic PayMenTs paid at
 the End of each period. ([BEGIN] and [END] are keys too.)
[FV] the Final Value, or "Balloon Payment", remaining to be paid
 at the end of the nth period.

The signs of the cash-flows PV, PMT, FV tell us
their directions, positive for incoming and
negative for outgoing. With this sign convention
in mind, the businessman visualizes the sequence
of cash-flows in a mortgage transaction thus:

 PV PMT PMT PMT ... PMT PMT PMT PMT+FV
 ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑
 --+------+------+------+- ... -+------+------+------+----->
 0 1 2 3 n-3 n-2 n-1 n time

The same picture, but with different signs,
depicts a sinking fund with initial deposit PV ,
n regular payments PMT , and an accumulated
final value FV . The businessman need not know
the equations that both transactions satisfy:

 (1+x)n·PV + gn(1+x)·PMT + FV = 0 where

 gn(z) := (1 - z
n)/(1-z) and x := i/100 .

 (The troublesome function gn(z) , with its removable singularity

 at z = 1 , has appeared earlier in this paper with n = 127 .)

Financial calculators are designed to solve these
equations for any one of the five variables n,
i, PV, PMT, FV given values for the other four.

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 15 /49

At first sight this task seems nontrivial only
when the unknown is i , in which case a
polynomial equation of degree n must be solved;
n can be huge. Actually, the task must pose
some challenge regardless of which variable be
unknown, as the next example will show.

 A Penny for your Thoughts.
A bank retains a legal consultant whose thoughts
are so valuable that she is paid for them at the
rate of a penny per second, day and night. Lest
the sound of pennies dropping distract her, they
they are deposited into her account to accrete
with interest at the rate of 10% per annum
compounded every second. How much will have
accumulated after a year (365 days) ?

Enter data:
 n := 60*60*24*365 = 31,536,000 sec. per year.
 i := 10/n = 0.000 000 317 097 9198 % per sec.
 PV := 0
 PMT := -0.01 = one cent per sec. to the bank.

Pressing [FV] should display one year’s accretion,
but different financial calculators display
different amounts:

 Calculators FV displayed
   ~~~~~~~~~~~                   ~~~~~~~~~~~~
27, 92, 37, 38, 12            $  331,667.0067 
       BA                        293 539.16035 
       MBA                       334 858.18373 
   58, 58C, 59                   331 559.3838549 
                  The small digits are not normally displayed, but are
                  here to indicate how many figures the machines carry.

Why is the best result displayed by the machines
that carry the fewest significant digits (10) in
their data registers?  Observing that erroneous
results have lost more than half the figures
carried,  we should suspect that certain machines
have  subtractions and/or logarithms  rather less
accurate than the programmers of their financial
procedures expected;  and tests confirm our
suspicions.   Besides the anomalous  subtractions
uncovered above,  we find that  ln(0.9999995)  is



Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 16 /49

miscalculated on those machines as  -510-7 ,  not

the correct  -5.00000125125-7 ,  despite that they

carry more than ten sig. dec.  However, the owner
of such a calculator might not be so suspicious
at first;  later he might check the consistency
(but not the accuracy) of a result by treating it
as a datum and back-solving for some other datum.

For instance,  recalculating  i  displays this:

   Calculators             press  [i] and see ...
   ~~~~~~~~~~~             ~~~~~~~~~~~~~~~~~~
 27, 92, 37, 38 0.000 000 317100
 12 0.000 000 31974
 BA catatonia
 MBA 0.000 000 3886
 58, 58C, 59 0.000 000 3154

If their accuracy is not impressive, yet their
speed is worth a thought; while performing fewer
than about a dozen floating-point operations per
second, most of these machines take less than one
or two dozen seconds to solve a polynomial
equation here of degree n = 31,536,000. We
shall return to this thought.

A single somewhat artificial sample is not enough
to demonstrate how much the probability of
computational failure is inflated by anomalous
arithmetic. But before drawing further samples,
we should digress to reconsider the significance
of "artificial" examples.

Equation-solving is an iterative process akin to
exploration. Regardless of how typical the data
and solution may be, the path followed by the
iteration from first guess to final result may
approach or enter regions that are financially
implausible though mathematically legitimate and
still informative. Therefore, programs that do
not allow an equation to be evaluated accurately
over the widest domain on which it makes sense
mathematically must cramp an equation-solver’s
style, as the next example shows.

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 17 /49

 Yield from a Risky Investment.
For an investment of -PV := $ 35,000,000 now,
investors are promised n := 100 equal monthly
installments of an amount PMT yet to be agreed
upon, but between $ 640,000 and $ 1,000,000 ,

plus a final payment at the 100th month of
FV := $ 100,000,000 . How does the yield i ,
reckoned in % per month, vary with PMT ?

Tabulated in the first column below are selected
values of PMT , with the corresponding yield in
the second column shown as displayed on any of
the hp-92, -37E, -38C or -12C after about a
dozen seconds of calculation. The third column
shows what the TI MBA displayed.

 PMT true i % i on the MBA
     ~~~~~~~~~         ~~~~~~~~~       ~~~~~~~~~~~~~~
    $  640,000         2.314053        2.314053
       650,000         2.335758       -110-97    BLINKING 

       660,000         2.357528        2.357528
       800,000         2.669065        2.669065  after a long time.
     1,000,000         3.135506       -2106.949  BLINKING 

The blinking tiny number is a symptom of roundoff
troubles.  The other anomalies could be caused by
an unfortunate choice of iterative method for the
equation to be solved.

SOLVING EQUATIONS:  The customary iteration
for solving any given equation   f(x) = 0   is

Newton’s iteration:
  xk+1 := xk - f(xk)/f’(xk)  for  k = 0, 1, 2, ...

starting from a suitable first guess  x0 .  If it

converges,  the iteration normally converges
quickly,  ultimately nearly doubling the number
of correct figures with each iteration,  so that
high accuracy does not cost very much.   But the
financial equation above is abnormal because,
though a polynomial equation in  x = i/100 ,  its
degree  n  can be so huge that the graph of the
polynomial is,  for practical purposes,  spiked
and/or stepped rather than smooth.  Consequently,



Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 18 /49

Newton’s iteration converges too slowly if it
converges at all.  At first sight,  the following
lemma makes the situation appear hopeless.

Lemma:  Newton’s Iteration is Ubiquitous:
If  X  is a continuous real function and if the
iteration   xk+1 := X(xk)  converges,  from every

starting point  x0  sufficiently close,  to a

root of the equation   F(x) = 0  ,   then the
iteration must be  Newton’s  iteration applied to
an equation   f(x) = 0   equivalent to   F(x) = 0
in the sense that both have the same root.

The proof,  using  f(x) := exp( ∫ dx/(x-X(x)) ) ,
is easy.  The lemma tells us not to bother trying
iteration to solve an equation unless it can be
transformed into an equivalent one well suited to
solution by Newton’s iteration.  What does  "well
suited"  mean?  One meaning I discovered is this:

Theorem:  If  f(x)  is a difference  f = u - v
between two convex functions,  one monotone
nondecreasing and another monotone nonincreasing
throughout some real interval,  then  Newton’s
iteration  xk+1 := xk - f(xk)/f’(xk)  cannot
dither;  it must either escape from that interval
or converge within it,  no matter where therein
the iteration starts.

This, the most general sufficient condition known
for the convergence of Newton’s iteration applied
to solve a real equation,  was not easy to prove,
but it was worth the effort.  The financial
equation above,  when it has just one financially
meaningful solution  i ,  can always and easily
be transformed into the form
   ... + c–3y

–3 + c–2y
–2 + c–1y

–1 + c0  =  c1y + c2y
2 + c3y

3 + ...

where each  cj  is the magnitude of a cash-flow

and  y  is either  1+x  or  1/(1+x) ,  whichever
ensures that  c0 > 0 .  This form satisfies the

theorem throughout the interval  x > -1 ,
capturing all interest rates  i > -100 % ;  no
others make financial sense.  Now, applied to the
transformed equation,  Newton’s  iteration must
converge from every starting point.  But not very
fast if  n  far exceeds  1000 .



Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 19 /49

To cope with huge  n  on the  hp-92 ,  Roy and I
approximated the  root  x  of the financial
equation  asymptotically  ( as  n → +∞ ),  and
used the leading term as a first guess for the
iteration.  Despite having to recognize several
cases,  the approximation is quick and,  when  n
is large enough that it matters, accurate to over
five sig. dec.  Therefore,  nobody has to wait
more than about a dozen seconds,  long enough for
fewer than 100 multiplications,  after pressing
[i]  on the  hp-92, -37E, -38E or -38C ,  no
matter how big  n  may be.

Dennis and I used related transformations to
solve related equations for  Internal Rates of
Return  on the  hp-38E and C , whose  [IRR]  key
will cope with over  2000  cash-flows.  Later, to
cope with a revised version of the financial
equation above that,  unlike the original,  makes
sense when  n  is not an integer,  Rich and I
used yet another transformation in the  hp-12C ;
we used  ln(y)  instead of  y  as the independent
variable in the equation above with terms  cjy

j ,
and applied  Newton’s iteration to its logarithm.
Although each iteration cost now more time than
before,  the theorem continued to guarantee
convergence which was rapid from every starting
point regardless of  n .  Further details are not
needed to make my point:

  Every day, hundreds of thousands of people
  employ powerful financial calculators that
  are convenient, fast and reliable because
  of Physical, Chemical, and now Mathematical
  technology more intricate than they imagine.

Euphoric at the success of the  hp-38E ,  Dennis
Harms’  manager,  Stan Mintz,  humoured us by
granting permission to devise a calculator with a
[SOLVE]  key,  despite that no marketing survey
had revealed any demand for such a thing,  and
subject to one proviso:  mindful of his struggles
with integrals in college,  he charged us to
devise an  [INTEGRATE]  key too.  Thus was the
hp-34C  born.  Its innovations have been exposed
elsewhere [9,10],  but not the mathematical
insight that made a  [SOLVE]  key seem feasible.



Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 20 /49

Here is the train of thought ...

Suppose we are given an equation   f(x) = 0   to
solve  but not much time to study it.  Suppose we
are willing to try  Newton’s  iteration,  perhaps
because the  Theorem  above is applicable or for
lack of a better idea.  We will have to write a
program to compute  f’(x)  as well as  f(x) ,
unless we choose to approximate the derivative by
a difference quotient.  This choice is tantamount
to approximating a tangent by a  secant,  whence
the iteration formula gets its name,  i.e.

Secant Iteration:
   xk+1 := xk - f(xk)(xk - xk–1)/(f(xk) - f(xk–1)) .

If this iteration converges,  then it is known
to converge usually slightly faster than Newton’s
unless calculating  f(x)  and  f’(x)  together
costs less than about  45 %  more time than
calculating  f(x)  alone.  But will the  secant
iteration converge?  More to the point,  will the
approximation of a tangent by a secant leave
intact whatever reasoning might have motivated
recourse to  Newton’s  iteration?  Almost surely
YES!  More precisely,  I discovered the following

Phenomenon:  Suppose that  Newton’s  iteration
to solve the equation   f(x) = 0   converges from
every starting guess within an interval to a root
therein.   Then,  unless  f(x)  vanishes inside
that interval without reversing sign there,  the
secant iteration must converge to the same root
from every pair of starting guesses in that
interval.

The proof that this must happen is extremely long
and difficult partly because  f(x)/f’(x)  could
oscillate pathologically in the neighbourhood of
a root where both  f(x)  and  f’(x)  vanished
simultaneously.  The phenomenon’s implication is
immediate;  the Secant Iteration provides as firm
a foundation as  Newton’s  for a general-purpose
equation solving program, but with no need for a
derivative.  So we created such a program  [9] ,
and  Tony Ridolfo  microcoded it into the  hp-34C 



Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 21 /49

under the  [SOLVE]  key with no scratch registers
to spare.  Later the same program was copied into
the  hp-15C.  To use it to solve   f(x) = 0 ,
follow these three steps:

- Enter into the calculator under, say, label [A]
  a program that evaluates  f(x)  given any  x .
  (Other labels can be used instead of  [A] .)

- Enter a guess or two at the desired root, the
  closer the better.

- Press  [SOLVE] [A]  and see what happens ...

If  f(x)  changes sign anywhere,  then  [SOLVE]
will surely locate such a place to within a few
units in its tenth sig. dec. whenever ...

--  f(x)  is strictly monotonic,  or
--  f(x)  is convex, or concave,  or
--  |f(x)|  has no nonzero local minimum,  or
--  f(x)  has different signs at two guesses.

If both the last two conditions are violated,
then  [SOLVE]  may display an approximation to
the location of a nonzero local minimum of |f(x)|
and signal that it could not find a change of
sign.  Under no circumstances will  [SOLVE]  run
indefinitely;  it always finds  something,  even
if sometimes the search takes a long time.  Here
is an example:

     BN(x) := signum(x-N)  = +1  if  x > N ,

 =  0  if  x = N ,
 = -1  if  x < N .

                ·-----------------+-----+--
    ------------+-----------------------------> x
    ------------·                 |     |
                N                 x0    x1 

Try, say,  N := 7  and first guesses  x0 := 101

and  x1 := 102.  The program for  B7(x)  is this:

     LBL B  7  -  ENTER  ABS  x≠0?  ÷  RTN
To enter the first guesses and solve   B7(x) = 0

for  x ,  press  101 ENTER 102 SOLVE B   and wait
a minute to see  x = 7.000000000  displayed after
B7(x)  has been sampled  45 times.  ( How does

[SOLVE]  know which way to turn?  See [9].)



Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 22 /49

Changing  N  from  7  to  0  extends the time to
6 min.  after 361 samples.  Yet longer search
times in difficult cases might have been lessened
had a few  more than the five scratch registers
allocated to  [SOLVE]  been available in the  hp-
34C ,  but  [INTEGRATE]  consumed a lion’s share.

THE  [INTEGRATE]  KEY:  Among innumerable
numerical quadrature procedures available in the
literature and in computers,  what distinguishes
this one is its relative ease of use.  Estimating

 I := 

on the  hp-34C  and  hp-15C  entails these steps:

- Enter into the calculator under, say, label [A]
  a program that evaluates  f(x)  given any  x .
  (Other labels can be used instead of  [A] .)

- Set the display to show as many digits of the
  integrand  f  as matter.  (More on this below.)

- Put in the limits of integration thus:
                  y  ENTER  x  .

- Press   [A]  and wait for the results. ...

Foremost in the display,  in the  X-register,
will be the estimate of the desired integral  I ;
behind it,  in the  Y-register,  will be the
uncertainty  ∆I  in  I  inherited from the
tolerance allowed in  f .  More precisely, the

  key estimates not merely    I := 

but actually  I ± ∆I :=   where all

that is asserted about  ∆f  is that  f(t) ± ∆f(t)
agrees with  f(t)  in all digits displayed.

Geometrically, the graph of  f ± ∆f  is a ribbon,
centred along the graph of  f ,  containing all
graphs regarded as practically indistinguishable
from that of  f .  The area under the graph of  f
is  I ,  and is uncertain by  ±∆I  where  2∆I  is
the area of the ribbon.

f t( ) td
y

x

∫

 
y
x∫[ ]

 
y
x∫[ ] f t( ) td

y

x

∫
f t( ) ∆± f t( )( ) td

y

x

∫



Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 23 /49

Here is a familiar example:

      I := Q(x) :=  .

Since the integrand underflows past  10–99  to zero
when  t > 22 ,  replacing the upper limit  ∞  by
22  discards nothing but converts the improper
integral  Q(x) into a proper one that any general
purpose numerical quadrature program can evaluate
easily.  Designate this procedure  "Method A" ;
as we shall see,  it will waste most of its time
sampling the integrand at places where it
contributes negligibly to the integral.  Another
procedure,  designated  "Method B" ,  substitutes

s2 = sin–1(exp(-t2/2))  to transform the improper
integral  Q(x)  into a proper integral:

Q(x) =  

except if  x < 0  calculate   Q(x) = 1 - Q(–x) .
Although the transformed integrand is finite
everywhere,  it does have two weak singularities:

One is at  s = 0  where an attempt to calculate
ln 0  could stop the calculator,  but it won’t;

the    key is designed to avoid drawing

samples of the integrand from the ends of the
range of integration lest singularities that are
otherwise easily integrable derail it there.

The second is a removable  0/0  type singularity

that occurs when  s2 = π/2 .  It looms near when
x  is so tiny,  and the upper limit of integration

so nearly  √(π/2) ,  that  s2  approaches  π/2
near enough for  sin s2  to round to very nearly

1 ;  then both   sin s2 - 1   and   ln sin s2

will be seriously contaminated by rounding error.

Could that error reduce the integrand to useless
Junk := Roundoff/Roundoff ?   Not on the  hp-34C
nor  hp-15C.  The roundoff cancels itself;  treat

sin s2  instead of  s  as the independent variable
to see why.

exp t
2
2⁄–( ) td

x

∞
∫ 2π⁄

s sin s
2

( ) 1+( ) sin s
2

( ) 1–( ) ln sin s
2

( )( )⁄ sd
0

sin
1–
exp x–

2
2⁄( )( )∫ π⁄

 
y
x∫[ ]



Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 24 /49

Therefore,  the integrand will be evaluated 
accurately provided  subtraction  and  logarithm  
are both accurate to full working precision,  as 
they are on these machines but not some others.

The programs for methods  A  and  B  are short
enough to show here:
  LBL A  22  ∫yx 1  π  π  +  LBL 0  √  ÷  x><y   LSTx  ÷  x><y  RTN
    LBL 1  x2  2  CHS  ÷  ex  RTN
  LBL B  RAD  GSB 1  SIN–1  √  0  x><y  ∫yx 2  π  GTO 0
    LBL 2  ENTER  x2  SIN  LN  LSTx  1  –  ÷  LSTx  2  +  x><y  ÷  √  ×  RTN
Before they are run,  the display should be set
to show just as many figures as are wanted.  For
four significant figures, press  [SCI] 3 .  Shown
below for both methods and for a few values of  x
are estimates of the integral  Q(x) ,  and how
often the integrand was sampled to get each,  and
the elapsed time.

       x           Q(x)  by  Method  A          # samples     sec.
    ------           and by  Method  B          # samples     sec.

      10         7.619810-24  ±  1710-28           127         227
    ------       7.619910-24  ±  1810-28             7          27

     1.96        0.024998  ±  0.000006            127         227
    ------       0.024998  ±  0.000006             15          58

       0         0.499999  ±  0.000045             63         116
    ------       0.500003  ±  0.000146             15          58

For higher accuracy, say 7 or 8 sig. dec.,  press
[SCI] 7  before  running the programs;  typical
results for methods  A  and  B  respectively are
   QA(0) = 0.4999999998 ± 0.0000000047  at  255 samples in 444 sec.
   QB(0) = 0.5000000002 ± 0.0000000135  at   63 samples in 216 sec.

This example makes it all seem easy.  Actually,
reliable and rapid numerical integration is still
somewhat a black art,  especially when combined
with devious transformations to tame otherwise
wild or nearly improper integrals.  Frequently
these transformations flirt with singularities.

Some singularities, designed to cancel each other
harmlessly,  will do just that despite roundoff
because the underlying arithmetic and elementary
functions in the  hp-34C  and  hp-15C  have been
implemented so carefully.  Other singularities



Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 25 /49

cannot be removed but can be weakened enough to

be tolerated by the    key’s quadrature

procedure [10] ;  and then even if thousands of
samples of the integrand have to be accumulated
they will be added so accurately,  because the
calculators carry three extra digits for the
purpose,  that roundoff inside the quadrature
procedure will not obscure the desired result.

The user of these machines can remain blissfully
unaware of details that, on some other computers,
could bring grief to a program he thought was
pretty clever.

However,  no integration procedure nor equation
solver based exclusively upon a sampling strategy
can be foolproof.  To understand why,  consider a
procedure that purports to accomplish one of the
following tasks for an arbitrary function  f
given only a program that calculates  f(x)  for
any given argument  x  in some specified range:
--  Evaluate   ∫ f(t) dt   over the given range.
--  Minimize  f(x)  over the given range.
--  Find out whether and where  f(x) = 0 .

We shall test this procedure first upon a program
that returns always  f(x) := 1  but also prints
out a record of its argument  x .  Then for some
finite  N  we shall know that the procedure drew
samples  f(x1), f(x2), f(x3) ..., f(xN–1), f(xN)

while attempting to accomplish the assigned task.
Next let us test the procedure upon a second
program that returns

  f(x) := 1 - (c(x-x1)(x-x2)(x-x3)(...)(x-xN–1)(x-xN))
2 ,

where  c  is chosen so big that  f  reverses sign
more than twice.   Since both functions  f(x) 
return exactly the same value  1  for  every
sample drawn,  the procedure must deliver the
same result for both functions;  but no such
result can be correct for both.

Therefore the    key must be as fallible as

all other sampling procedures.  Spikes or jumps
or violent oscillations can precipitate failure.

 
y
x∫[ ]

 
y
x∫[ ]



Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 26 /49

For example, attempts to evaluate numerically

      =  -134.26994...

too often deliver instead a very wrong estimate
like  +0.1359 .  That is the area under the graph
of the integrand between  t = 1  and  t = 0.6 ,
an area shaped like a triangular sail.  The graph
practically coincides with the  t-axis  between
t = 0.6  and  t = 0.016 .  Between  t = 0.016
and  t = 0.01  the graph is a sharp spike rising
from  -1,075,246.9  at  t = 0.01  up to  -1.571
at  t = 0.012 ,  up to  -0.0106  at  t = 0.013 ,
and nearly zero thereafter.  Therefore, most of

the integral lies in a narrow spike only  1/500th 
the width of the range of integration.  Sampling
is most unlikely to reveal that spike unless the
samples are very numerous,  as is the case only
when high accuracy is desired.  Evaluating the
integral in the obvious way with  3 sig. dec.
displayed  ([SCI] 2)  on the  hp-34C  yields the
expected misleading result  +0.1357 ± 0.0003
after  31  samples.  With  4 sig. dec. displayed
([SCI] 3)  the result is  -134.26994 ± 0.02
after  2047 samples,  correct but costly.  A more
economical way to evaluate this integral is as a

sum    =  +  ;  each term can be

evaluated separately and added later to yield
-134.270 ± 0.022  after  126  samples all told
at  [SCI] 3 .  Neither this partitioning of the
integral nor its necessity would be obvious to
someone who did not know what to look for;  the

  key could mislead an uneducated user badly.

THE CALCULATOR OWNER’S HANDBOOK:  A computer
is deemed  Reliable  when its  users  are never
surprised by something its  designers  must later
apologize for.  How can designers and users who
never meet learn what to expect from each other?
Through  education.  That is the key to reliable
computation.  Exhorting manufacturers to build
reliable equipment is mere  counsel of perfection
unless they can learn how to design it at a

t 0.05–( ) t18exp 1 t⁄( ) td
0.01

1

∫

 
0.01
1∫  

0.01
0.013∫  

0.013
1∫

 
y
x∫[ ]



Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 27 /49

tolerable cost.  And then,  as refined equipment
free from avoidable anomalies becomes available,
users  must be taught what to expect and how to
exploit it.  Obviously,  expectations will be
influenced,  if not taught,  by the  Owner’s
Handbook  and whatever other documents the
manufacturer supplies to inform and indoctrinate
the customer.  Communication the other way is
less obvious;  only recently have some
manufacturers come to appreciate how much they
learn from the  Owner’s Handbook  before it is
written,  before the machine is designed.

How should arithmetic be designed?  A simple goal
for most of a calculator’s arithmetic functions
would seem easy to state  [11] :
    Keep the error strictly smaller than one  ulp.
      (An  ulp  is one Unit in the Last Place.)

But this specification accomplishes less than one
might reasonably desire;  for instance it ensures
neither the sign-symmetry of  sin(x) = -sin(–x) 
nor the monotonicity of  √x .  Neither is the goal
easy to achieve;  sometimes it is impractical.
For example,  recent hand-held  Hewlett-Packard
calculators that accept and deliver data to  10
sig. dec.  produce two results,

 72933.5 → 7.9684196661095  and  3
201 → 7.9684196641095 ,

of which at least one (it is the latter) must err
by more than one ulp.  Only near the overflow and
underflow thresholds do the exponential functions
go so far as two ulps wrong;  to keep their error
below one ulp here too would have required that
intermediate calculations be carried to more than
the  13  sig. dec. actually carried in a few
internal registers of these machines.  Would the
cost and speed penalties paid to carry an extra
figure be offset by noticeably enhanced accuracy?

Not likely.  And some offensive inaccuracies
would persist even if twice as many figures were
carried.  Consider   sin(π) = 0 .  This equation
presumes that the  sin(...)  procedure is given
exactly  π = 3.14159 26535 89793 23846 26433... .
But,  instead of  π ,  the  [π]  key delivers
[π] = 3.14159 2654 =  π rounded to 10 sig. dec. ;



Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 28 /49

only after we notice their difference will we
recover from our initial surprise at pressing the
[SIN]  key and seeing  [SIN]([π]) = -4.1010-10
instead of zero.  Our second surprise is finding

error in the  4th  instead of  10th  sig. dec. of
    [SIN]([π]) ≠ sin([π]) = -0.00000 00004 10206 76153 7... .
This gross error is due to the calculator’s use
internally of only  13 sig. dec. of  π .  Larger
radian arguments incur larger errors;
  [SIN]([π] 1014) = +0.79905 50814 ≠ sin([π] 1014) = -0.78387... .
( Angles in Degrees incur no such errors;  for

instance  [TAN](10k ) = -5.671281820  correctly
for  k = 2, 3, 4, 5, ..., 99 .)  The only way to
avoid such errors with large radian angles is to
retain  π  to very high accuracy;  over  120 sig.
dec. would be needed for these calculators.  That
extravagance is feasible and attractive in large
computers with large memories [12] ,  but not in
calculators.  Besides,  because uncertainties so
small as half an ulp in the input arguments swamp
the errors we have been discussing,  these errors
have almost no impact upon the scientific and
engineering calculations for which calculators
were designed.  What little impact might remain
is further attenuated by the preservation,  to
within an ulp or two on these machines regardless
of how big  x  may be,  of identities like
sin(2x) = 2 sin(x) cos(x)  that do not involve  π
explicitly.  Therefore errors caused by not using
exactly  π ,  and the convoluted excuses for
them,  are tolerable;  for more details see [6].

Intolerance would not simplify the situation
much.  Suppose we insisted upon  Perfection  and
found it,-  a machine whose every arithmetic
function rounds correctly to within half an ulp.
(This is feasible for algebraic functions but
impractical for exponential and transcendental
functions.)  Would this  Perfection  preclude
arithmetic surprises?   Regardless of the breadth
of our experience,   NO .   For example,  many an
inexperienced calculator user would continue to

be surprised that  (√x)2 = x  is often spoiled by
roundoff;  on decimal machines violations abound
for  1 < x < 10  and  25 < x < 100  but none lie
in  10 ≤ x ≤ 25 .  On the other hand, experienced



Mathematics Written in Sand                                                                                   Version of  22 Nov. 1983

File MathSand.pdf                                     January 9, 2001 8:40 am                                                Page 29 /49

cynics,  expecting nothing to survive roundoff,
must be surprised to discover,  on binary and
quaternary machines but not on those with larger

radix,  that despite roundoff   √(x2) = |x|  for
all  x  unless  x2  over/underflows.  These
surprises can be confirmed first by experiment,
then by simple proofs.  Recent results of  Harry
Diamond [13]  suggest that surprises like these
must pervade correctly rounded arithmetic.  Yet
something worse lurks there.

Correctly rounded arithmetic conceals anomalies
so rare that no conscientious programmer could
reasonably be expected to discover them.  We do
not expect such a programmer to prove his every
program correct;  doing so might entail a proof
as difficult as that of the Four Colour Theorem
for planar maps.  Alternatively,  the programmer
might be forced to insert defensive code to cope
with eventualities that almost never happen,  if
they can happen at all.  Either way slows down
the programmer;  and defensive programming slows
down the program too.  Besides,  whatever causes
errors in programs also causes errors in proofs.

Therefore every program must be run through tests
upon sample data drawn reasonably densely from
its domain.  But some anomalies are too rare to
be caught by that kind of test.  For instance,
consider a function   f(x) := x - sin(x)  that
figures in problem 2 on p. 12 of  P. Henrici’s

book [14] .   f’(x) = 2 sin2(x/2) ≥ 0 ,  so  f(x) 
must be monotone non-decreasing.  Can the same be
said for  F(x) := x - SIN(x)   where   SIN(x)  is
sin(x)  correctly rounded ?   Yes,  everywhere
except at a scattered handful of exceptions, each
an accident of radix and wordsize.  For instance,
when rounding to  6 sig. dec.  the sole exception
is at  x = 0.100167 ;  to  5 sig. dec.  it is at
x = 0.010000 ;  to  4 sig. dec.,  nowhere:

    x          sin(x)         SIN(x)       F(x)
~~~~~~~~   ~~~~~~~~~~~~~    ~~~~~~~~~   ~~~~~~~~~
0.100167 0.09999958095 0.0999996 0.0001674
0.100168 0.1000005759 0.100001 0.0001670

0.010000 0.009999833334 0.0099998 0.0000002
0.010001 0.01000083328 0.010001 0

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 30 /49

So, uncompromising adherence to the most rigorous
rules for approximate arithmetic will not protect
a computer from unpleasant surprises. Apparently
the approximation of the continuum by a discrete
set must introduce some irreducible quantum of
noise into mathematical thought, as well as into
computed results, and we don’t know how big that
quantum is. If we have to tolerate this unknown
noise, we might as well tolerate a little more.

Tolerance grants the designer of a computer’s
arithmetic not carte blanche for arithmetic
anarchy but rather his mandate:
 Keep both noise and cost tolerably small,
 the smaller the better.
Tolerable to whom? To the customer, to whom the
designer would rather not have to apologize for
unfortunate consequences of a compromise that may
have been unnecessary. Thus do we circle back to
the real world, where Science can tell us how to
do it, or not to try, but not what to do. The
designer of computer arithmetic must be guided in
his choices by something more than mathematics:
 Design arithmetic functions in such a
 way that almost no user need know more
 about them than the designer is proud
 to explain in the Owner’s Handbook.
If the handbook says nothing much about the
accuracy of the functions, then they had better
be so accurate that nothing much need be said.

Such is the case for all financial functions and
all elementary real functions of one or two real
arguments on recent Hewlett-Packard hand-held
calculators. Rational operations (+, –, ×, ÷)
and √x are correctly rounded to within half an
ulp; the logarithms and inverse trigonometric
and inverse hyperbolic functions are almost as
good. No errors worse than the subtle ones shown
above afflict trigonometric functions of radians,
and exponential, hyperbolic and gamma functions.
(The [x!] key delivers x! = Γ(x+1) for non-
integers on the hp-34C and hp-15C .) So little
worse than best possible are these errors that no
mention of them appears in the Owner’s Handbook,
though an auxiliary handbook describes them fully

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 31 /49

in a chapter [6] destined to be forgotten as soon
as it is read. On the other hand the [∑+] key,
used to calculate standard deviations and perform
linear regression upon pairs (xj, yj) , uses

algorithms chosen more for compatibility with
past practice and for speed than for numerical
infallibility, and gives unreliable results when
all the data xj agree in their first several

sig. dec. The Owner’s Handbooks supply a simple
and efficient remedy; temporarily omit redundant
leading digits. In other words, when all data
are very close to their mean, subtract an
approximate mean from them before entering them.

So far, the Owner’s Handbook has been depicted
as more a contractual than tutorial document. It
tells the customer what he has bought, offering
advice only when it is brief and necessary to
avoid misunderstanding. The manufacturer of the
computer is not obliged to teach the customer how
to compute. That policy seemed sound until it

collided with the hp-34C whose powerful

and [SOLVE] keys invite abuse. Where would the
customer learn how to use those keys reliably?
Not from standard texts on Numerical Analysis ;
they tend to drown the reader in formulas none of
which match the calculator’s algorithms. Hardly
any text explains how to recognize wild integrals
and tame them, or what to do when an equation-
solving iteration finds no root. Whether these
be rare pathologies or not, they must happen
daily to at least several among the hundreds of
thousands of users of the calculator. Where
would blame for these pathologies come to rest?

Robert Barkan and Hank Schroeder wrote most of
the Owner’s Handbook for the hp-34C . They
were not confident that they could reverse a long
standing policy against tutorial matter in the
handbook when they decided to include two extra
chapters, one on integration and one on equation
solving. Each chapter discusses its subject’s
pathologies with examples worked out on the
calculator, but the discussion is otherwise
independent of the calculator’s particulars;

y
x∫[]

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 32 /49

these chapters, like the subsequent articles [9]
and [10], might well have been written for a text
on numerical methods. The chapters constitute
part of an appendix at the end of the handbook so
that nobody will think he has to read them before
using the calculator. Indications are that

everyone who uses the and [SOLVE] keys

has read those chapters and appreciates them.

Something else was needed for the hp-15C . The
user of this slim (128mm. x 80mm. x 15mm.)
shirt-pocket calculator can, in a single key-
stroke, attempt to invert a singular matrix, or
evaluate a complex analytic function at a slit-
discontinuity in its domain. Tutorial chapters
for this machine could amount to a text covering
two years of college mathematics for engineers,
leaving out only vector calculus (divs, grads and
curls). Our inclination to embed such a text in
the Owner’s Handbook was deflected by a prudent
marketing specialist who explained to us ...
 "The Intimidation Factor:
 A potential customer, wishing to purchase an
 advanced scientific shirt-pocket calculator,
 peeks into the box and sees nestled there a
 slim calculator beside a very thick book. ..."
Instead we put tutorial matter into a second book
[15] that a calculator owner could buy later.

COMPLEX NUMBERS AND MATRICES: The hp-15C
is distinguished from all previous calculators by
its treatment of complex numbers and matrices as
arithmetic objects in their own right [16] rather
than as mere aggregates of numbers. The rational
operation keys [+], [-], [×], [÷] and [1/x] act
upon complex numbers or upon matrix operands just
as they act upon real numbers; other keys like

[√x], [yx], [SIN], [COSH–1], etc. calculate their
analytic functions of complex as well as real
numbers. The [ABS] key delivers |x| for real
or complex x ; other key strokes deliver the
determinant and various norms of a matrix. Of
course, earlier calculators and computers can be

y
x∫[]

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 33 /49

programmed to perform similar operations, albeit
not so easily nor so accurately. The hp-15C
takes the tedium out of these operations; in a
small package it offers some of Fortran’s
convenient handling of complex arithmetic, some
of APL’s convenient handling of array arithmetic.
Teachers see more than mere convenience there;
students using the hp-15C can experiment with
powerful abstractions and learn their value
before having to learn how to implement them.

To illustrate the value of convenient complex
arithmetic, let us apply it to three problems in
Mathematical Physics, all sharing the following
figure in the (x,y) plane:

Problem 1. The figure shows the cross section of
a large metal slab whose thickness doubles just
as a straight line is crossed. The slab’s flat
upper surface is kept at a constant temperature
U = π . The lower surface, with the step, is
kept at a constant temperature U = 0 . How does
the temperature U(x,y) vary inside the slab?

Problem 2. Material of uniform resistivity and
thickness is laid down in a very long strip whose
width doubles at the step shown in the figure.
An electric current passes through the strip;
how must the voltage V(x,y) vary in the strip?

Problem 3. The figure looks down upon a long
channel of constant depth whose width doubles at
the step. Water flows slowly along the channel.
Floating in the water is a tiny cork chip; what
path must it follow? The path, a "stream line",
is a level curve of a "stream function" U(x,y).

U(x,y) and V(x,y) both satisfy the same partial
differential equation, Laplace’s equation

 ∂2U/∂x2 + ∂2U/∂y2 = 0 = ∂2V/∂x2 + ∂2V/∂y2 ,
but with different boundary conditions. U takes
boundary values shown in the figure. The normal
derivative of V vanishes upon the boundaries
shown in the figure, and V/x tends to a limit
as x → +∞ and to twice that limit as x → –∞ .

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 34 /49

y

 ↑

y
=
2

-
-
-
-
-

U
=π

-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-

U
=π

-
-
-
-
-
-
-
-

:

:

y
=
1

-
-
-
-
-

U
=
0

-
-
-
-
-
-
-
-
-
+

:

|

:

y
=
0

-

-

-

+
-
-
-
-
-
-
-
-
-

U
=
0

-
-
-
-
-
-
-
-
-
-
>

x

!

x
=
0

A

S
l
a
b
,

a

S
t
r
i
p
,

a

C
h
a
n
n
e
l
.

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

T
a
b
l
e

1
:

P
o
i
n
t
s

(
x
,
y
)

o
n

t
h
e

S
t
r
e
a
m

L
i
n
e

U

=

0
.
0
1

.

U
:

0
.
0
1

0
.
0
1

0
.
0
1

0
.
0
1

0
.
0
1

0
.
0
1

0
.
0
1

0
.
0
1

0
.
0
1

0
.
0
1

0
.
0
1

0
.
0
1

0
.
0
1

0
.
0
1

V
:

-
1
.
6

-
1
.
2

-
0
.
8

-
0
.
4

-
0
.
2

-
0
.
1

0

0
.
1

0
.
2

0
.
4

0
.
8

1
.
2

1
.
4

1
.
6

x
:

-
0
.
3
6
8
0

-
0
.
2
5
4
0

-
0
.
1
4
8
0

-
0
.
0
5
6
6

-
0
.
0
2
0
9

-
0
.
0
0
7
5

0
.
0
0
0
2

0
.
0
0
1
2

0
.
0
0
1
8

0
.
0
0
2
8

0
.
0
0
5
3

0
.
0
1
1
8

0
.
1
3
6
7

0
.
5
2
48

y
:

1
.
0
0
2
9

1
.
0
0
2
8

1
.
0
0
2
5

1
.
0
0
2
0

1
.
0
0
1
5

1
.
0
0
1
1

1
.
0
0
0
2

0
.
9
9
2
1

0
.
9
7
6
9

0
.
9
3
0
7

0
.
7
7
2
4

0
.
4
6
3
6

0
.
0
4
4
8

0
.
0
1
30

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 35 /49

Engineering students are usually taught a finite
difference or finite element method to calcuate
U numerically. A mesh is laid upon the strip to
partition it into many tiny cells. To each cell
corresponds an equation saying that U therein
approximates a weighted average of its values in
neighbouring cells. The solution of this system
of equations approximates U . The usual way to
improve accuracy is to refine the mesh, thereby
increasing the number of equations to be solved.
Because the solution U has a singularity at the
intruding corner (at x=0, y=1) , it will not be
approximated well near there unless the mesh near
there is refined. Therefore, calculating U
this way must be tedious. If Mathematics be the
Art of Calculation without Computation, this is
not Mathematics; it is more like Simulation.

The classical mathematical solution of the three
problems employs complex variables and conformal
transformation: Associate position in the plane
with the complex variable z := x + ıy and let
w(z) := V + ıU be composed from the solutions
U(x,y) and V(x,y) of the three problems. Here

ı2 = -1 . Rather than express w in terms of
z , we shall express z as a function of w ,
as is convenient for plotting level curves along
which either U is constant or V is constant
in the z plane. It turns out that

z = (2 cosh–1((2ew–5)/3) - cosh–1((5-8e–w)/3))/π .

To type this expression onto the page takes about
twice as many keystrokes (72 vs. 38) as to enter
the program that calculates it into the hp-15C :

 LBL C ex ENTER ENTER + 5 - 3 ÷ COSH–1 ENTER +
 5 ENTER 8 R↑ ÷ - 3 ÷ COSH–1 - π ÷ RTN

To plot stream lines, curves along which U is
constant, use the program as follows. Choose a
constant value between 0 and π for U . As V
runs from -8 to +4 , say, so does w := V + ıU
run along a horizontal line segment in the w
plane whose image in the z plane is the desired
stream line. A point z := x + ıy on that curve
is located by pressing keys thus:

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 36 /49

 KEYSTROKES OPERATION PERFORMED DISPLAY

 V [ENTER] U [f] [I] Create w = V + ıU V c

 [f] [C] Calculate z = x + ıy x c

 [f] [(i)] Display imaginary part y c

 (The annunciator "c" indicates when only one part, real
 or imaginary, of a complex value is being displayed.)

For example, Table 1 shows how the stream line
U = 0.01 bends around the intruding corner.
Each point costs about 15 seconds to calculate
and plot on graph paper, so tedium has not been
banished entirely; some time must pass before
inexpensive shirt-pocket calculators will be able
to display a plot of stream lines automatically.
On the other hand, some time must pass before
computers capable of driving graphics screens or
pen-plotters can be expected to possess as full a
set of complex elementary functions as has the
hp-15C . Only recently have such functions begun
to appear in a few APL installations. For over
twenty years, full implementations of Fortran
have included complex arithmetic too, but not all

the elementary functions; for instance, cosh–1
is missing. Therefore, the formula for z above
would have to be transformed by the little-known
substitution

 cosh–1(q) = 2 ln(√((q+1)/2) + √((q–1)/2))
into something expressible in Fortran:

 z = 2 ln(√(ew/3) (√(ew–1)+√(ew–4))2 / (2√(ew–1)+√(ew–4)))/π .

Confirming this transformation requires, besides
tedious algebra, careful analysis to check that
it maps boundary values correctly. Such checking
is nontrivial because familiar formulas valid for
real functions frequently fail for the principal
branches of multi-valued complex analytic
functions [17]. For instance, formulas like
√(x·y) = √x·√y , ln(x·y) = ln(x) + ln(y) and
cosh–1(x) = ln(x + √(x2-1)) , valid when x and
y are real and positive, may fail when x and
y are complex in the left half-plane. Moreover,
rounding errors can ruin formulas that would be
correct otherwise, as happens to the substitution

for cosh–1(q) above when q is near ±1 .

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 37 /49

Formulas robust in the face of roundoff are hard
to find; the following instance is used in the

hp-15C to calculate r + ıs := cosh–1(q) :

 r := sinh–1(Re(√(q+1)·√(q-1))) and
 s := 2 arctan(Im(√(q-1)) / Re(√(q+1))) .

Here the overscore signifies Complex Conjugate.
Fortunately, recondite formulas like these have
been found for all the elementary functions, and
Dr. Joe Tanzini painstakingly microprogrammed
them into the hp-15C .

Do not be misled by the foregoing illustrations
into thinking either that complex variables are
tricky, or that they will ever supplant finite
elements. On the contrary, complex variables are
as easy to use as real when implemented properly.
And they supplement rather than supplant other
numerical procedures. Experience with complex
variables builds experience with conformal
transformations that straighten corners, and with
similar techniques that remove singularities
analytically before they embarrass naive numerical
methods. Helping students and teachers acquire
and promulgate that experience is a part of the
hp-15C’s mission that I hope will soon be picked
up by other computers, with bigger displays,
capable of exhibiting conformal transformations
graphically.

Display limitations appear also to inhibit matrix
arithmetic on a calculator, but appearances are
illusory. People rarely (perhaps too rarely)
pay attention to values generated in intermediate
calculations; and even when a displayed value is
examined it serves at least as often to confirm
that the correct variable has been accessed as to
check whether its value is correct. Evidently a
variable’s name means more than its value. This
observation led me to propose to Dennis Harms and
Rich Carone that a calculator be built to display
Descriptors instead of values for matrices.

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 38 /49

Whereas a calculator’s scalar variables are named
by their addresses, whereby we locate their
values in memory, every matrix variable could be
addressed by its name, each linked to a pointer
to an otherwise anonymous array of values. This
scheme requires dynamic memory management, which
relieves the user of the hp-15C of any need to
know where in memory reside his matrices (or the
auxiliary stack for complex variables, or scratch

space for the [SOLVE] and keys.) The

implementation of dynamic memory management and
matrix input/output for the hp-15C fell to Eric
Evett; Paul McClellan microcoded the matrix
arithmetic operations. Details appear in [15]
and [16], so an example here will suffice to
show how easy they have made matrix computations.

Consider this 4x4 matrix A and its inverse:

 | 6 -1 -3 1 | | -5 -6 23 9 |
 A = | -2 0 1 3 | ; A–1 = | -11 -13 50 20 | .
 | 2 -1 0 1 | | -7 -8 31 12 |
 | -3 2 -1 0 | | -1 -1 5 2 |

These keystrokes enter A into the hp-15C :

 4 ENTER DIM A ... Declare that A is 4x4 .
 USER MATRIX 1 ... Initialize walk through matrix.
 6 STO A 1 CHS STO A 3 CHS STO A 1 STO A
 2 CHS STO A 0 STO A 1 STO A 3 STO A
 2 STO A 1 CHS STO A 0 STO A 1 STO A
 3 CHS STO A 2 STO A 1 CHS STO A 0 STO A

Each time [STO] [A] is pressed during this walk
through the matrix A , "[A i, j]" displays
momentarily to tell the user which element of
which matrix is being altered. At the end of the
walk, after "[A 4, 4]" has been seen, all
elements of A have received their values.

This input takes about 40 sec.

The next few keystrokes compute C := A–1 :
 RESULT C ... Tells hp-15C where to put A–1 .
 RCL MATRIX A ... See [A 4 4] displayed.
 [1/x] ... See [running] for 11 sec.,
 ... then [C 4 4] .

The displayed descriptor tells the user that a
4x4 matrix C resulted from the last operation
and is now ready for the next. To view the 16
elements of C , press [RCL] [C] 16 times.

y
x∫[]

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 39 /49

Each time, "[C i,j]" will display for a
moment, and then the value of Cij , where the

indices i,j advance in lexicographic order from
1,1 to 4,4 . This walk takes about half a
minute, or two minutes if the elements are copied
onto paper, and shows
 | -5.000000049 -6.000000059 23.00000022 9.000000085 |
 C = | -11.00000011 -13.00000013 50.00000048 20.00000019 | .
 | -7.000000067 -8.000000080 31.00000030 12.00000012 |
 | -1.000000011 -1.000000013 5.000000048 2.000000019 |

A system of linear equations Ad = b can be

solved for d = A–1b without calculating A–1 .
Instead, use the [÷] key thus; press
 RESULT D RCL MATRIX B RCL MATRIX A [÷]
to display the descriptor of the solution d
calculated faster and more accurately.

How accurate is C ? Were it not obvious, we
would have to overestimate the loss of accuracy

by computing a condition number ||A–1||·||A|| ; the
norm ||...|| here can be any of three built into
the hp-15C . The biggest-row-sum norm, Matrix
Operation #7, is invoked thus:
 RCL MATRIX C MATRIX 7 ... ||A–1|| ≈ ||C|| = 94.
 RCL MATRIX A MATRIX 7 ... ||A|| = 11.
 [×] ... ||C||·||A|| = 1034.
This indicates that somewhat less than 1034 ulps
was lost to roundoff; the reasoning is explained
in the chapters on matrix operations and errors
in [15]. Also explained there is how to improve
the accuracy of d by Iterative Refinement; the
residual c = b - Ad is calculated in one step
by Matrix Operation #6, and the solution e of
Ae = c added to d . In this process, as in
matrix multiplication and inversion, the hp-15C
fares better than might be expected of a machine
that carries ten sig. dec. For example, let E
be a multiple of the notorious Hilbert matrix;
Eij := 360360/(i+j-1) for 1 ≤ i,j ≤ 8 . The
constant 360360 ensures that every element of
E is an integer, hence exact, and 8x8 is as
large a matrix as fits in the calculator. In

under 90 sec., it gets E–1 correct to roughly
three sig. dec., three more than are expected in

view of ||E–1||·||E|| > 1010 . This extra accuracy
is no accident with ill-conditioned matrices like

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 40 /49

E prone to systematic cancellation, but is due
to extra-precise accumulation of scalar products
to 13 sig. dec. during matrix operations.

The hp-15C does not refuse to invert a singular
matrix A but instead inverts some nearby nearly

indistinguishable A+∆A ; since ||(A+∆A)–1|| must
be huge, bigger than 1/||∆A|| , the nature of A
is revealed. Because of this policy, one of the
solutions d of a consistent system Ad = b
will always be delivered with d not much
bigger than it has to be.

Least squares problems can be solved on the hp-
15C by using the normal equations and simple
programs, or by more robust programs based upon
orthogonal factorization techniques like those in
the book [18] by Lawson and Hanson, especially
on pp. 66, 208-212, and 275. Programs of both
kinds written by Paul McClellan appear in ch. 4
of [15] together with advice on when to use them.
One of them can solve least squares problems with
linear constraints and perform linear regression
upon up to five independent variables with any
arbitrarily large number of observations.

With machines like the hp-15C in their shirt-
pockets, students of engineering, mathematics,
science or statistics can practise what we preach
in the first two years of college, ever more
confident that what we teach will, as it should,
serve them throughout their careers.

THE INTEL i8087 : Dr. John F. Palmer, a
numerical analyst working for Intel in 1976,
discerned the invidious possibility that two
different computer systems inside one small box
bearing the logo "Intel" might be unable to
work upon numerical data in a shared memory for
lack of a common format. He was asked to deal
with this problem, and he asked me to help him
design "the very best arithmetic" that could be
implemented upon all the diverse microprocessors
Intel was planning.

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 41 /49

We chose binary formats with an implicit leading
bit, very like I. Bennet Goldberg’s variation
[19], so the 32-bit Single and 64-bit Double
formats have ranges and precisions usually better
and never much worse than any formats available
elsewhere in comparable wordsizes. An Extended
format as wide as we dared (80 bits) was included
to serve the same support role as the 13-decimal
internal format serves in Hewlett-Packard’s 10-
decimal calculators (their 12-digit calculators
use 15 digits). The tightest possible rounding,
statistically unbiased, was specified for the
arithmetic operations +, -, ×, ÷, √ because we
knew how and why. Finally, we provided ±∞ and
a "Not-a-Number" symbol (NaN) because they are so
valuable to those who have used them on the few
computer architectures that include such things.
They turn computer arithmetic into a system that
is formally closed: every arithmetic operation,
valid or not, now produces a result and also,
whenever the operation is exceptional, a signal.
The signal, called a flag, warns a program when
a subprogram’s result, if not obviously wrong, is
questionable because an unpremeditated arithmetic
exception may have occurred. Therefore, closure
is no mere mathematical frill; now computation
can proceed after an isolated invalid datum or a
mistake, rather than have to hang up and leave,
say, the control surfaces of an aircraft stuck
in an unusual position.

Our design was not so much new as eclectic; we
chose the best that we could make work together
in a system about which no user has to learn more
than will matter to him.

Shortly after the design was announced [20] its
single and double formats (but not its exception
handling) appeared in a floating-point slave-
processor chip, the Intel 8232, second-sourced
as the AMD 9512. Another implementation used up
almost a third of the microcode in the Intel 432
microprocessor. So far, the most ambitious and
most widely known implementation is Intel’s 8087
coprocessor chip [21] that widens the instruction
set of 8086 and 8088 microprocessors to include

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 42 /49

floating point arithmetic. Its features, listed
in this paper’s abstract and explained elsewhere
[22 - 25], deserve only a few comments here.

Like Hewlett-Packard’s elementary transcendental
functions in its recent calculators, Intel’s are
accurate to within an ulp or two, but that ulp

is in the 64th sig. bit, beyond 18 sig. dec.
Both the calculators and the i8087 achieve their
accuracies via digit-by-digit methods [26] that
generate ln(1+x), exp(x)-1, tan(x) and arctan(x)
quickly and correct to 64 sig. bits in the i8087,
13 sig. dec. in h-p calculators. Then simple but
unobvious programs produce the other elementary
functions accurately from those four. Intel’s
programs were written by Steve Baumel with my
help, and appear in the CEL (Common Elementary
function Library) in RMX-86 on the 86/330A.
Their accuracies surpass crafty programs by Cody
and Waite [27] run on less refined arithmetics.

Numerical programs that will run correctly on a
computer after recompilation from some standard
language like Fortran, or after some other almost
mindless translation, are called Importable to
that computer. The i8087 confers importability
upon almost every program that runs upon several
if not all diverse computer arithmetics. Indeed,
experience [28] indicates that Portable programs,
those designed to run universally, can be made
simpler, shorter and faster when adapted to run
on an i8087. For two years the main obstacle to
its use has been a dearth of compilers that would
generate code to exploit it in the many computers
that have one, among them the IBM PC. Except
Intel’s, those early compilers that served the
i8087 hedged against its possible unavailability
by using only whatever subset of its capabilities
could be emulated easily in software. Now that
the chip is abundant such a policy is no longer
economical, and language processors that use the
chip efficiently are or soon will be available
for APL, C, Forth, Fortran and Pascal, and with
several operating systems. I have obtained good
results from Intel’s Fortran running in RMX-86

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 43 /49

on an Intel 86/330A, and from APL*PLUSTM/PC by
STSC Inc. on an IBM PC ; and the latest versions
of Fortran on the IBM PC are getting pretty good.

THE PROPOSED IEEE STANDARD: Mathematical
craftsmanship can be shared as computer software
designed to be used conveniently by people among
whom most will understand its mathematics little
better than most motorists understand their cars’
drive trains. But numerous obstacles impede the
dissemination among computers of programs as easy
to use as are the keys of calculators discussed
above. One of those obstacles is gratuitous:
computer arithmetics are too diverse and, as we
have seen earlier in this paper, occasionally too
capricious to allow programs so delicate as those
in the calculators to be copied mindlessly onto
other machines with no risk of malfunction.

Portable programs demand craftsmanship of another
kind, capable of coping with the vagaries of
computers and compilers without sacrificing too
much accuracy, speed or convenience. Among the
monuments to that craftsmanship are the EISPACK
[29], LINPACK [30] and PORT [31] libraries of
Fortran codes. Some portable libraries are less
satisfactory; the portable elementary functions

coded in C in the UNIXTM system are slow and
inaccurate, and tend to be replaced by programs
(often unnecessarily in assembly language) that
may be worse but ought to be at least as good as
those in the book [27] by Cody and Waite if
chosen properly for the machine. Commercially
distributed libraries like IMSL’s [32, 33] and
NAG’s [34] must forego a measure of portability
to regain reliability and speed; these libraries
are distributed in versions each tuned to the one
computer and compiler on which it will run. They
are not available for computer systems too unlike
others and too little used to repay the cost of
putting together and maintaining another version.

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 44 /49

I would like to believe that these considerations
weighed upon all our minds when, responding to
Dr. Robert G. Stewart’s invitation late in 1977,
we convened to draft a floating-point arithmetic
standard. Intel’s plans to build the i8087 also
influenced us, if only by lending credibility to
the otherwise utopian "KCS proposal" advocated
by myself, Jerome T. Coonen and Prof. Harold S.
Stone, and derived from the Intel design by
refinement and extension [35]. Implementations
[36, 37], analyses [35, 38, 39] and especially
amendments and simplifications by Coonen led in
1980 to the tentative adoption [40] of the KCS
proposal, despite its unusual features, as the
basis of a draft IEEE standard p754. Its most
controversial feature was Gradual Underflow, a
scheme implicit in Goldberg’s variation [19] but
exploited hitherto by almost nobody but me [41].
This scheme enforces a kind of closure property
described precisely by insisting that the Theorem
about p - q , cited above while discussing the
area of triangles, be true without the clause
 " unless p - q suffers exponent underflow. "
Consequently, the calculated value of p - q is
zero just when p = q . More important, gradual
underflow differs from the usual schemes because
it almost never (but, alas, not never) generates
more numerical uncertainty than roundoff does, so
it enhances the provable [38-41] reliability of
many equation-solving codes, among others. But
it costs something to implement, so it remains
controversial even if much ado about very little.

P754, like the i8087, is a closed arithmetic
system that, by default, supplies a result and
raises a flag for every exceptional arithmetic
operation. The default results are these:

 Exception Type Default Result
 Invalid Operation NaN (Not a Number)
 Overflow ±∞ and signal Inexact too

 Divide-by-Zero ±∞ exactly
 Underflow Gradual → subnormal numbers
 Inexact Correctly rounded result

Of course, exceptions are by nature inimical to
any single preselected default result. NaN may

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 45 /49

be the best single response to 0/0 or ∞/∞ or
√(-3); but APL programmers expect 0/0 = 1 ,
and others may prefer to stop on that occasion.
P754 does allow the implementor, at his option,
to provide Traps whereby a user may select such
non-default responses to exceptions as he likes.
Also, NaNs may be used for uninitialized and/or
missing data, and for retrospective diagnostics.
And the implementor is obliged to offer the user
a choice of four rounding algorithms in case the
default is unsatisfactory. A discussion of these
features would burst beyond the space allowed for
this paper, so a few final comments must suffice.

Despite a residuum of controversy and uncertainty
about how higher-level languages will interface
to its unusual features [35, 42-46], p754 has
been adopted by surprisingly many manufacturers,
with complete implementations ranging in speed
from about a thousand floating-point operations
per second in an Apple III [47] to three million
in an ELXSI 6400 [48], with others like Intel,
Hewlett-Packard [49], National Semiconductor,
Motorola and Zilog [42] in between, to mention
only the best known firms. However p754 is not
an official standard; although its final draft
(#10) was finished in Dec. 1982, it has not been
endorsed yet by the IEEE , nor is it available
yet from what must ultimately be its source:

 IEEE, 345 E. 47th St., New York NY 10017.

An earlier draft #8 [40] was no sooner published
for public comment than it was adopted officially
by the International Electrotechnical Commission
in Geneva, but that is an inferior version, much
harder to understand and to implement; don’t use
it. Draft #10 of p754 is available now from
 Richard Karpinski, UCSF U-76,
 San Francisco, Calif. 94143
Available from this same source is draft #1 of a
proposal p854 [50] that generalizes p754 from
binary arithmetic to decimal and allows other
word-sizes than just 32 or 64 bits. Like a much
earlier proposal [51], p854 looks forward to the
day when the numbers humans see will be the
numbers they deserve.

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 46 /49

ACKNOWLEDGMENTS: I am grateful for support
from the U. S. Office of Naval Research (N 00014-
76-C-0013) and from the Dept. of Energy (DE-AMOS-
76SF00034 & DE-AT03-79ER10358) for my work on the
proposed standards. Thanks are due also to a few
Berkeley graduate students and former students:
R. P. Corbett, Dr. J. W. Demmel, Dr. D. Hough,
G. S. Taylor and especially J. T. Coonen.

REFERENCES:

[1] D. B. DeLury "Computation with Approximate Numbers" The
 Mathematics Teacher 51 (1958) pp.521-530.
[2] W. Kahan "A Survey of Error Analysis" in "Info. Processing 71"
 (1972) pp.1214-1239; North-Holland Publ. Co., Amsterdam.
[3] W. Kahan & B. N. Parlett "Can You Count on your Calculator?"
 translated by W. Frangen into "Können Sie sich auf Ihren
 Rechner verlassen?" in "Jahrbuch Überblicke Mathematik 1978"
 ss. 199-216; Bibliographisches Institut AG , Mannheim.
[4] W. Kahan "Interval Options in the Proposed IEEE Floating Point
 Arithmetic Standard" in "Interval Mathematics" ed. by K.
 Nickel (1980) pp.99-128; Academic Press, New York.
[5] W. Kahan "Why do we need a floating-point arithmetic standard?"
 in preparation.
[6] The Appendix "Accuracy of Numerical Calculations", pp.96-211 in
 reference [15] below.
[7] R. E. Martin "Printing Financial Calculator Sets New Standards
 for Accuracy and Capability" Hewlett- Packard Journal 29 #2
 (Oct. 1977) pp.22-28.

[8] D. W. Harms "Improved Algorithms: Making 23 = 8 " in Session
 32 "Advanced Pocket Calculators" of the IEEE ELECTRO 76 in
 Boston, May 11-14 1976 . An extract appears in the Hewlett-
 Packard Journal 28 #3 (Nov.1976) pp.16-17 .
[9] W. Kahan "Personal Calculator Has Key to Solve Any Equation
 f(x) = 0 " Hewlett-Packard J’l 30 #12 (Dec. 1979) pp.20-26.
[10] W. Kahan "Handheld Calculator Evaluates Integrals"
 Hewlett-Packard J’l 31 #8 (Aug. 1981) pp.23-32.
[11] Mary H. Payne "Floating Point Basics and Techniques" in the
 proceedings of the Spring DECUS Symposium held in St. Louis
 May 23-27, 1983.
[12] M. H. Payne and R. N. Hanek "Radian Reduction for Trigonometric
 Functions" SIGNUM Newsletter 16 (Jan.1983) pp. 19-24, and a
 sequel in Newsletter 17 (Apr. 1983) pp.18-19 .
[13] H. G. Diamond "Stability of Rounded Off Inverses Under
 Iteration" Math. of Comp. 32 (1978) pp. 227-32.
[14] P. Henrici "Essentials of Numerical Analysis (with Pocket
 Calculator Demonstrations)", and its "Solutions Manual"
 (1982); Wiley & Sons, New York.
[15] "HP-15C Advanced Functions Handbook" (1982) part # 00015-90011;
 Hewlett-Packard, Corvallis, Oregon.

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 47 /49

[16] E. A. Evett, P. J. McClellan and J. P. Tanzini "Scientific
 Pocket Calculator Extends Range of Built-in Functions"
 Hewlett-Packard Journal 34 #5 (May 1983) pp.25-35.
[17] W. Kahan "Branch Cuts for Complex Elementary Functions" Report
 #PAM-105 (October, 1982) of the Center for Pure & Applied
 Mathematics, Univ. of Calif., Berkeley.
[18] Charles L. Lawson and Richard J. Hanson "Solving Least Squares
 Problems" (1974); Prentice-Hall, Englewood Cliffs, N. J.
[19] I. B. Goldberg "27 Bits are Not Enough for 8-Digit Accuracy"
 Comm. ACM 10 (1967) pp.105-108.
[20] J. Palmer "The Intel Standard for Floating-Point Arithmetic"
 Proc. IEEE COMPSAC 1977 pp.107-112.
[21] R. Navé "A Numeric Data Processor" Proc. IEEE Int’l Solid State
 Circuits Conference 1980 pp.108-109.
[22] "iAPX 86/20, 88/20 Numerics Supplement" in "Intel iAPX 86, 88
 User’s Manual" (1981); Intel, Santa Clara, Calif. 95051.
[23] R. Startz "8087 Applications and Programming for the IBM PC and
 Other PCs" (1983); Rob’t J. Brady Co., Bowie, MD 20715.
[24] J. F. Palmer and S. P. Morse "The 8087 Primer" (1984); Wiley &
 Sons, New York.
[25] Tim Field "The IBM PC and the Intel 8087 Coprocessor" parts 1
 and 2 in BYTE 8 (1983) Aug. pp.331-374 and Sept. pp.331-355.
[26] Part VI "Elementary Functions" of "Computer Arithmetic" ed. by
 E. E. Swartzlander Jr. (1980), v.21 of "Benchmark Papers in
 Elect. Eng. and Comp. Sci."; Academic Press, New York.
[27] W. J. Cody Jr. and W. Waite "Software Manual for the Elementary
 Functions" (1981); Prentice-Hall, Englewood Cliffs, N. J.
[28] Virginia Klema "Statistical Computations with IEEE Floating
 Point Arithmetic" ASA Stat. Comp. Sec. of Proc. 1983 Joint
 Statistical Meetings in Toronto, Canada, Aug. 16, 1983.
[29] B. T. Smith et al. "Matrix Eigensystem Routines - EISPACK Guide"
 2d ed., Lecture Notes in Comp. Sci. vol. 6 (1976), and B. S.
 Garbow et al. "Matrix Eigensystem Routines - EISPACK Guide
 Extension" Lecture Notes ... vol. 51 (1977); Springer-Verlag,
 New York. The programs can be obtained on tape from either
 IMSL (see [32]) or the National Energy Software Center at
 Argonne National Labs., Argonne, Illinois 60439.
[30] J. J. Dongarra et al. "LINPACK Users’ Guide" (1979); Society for
 Industrial and Applied Math., Philadelphia.
[31] Phyllis Fox, ed. "The PORT Mathematical Subroutine Library";
 Computing Information Service, Bell Labs, Murray Hill, N. J.
[32] International Mathematical and Statistical Libraries (IMSL, Inc.)
 Houston, Texas 77036-5085, distributes Fortran libraries for a
 wide range of numerical and statistical computations.
[33] John R. Rice "Numerical Methods, Software and Analysis: IMSLR

 Reference Edition" (1983); McGraw-Hill, New York.
[34] The Numerical Algorithms Group (NAG, Ltd.), Oxford OX26NN,
 England, distributes ALGOL 68 and FORTRAN libraries of
 superb numerical subroutines.
[35] ACM SIGNUM Newsletter Special Issue on the Proposed IEEE Floating
 Point Standard, October 1979.
[36] J. T. Coonen "An Implementation Guide to a Proposed Standard for
 Floating-Point Arithmetic" COMPUTER 13 #1 (Jan. 1980) pp.68-79
 and corrections thereto on p.62 of [40].

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 48 /49

[37] G. S. Taylor "Compatible Hardware for Division and Square Root"
 pp.127-134 of Proc. 5th IEEE Symposium on Computer Arithmetic,
 Ann Arbor, Mich., May 1981. See also pp.190-196.
[38] S. Linnainmaa "Combatting the Effects of Underflow and Overflow
 in Determining Real Roots of Polynomials" ACM SIGNUM Newsletter
 16 #2 (June 1981) pp.11-16.
[39] J. W. Demmel "Effects of Underflow on Solving Linear Systems"
 to appear in SIAM J. Sci. Stat. Comp.
[40] COMPUTER 14 #3 (Mar. 1981) pp.51-86 contain draft 8.0 of the
 proposed IEEE standard p754 for binary floating-point
 arithmetic, plus several articles that discuss it.
[41] W. Kahan "7094-II System Support for Numerical Analysis" SHARE
 Secretarial Distribution SSD-159, Item C4537 (1966).
[42] Session 16, "The New Floating-Point Standard: Implementation and
 Applications" in Proc. Mini/Micro West 1983 Computer
 Conference and Exhibition in San Francisco, Nov. 10, 1983.
[43] R. J. Fateman "High-Level Language Implications of the Proposed
 IEEE Floating-Point Standard" ACM Trans. Progg. Languages. and
 Systems. 4 (1982) pp.239-257.
[44] W. Kahan and J. T. Coonen "The Near Orthogonality of Syntax,
 Semantics, and Diagnostics in Numerical Programming
 Environments" pp.103-113 of "The Relationship between Numerical
 Numerical Computation and Programming Languages" ed. by
 J. K. Reid (1982); North Holland Publ. Co., Amsterdam.
[45] W. Kahan, J. Demmel and J. T. Coonen "Proposed Floating-Point
 Environmental Inquiries in Fortran" IEEE Floating-Point
 Subcommittee Working Document p754/82-2.17 (1982).
[46] R. P. Corbett "Enhanced Arithmetic for Fortran" ACM SIGNUM
 Newsletter 18 #1 (Jan. 1983) pp.24-28.
[47] "Numerics Manual: A Guide to Using the Apple III Pascal SANE and
 ELEMS Units" (1983) item 030-0660-A; Apple, Cupertino, CA 95014
[48] G. S. Taylor "Arithmetic on the ELXSI 6400" pp.110-115 of Proc.
 6th IEEE Symp. on Comp. Arith., Aarhus, Denmark, June 1983.
[49] J. G. Fiasconaro "Instruction Set for a Single-Chip 32-Bit
 Processor" Hewlett-Packard Journal 34 #8 (Aug. 1983) pp.9-10.
[50] W. J. Cody Jr. "A Generalization of the Proposed IEEE Standard
 for Floating-Point Arithmetic" Proc. 15th Symposium on the
 Interface: Comp. Sci. and Statistics, Houston TX, Mar. 17, 1983
[51] F. N. Ris "A Unified Decimal Floating-Point Architecture for the
 Support of High-Level Languages (Extended Abstract)" ACM
 SIGNUM Newsletter 11 #3 (Oct. 1976) pp.18-23.

Mathematics Dept., and
Elect. Eng. & Computer Science Dept.
University of California
Berkeley, California 94720.

Nov. 22, 1983.

Mathematics Written in Sand Version of 22 Nov. 1983

File MathSand.pdf January 9, 2001 8:40 am Page 49 /49

CONTENTS:

Page Subject
 1 ABSTRACT
 2 INTRODUCTION
 3 VisiCalc 1.10 anomaly
 5 WHO’S TO BLAME
 7 Degree 504 polynomial
 9 Perverse subtraction
 10 THE AREA OF A TRIANGLE
 12 Theorem: Exact subtraction
 13 Diff: a cure worse than the disease
 14 FINANCIAL CALCULATORS
 15 A Penny for your Thoughts
 17 Yield from a Risky Investment
 17 SOLVING EQUATIONS
 18 Lemma & Theorem about Newton’s Iteration
 20 Secant Iteration Phenomenon
 21 HP-15C [SOLVE] Key
 22 THE [INTEGRATE] KEY
 23 Example: the Error function
 25 Can’t be foolproof
 26 THE CALCULATOR OWNER’S HANDBOOK
 27 Counsel of too-near perfection
 29 Inescapable anomaly
 30 Tolerable noise
 32 The Intimidation Factor
 32 COMPLEX NUMBERS AND MATRICES
 34 A Slab, a Strip, a Channel; Table 1
 37 Robust formula for arccosh
 38 Matrix examples
 40 THE INTEL i8087
 43 THE PROPOSED IEEE STANDARD
 44 Floating-point exceptions
 46 ACKNOWLEDGMENTS
 46 REFERENCES

