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______________________________       _________________________     _______________
SURNAME IN BLOCK CAPITALS         Given Name(s)                           Student ID No.

Will you take the  Putnam Exam  on  1 Dec. 2007?   YES:[___]    NO:[___]   Don’t know:[___]

Solve as many problems as you can in the allotted time.  A clear and complete solution is worth 
far more than a muddy or incomplete solution,  so you may benefit from rewriting a solution.  No 
computers,  calculators nor communications devices may be used.  Blank paper will be supplied;  
put your name and the problem’s number on every sheet you wish to have graded,  and hand them 
in with this sheet.  This test’s grade will not affect any other grades in this or in any other course.

 

Problem 1:

 

  Mathematics departments at some south-western universities received  Mr. H.N.’s  

mischievous letters asking for the one real solution  x  of the two equations   (1 + x)

 

17

 

/

 

x = 17   and   

(1 + x)

 

18

 

/

 

x = 18 .  Professor  A.S.  at one university sent  Mr. H.N.  the following brief solution:

“  18

 

/

 

17 = 

 

(

 

 (1 + x)

 

18

 

/

 

x 

 

)/(

 

 (1 + x)

 

17

 

/

 

x 

 

)

 

 = 1 + x ,    so   x = 1

 

/

 

17 .”
Is this the only real solutions  x ?   Why?

 

Solution 1:

 

  There are  NO  solutions  x ,  real or complex,  because the two equations given are 
inconsistent.  The  “brief solution”  merely establishes that  IF  x  satisfied both equations it would 
have to be  x = 1

 

/

 

17 .  However this  x  does not satisfy the first of the given equations since  

(1 + 1/17)

 

17

 

/

 

(1/17) = 18

 

17

 

/

 

17

 

16

 

 > 17 ;  neither is the second equation satisfied.  In fact,  the 

second equation has no real solution because  (1 + x)

 

18

 

 > 18x  for all real  x ;  can you see why?  
And the first of the given equations has just one real root  x 

 

≈

 

 –2.2387… ;  can you see why?

 

The constants  “17”  and  “18”  are simpler than in the letters actually mailed out by  Mr. H.N.  And  Professor  A.S.  
teaches at a state college in a state other than ours.  Really!

 

Problem 2:

 

  A large number of spy satellites orbit the  Earth;  their number is a military secret.  
They communicate continuously by microwaves with stations on the  Earth  and with each other 
except when the  Earth’s  bulk interrupts the line-of-sight path microwaves need.  Prove that at all 
times at least two satellites are each in uninterrupted communication with the same number of 
satellites.

 

Solution 2:

 

  Let  N  be the total number of spy satellites in orbit.  Any selected one of them could 
conceivably be in communication with no other,  or one other,  or two others,  or …,  or  N–1  
others.  If every spy satellite were in communication with a different number of others,  one of 
them,  call it  S

 

0

 

 ,  would be in communication with no other;  another,  call it  S

 

1

 

 , would be in 
communication with one other;  another,  call it  S

 

2

 

 ,  would be in communication with two others;  
…,  and the last one,  call it  S

 

N–1

 

 ,  would be in communication with all  N–1  others. But this 
can’t happen because it would put  S

 

N–1

 

  in communication with  S

 

0

 

 ,  which is  

 

incommunicado

 

.  
Therefore at least two satellites must be communicating with the same number of others.
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Problem 3:

 

  Let  G  be a multiplicative  

 

Group

 

  and let  p  be a prime.  Prove that  p  divides the 

number of elements  x  in  G  that satisfy   x

 

p

 

 = 

 

ı

 

   unless that number is infinite or  1 .

 

A  

 

Group

 

  is a set of elements  

 

closed

 

  under a binary operation  (here sharing the syntax of multiplication,  so  

 

ı

 

  is the 
group’s  

 

identity

 

  element)  that is  

 

associative

 

  and  

 

invertible

 

  but not necessarily  

 

commutative

 

.  For example,  the  2-
by-2  matrices  B  with det(B) = 1  form such a  Group.

 

Solution 3:

 

  The last equation has at least one root  x ,  namely  x = 

 

ı

 

 ;  and if it has other roots  x ,  
but only finitely many,  let  g  be one of those.  Then partition all the roots  x  into two subsets:

C :=  { roots  x  that commute with  g ,  satisfying   g·x = x·g } .
B :=  { roots  x  that don’t commute with  g ,  so  g·x 

 

≠

 

 x·g } .
Evidently the function  f(x) := g·x  defines a permutation of the set  C ,  and every one of that 

permutation’s cycles   x 

 

→

 

 g·x 

 

→

 

 g

 

2

 

·x 

 

→

 

 … 

 

→

 

 g

 

p–1

 

·x 

 

→

 

 g

 

p

 

·x = x   has length  p ;  the length 
cannot be smaller because it would have to divide the prime  p .  (Can you see why?)  Therefore  p  

divides the number of roots  x  in  C .  Similarly   h(x) := g·x·g

 

–1

 

   defines a permutation of the set  
B ,  and each of that permutation’s cycles has length  p  too  (can you see why?),  so  p  divides the 
number of roots  x  in  B  too.  Therefore the total number of roots  x ,  if neither infinite nor just  
1 ,  must be a multiple of  p  as claimed.

 

Problem 4:

 

  Column vector  

 

x

 

  is distributed  

 

Randomly

 

 and 

 

Uniformly

 

  over the surface of the 
unit sphere in  N-dimensional  

 

Euclidean

 

  space.  What is the  

 

Expected (Mean) Value

 

  of the 
squared length of  

 

x

 

’s  orthogonal  (

 

⊥

 

)  projection onto a  K-dimensional  plane through  

 

o

 

  at the 
sphere’s center?

 

Solution 4:

 

  The expected value of the projection’s squared length is  K

 

/

 

N .  Here is why:  Choose 
any fixed orthonormal coordinate system for which the selected   K-dimensional  plane consists of 
vectors whose last  K

 

 

 

–

 

 

 

N  components vanish.  The orthogonal projection upon that plane is 
accomplished by setting a vector’s last  K

 

 

 

–

 

 

 

N  components to zeros.  The components  

 

ξ

 

1

 

, 

 

ξ

 

2

 

, …, 

 

ξ

 

N

 

  of  

 

x

 

  in that coordinate system are random variables;  by symmetry,  each has the same 
probability distribution as any other because exchanging coordinates is a  

 

Reflection

 

  of the sphere 
onto itself which,  since the distribution is  

 

Uniform

 

,  leaves it unchanged.  Their squares sum to  1  

since  

 

x

 

  lies on the surface of the unit sphere;  therefore the expected value of each square  

 

ξ

 

j
2

 

  

must be  1/N ,  and the expected value of the sum of any  K  squares must be  K

 

/

 

N .

 

The foregoing solution takes for granted that the expected value of a sum of random variables is the sum of their 
expected values regardless of whether these random variables are  

 

correlated

 

  (not 

 

independent

 

).  See texts on  
Probability and Statistics,  or the text for  Math. 55  (

 

Discrete Mathematics and its Applications

 

, 4th ed. (1999) by K. 
Rosen,  pp. 275-8),  for an easy proof.
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Problem 5:

 

  Here the notation  ƒ

 

n

 

(x)  denotes the  n-fold Iteration  of  ƒ(x) ;  in other words,  

ƒ

 

0

 

(x) := x  and  ƒ

 

n+1

 

(x) := ƒ(ƒ

 

n

 

(x))  for  n = 0, 1, 2, 3, …  in turn.  Suppose that an interval  

 

X

 

  on 
the real axis includes one of its end-points but not the other,  and that  ƒ(x)  maps  

 

X

 

  to itself 

continuously,  and for each  x  in  

 

X

 

  there is a least positive integer  N(x)  such that  ƒ

 

N(x)

 

(x) = x

 

 

 

.  

Why can no function  ƒ  but the identity function  ƒ0  satisfy all these suppositions?

Solution 5:  The only possibility is the identity function  ƒ0(x) = x .  To prove this,  let us first call 

any function  ƒ  that satisfies the problem’s requirements  “Eligible”.  Identity function  ƒ0  is 
obviously  Eligible,  so we must rule out all other candidates  ƒ .  To do so we shall show why any 

other  Eligible  ƒ  must be a continuous decreasing bijection of  X  onto itself satisfying  ƒ2 = ƒ0
 .

Suppose  ƒ  is  Eligible;  then it maps  X  onto itself since  ƒ  takes every value  x  in  X .  To see 

why  ƒ  maps  one-to-one,  suppose  ƒ(x) = ƒ(y) ;  then   x = ƒN(y)·N(x)(x) = ƒN(x)·N(y)(y) = y .  As a 
continuous  bijection,  ƒ  must be monotonic,  either increasing or decreasing.

If  ƒ  is increasing then  ƒ = ƒ0  because otherwise,  were  x < ƒ(x)  at some  x  in  X ,  we could 

infer that  x < ƒ(x) < ƒ2(x) < … < ƒn–1(x) < ƒn(x)  for every integer  n ≥ 0 ,  and  mutatis mutandis  

were  x > ƒ(x) ,  so that  ƒ  could not be  Eligible.  Therefore an  Eligible  increasing  ƒ = ƒ0
 .

Were  ƒ  decreasing then  ƒ2  would be increasing and  Eligible  since  (ƒ2)N(x)(x) = ƒ2N(x)(x) = x ,  

whence would follow that  ƒ2 = ƒ0
 .  This is impossible because a decreasing  Eligible  ƒ  would 

have to swap the end-points of  X ,  which includes only one of them.  

If the problem is modified by including either both or neither end-point of  X  in  X ,  the  Eligible  functions  ƒ  will 
include those many decreasing continuous functions that swap  X’s  endpoints and whose graphs are their own 

reflections in the diagonal line  y = x  because  ƒ2 = ƒ0
 .  The foregoing solution is  Dan Velleman’s  solution on  pp. 

85-6  of the  Amer. Math. Monthly 100 #1 (Jan. 1993)  to a problem posed by  A.B, Boghossian.

Problem 6:  Define a  Plane Parabolic Convex Body  (PPCB)  to be a convex body drawn in the 
plane and bounded only by a parabola from whose every point a ray  (half-line)  extends infinitely 
into the  PPCB’s interior parallel to the parabola’s axis.  No constraint is imposed upon any axis’ 
orientation nor upon the distance from any parabola’s focus to its directrix nor upon the location 
of the focus in the plane.  A  PPCB  includes its boundary parabola.  Explain why no finite number 
of  PPCBs,  some of them overlapping,  can possibly cover all of the plane.

Solution 6:  Finitely many  PPCBs’  parabolas can have only finitely many axes;  choose a line  £  
parallel to none of them.  This  £  intersects every  PPCB  in a finite segment,  a point,  or not at all,  
so the  PPCBs  can cover only a finite number of finite intervals in  £ .  Because the rest of  £  must 
be uncovered,  the plane cannot be covered entirely by  PPCBs.



Math. H90                          Mock Putnam Exam’s Solutions                            Fall 2007

Profs. Vera Serganova & W. Kahan            Version dated October 29, 2007 3:54 pm                             Page 4 of 6

Problem 7:  Can uncountably many non-intersecting copies of the digit  “ 8 ”  with whatever 
orientations  (including  “ 8 ”  and  “ ∞ ”  etc.)  and sizes  (including  “ 8 ”  and  “ 8 ”  and  “ 8 ”  etc.  
but not just a dot  “·”)  you like be packed into the plane?  Justify your answer;  don’t just guess.

Solution 7:  No,  at most countably many non-intersecting copies will pack into the plane;  here is 
why:  Choose two points with rational coordinates,  one strictly inside one loop and another point 
strictly inside the other loop,  of each  “ 8 ”  .  Thus each copied  “ 8 ”  is associated with four 
rational numbers,  and hence with an ordered octuple of  eight integers.  No two  “ 8’s ”  can share 
the same octuple because they cannot intersect.  Thus the set of  “ 8’s ”  is placed in one-to-one 
correspondence with a subset of the set of all ordered octuples of integers.  This set is countable 
since the set of all integers is countable.  Therefore the set of copied  “ 8’s ”  is countable too.

Problem 8:  Which of   ∫0π exp(sin2(x)) dx  and  3π/2  is the bigger,  and why?

Solution 8:   ∫0π exp(sin2(x)) dx ≈ 5.5084…  >  4.7123… ≈ 3π/2 .  Hereunder is a proof that 
establishes the inequality with almost no numerical computation: 

 ∫0π exp(sin2(x)) dx =  ∫0π/2 exp(sin2(x)) dx + ∫π/2
π exp(sin2(x)) dx = 

       =  ∫0π/2 exp(sin2(x)) dx + ∫0π/2  exp(cos2(x)) dx =  

       =  ∫0π/2 exp(sin2(x)) dx + ∫0π/2  exp(1 – sin2(x)) dx =  

       =  √e·( ∫0π/2 (exp(sin2(x) – 1/2) + exp(1/2 – sin2(x))) dx ) =  

       =  2√e·( ∫0π/2 cosh(1/2 – sin2(x)) dx )   

       >  2√e·( ∫0π/2 1 dx )  =  π·e1/2  =  π·( 1 + 1/2 + 1/8 + … )  >  3π/2 .

Here is a much shorter proof sent in by  Prof. Kent Merryfield  of  Cal. State Univ. @ Long Beach:

 ∫0π exp(sin2(x)) dx >  ∫0π (1 + sin2(x)) dx = π + π/2 .

Problem 9:  Let a  TILE  be any rectangle one inch wide of arbitrary length,  not necessarily an 
integral number of inches long.  Suppose a set of  TILEs  of possibly diverse lengths barely cover 
some bigger rectangle  R  without overlapping;  the one-inch sides of the  TILEs  need not all be 
parallel.  Why must at least one side of  R  be some integral number of inches long? 

Solution 9:   To explain this,  position  R  with its bottom along the positive  x-axis  and its left 
side along the positive  y-axis  of a  Cartesian  plane painted like a checkerboard with  1/2-by-1/2  
inch  Squares  alternately red and white.  The  Square  with one corner at the origin  (0, 0)  and 
another at  (1/2, 1/2)  has some color;  suppose it is red.  Every  TILE  in the covering of  R  covers 
equal areas of red and white since the tile is exactly two  Squares  wide.  Therefore  R  covers 
equal areas of red and white too.  Now suppose,  for the sake of an argument by contradiction,  
that the upper right corner of  R  fell at a point  (X, Y)  neither of whose coordinates was an 
integer.  Then  R  could be cut into four subrectangles thus:        ( See the picture. ) 
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      Roo  has diagonally opposite corners at  (0, 0)  and  (X , Y ) .
      Ro1  has diagonally opposite corners at  (0, Y )  and  (X , Y) .
      R1o  has diagonally opposite corners at  (X , 0)  and  (X, Y ) .
      R11  has diagonally opposite corners at  (X , Y )  and  (X, Y) .
          ( X  = floor(X) = the biggest integer no bigger than  X .)
The first three subrectangles would cover equal areas of red and white,  but the fourth would turn 
out to cover more red than white.  (Do you see why?)  This would contradict the inference that  R  
covers as much red as white,  so in fact at least one of  X  and  Y  must be an integer.

Problem 10:  Suppose  B and C  are matrices,  not necessarily square,  of the same dimensions.  

Explain why  det(I – BT·C) = det(I – C·BT)  wherein  “ I ”  is an appropriate identity matrix,  not 

necessarily of the same dimensions in each instance,  and superscript  “ T ”  means  “transpose”.

Solution 10:  det(I – BT·C) = …

= det( ) = det( ) = det( ) = det(I – C·BT) .

Ro1

R1o

R11

(X, Y) = (6.5, 5.4)

Roo

I B
T
C– B

T

O I

I O

C I
⋅ I B

T

C I

I O

C I

I B
T

O I CB
T

–
⋅
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Problem 11:  P(x)  is a polynomial in  x  with coefficients all integers no bigger than  K  in 
magnitude;  and  P(z) = 0  for some  |z| ≥ K+1 .  What polynomial must  P(x)  be,  and why?

Solution 11:  P  must be the zero polynomial;  i.e.,  P(x) = 0  for all  x .  To see why,  suppose  

P(x) := cnx
n + cn–1x

n–1 + … + c1x + c0  with coefficients  cj  all integers no bigger than  K > 0  
in magnitude,  and with  cn ≠ 0  for the sake of argument.  If  P(z) = 0  then  n ≥ 1  and

|z|n ≤  |cn|·|z|n  =  |∑j<n cjz
j|  ≤  ∑j<n |cj|·|z|j  ≤  K·∑j<n |z|j  =  K·(|z|n – 1)/(|z| – 1) .

And if  |z| ≥ K+1  too then   |z|n ≤  K·(|z|n – 1)/(|z| – 1)  ≤  K·(|z|n – 1)/K  =  |z|n – 1 ,  which is not 
possible.  Therefore every  cj = 0 ,  as claimed.

The foregoing proof establishes that,  if the coefficients  cj  of  P(x)  satisfy  |cj/cn| ≤ K  for  0 ≤ j ≤ n–1 ,  then every 
zero  z  of  P  satisfies  |z| < K+1 .  This is one of many theorems that restrict the zeros of a polynomial to a region 
in the complex plane determined relatively easily from the polynomial’s coefficients.  For more see  M. Marden’s  
book  The Geometry of the Zeros of a Polynomial in a Complex Variable (1949) Amer. Math. Soc.

This problem arises from the following task:  Suppose you are given a well-formed but horrendously complicated 
expression entailing finitely many additions,  subtractions and multiplications involving integers and one variable  
x ;  and suppose all you wish to know is whether this expression simplifies to zero.  The simplification process that 

reduces the given expression to a polynomial of the form  ∑j cjx
j  with explicit integer coefficients  cj  can take a 

long time,  especially if the expression includes many subexpressions like  (813x + 709)587 .  However,  a crude 
overestimate  K  of the magnitudes of all coefficients  cj  can be calculated comparatively quickly;  for instance,  no 

coefficient of  (813x + 709)587  exceeds  (813+709)587 .  Although  K  may turn out to be a gargantuan integer,  
substituting  K+1  for  x  and then calculating the given complicated expression may well take far less time than 
simplifying it,  and the calculation’s result will be zero just when the expression would simplify to zero.  To speed 
up the calculation further,  perform it in  modular arithmetic  several times,  each time  modulo  a different large 
prime no wider than the computer’s natural wordsize;  the  Chinese Remainder Theorem  ensures that ordinary 
arithmetic would produce zero if and only if  modular arithmetic produces zero for sufficiently many primes.  How 
many is  “sufficiently many”  depends upon  K  and the  (overestimated)  degree of the given expression.  The 
different primes can be employed concurrently by interleaving their modular arithmetics in one deeply pipelined 
processor and/or by exercising several processors in parallel,  thus reducing the time until a decision is reached.

Problem 12:  Let  y = Y(x)  be any nontrivial solution of a second-order differential equation   
(p·y')'  + r·y/p = 0   in which  (…)'  = d(…)/dx ,  and   p(x) > 0 ,  r(x) > 0  and  r'(x) > 0  for all  
x ≥ 0 .  Prove that   |Y(x)| < M  for some finite constant  M  and all  x > 0 .

Proof 12:  Set   £(x, y, z) := y2 + (p(x)·z)2/r(x)   and note that   £(x, Y, Y')'  = –(p·Y')2·r'/r2 ≤ 0 ,  

so  £(x, Y, Y')  must decrease as  x  increases,  and therefore  Y(x)2 < M2 := £(0, Y(0), Y'(0)) .

£  is called a  Lyapunov Function  because  £(x, Y, Y')  decreases along every solution  Y  of the given differential 
equation.  Such functions were introduced by  A. Lyapunov  early in the  20th  century to characterize the stability of 
solutions of differential equations.  If  £(x, y, z)  decreases to  0  so must  |y| ,  but this need not happen unless the 
behaviors of  p  and  r  are further constrained.  Lyapunov  functions can be too numerous to find easily.


