Solutions to Problemsfor Math. H90 Issued 27 Oct. 2003

Problem 1. Supposethereal function f(x) iscontinuousonthereal x-axis and satisfiesthereon
2f(x) :IX_1X+1 f(dt and f(x) - 0 as |x| - = . Provethat f=0.

Proof 1: If f could take positive values, it would have to take its maximum value M =f(x) at
somereal X since f - O attheendsof thereal axis. Butthen M = f(X) = [_/*** f(t) dt/2< M

with equality in the last inequality only if the continuous f(x) =M throughout the interval
x-1<x<x+1. Byinduction, f =M everywhere onthereal axisinstead of f — O at theends.
Therefore f cannot take positive values; negative values are ruled out similarly. End of proof.

Thisis R. Chapman’s solution of M. Chamberland’s problem; see p. 678 of SIAM Review 38 #4 (Dec. 1996). A
weaker hypothesisthat f(x) - 0 as x —» +o asoimplies f =0, but the proof isfar harder.

Problem 2: The equation of a Central Quadric Surface in Euclidean n-space is x'Hx =1
wherein H isarea symmetric n-by-n matrix. Suppose no eigenvalue of H isrepeated. Prove
that any Rectangular Parallelepiped all of whose vertices lie on that surface must have edges
parallel to all Principal Axes of that surface. (The principal axesrun along eigenvectorsof H .)

Proof 2: A rectangular parallelepiped centered at ¢ has 2" vertices ctrqtrotrgt ... tr,
where rq,ro, rg, ... and r, are mutually orthogonal vectors of nonzero perhaps diverse lengths,
S0 riTr]- =0 if i#]. Nogenerality islost by assuming that the vectors r; areall parallel to
coordinate axes since this can be accomplished by an orthonormal change of coordinates. That all
verticeslie on the surfaceimplies 2" equations of the form vIHv =1 as v runsover al vertices
Cxrixrotrgt ... +r,. Let'slook at equations from four vertices of theform u+r; = rj:
(u—ri—rj)TH(u—ri—rj) = (u—ri+rj)TH(u—ri+rj) = (u+ri—rj)TH(u+ri—rj) = (u+ri+rj)TH(u+ri+rj) =1.
Theseimply first that (ur;)™Hr; =0 and thenthat r;"Hr; =0, whichtellsusthat all the off-

diagonal elementsof H vanishin an orthonormal coordinate system whose axes are parallel to
the edges of the rectangular parallelepiped. Then the diagonal elementsof H areits eigenvalues
and, sincethey are assumed distinct, the coordinate axes are its eigenvectors each determined
uniquely to within anonzero scalar multiplier. End of proof.

Problem 3: The equation of an Ellipsoid in Euclidean n-space is x"Hx =1 wherein H isa
real symmetric n-by-n matrix withal n eigenvalues positiveand n= 3. Suppose no eigenvalue

of H isrepeated, and supposethe (hyper)plane whose equationis p'x =0 for some p' # o'
intersectsthat ellipsoid in acircle (if n=3), sphere (if n=4), or hypersphere (if n>5).
Provethat n=3.

Proof 3: Without loss of generality (do you seewhy?) suppose the orthonormal coordinate
system has p asitslast coordinate vector. Then the (hyper)plane of vectors satisfying p'x =0
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consists of vectors x = M each of which has zero for itslast component. Inthat (hyper)plane

the equation of thecircle or (hyper)sphere of intersection with the ellpsoid is x'Hx = uyTy =1

for somescalar > 0. Therefore H = {“T' ﬂ for some column c# o (else H would have p as
c B

arepeated eigenvalue) and scalar 3. The characteristic polynomial of H turnsout to be

det(61 —H) = (6—)™2-( (6—)(6—R) —c'c) . (Canyou seewhy?) Now wefindthat n-2<1

lest u bearepeated eigenvalue of H . Therefore n=3 asclaimed.

But the proof is not yet complete. How do we know for n =3 that some nonzero p existswhose
planeintersectsthe ellipsoid in acircle? Hereishow sucha p can befound. Since H hasthree
distinct positive eigenvalues, we consider vectors p orthogonal to the middle eigenvalue’'s
eigenvector. As p rotatesinthe plane E of the two extreme eigenvalues’ eigenvectors, the

plane P whose equationis p'x = 0 rotates about the middle eigenvector, which alwaysliesin
P . Itintersectsthe elipsoid in an ellipse one of whose principal axes runs along that middle
eigenvector. The other principal axis varies continuously, whilelyinginthe plane E, from the
shortest to the longest principal axis of the ellipsoid. For some two pairs of directionsof +p this
varying principal axis must coincide in length with the middle principal axis; either choice for
+p makestheellipseacircle. End of proof.

Problem 4: A particle moves on thereal x-axis with varying velocity v(x) insuch away that
the uniformly weighted average velocity over any interval y < x <z isdeterminable from the
velocities at the interval’s ends thus: Average = (2/3)-( v(y)? + v(y)-v(2) + v(2)? )/ (v(y) + v(2)) .
Must the particle's acceleration be constant? Explain why or why not.

Solution 4: Theshort answer is “Yes, the acceleration must be constant.” Hereiswhy: Let x(t)
be the position of the particle at time t, sothat v(x(t)) =x'(t). If x(8) =y and x(1) =z, the
Average in questionis
Average = [|7v(x) dx/(z-y) = [o' v(x()2dt /(x(T) = x(8)) = [o' v(x(t))%dt/fg" v(x(t)) dt .
Abbreviate V(t) := v(x(t)) towritethe relation between the Average and the end-velocities thus:
3(V(8) + V(D) fo' V)t = 2:(V(8)? +V(B)-V(1) +V(1)?) g V(1) ct.

Differentiate with respect to 1 threetimesand then set 6 ;=T to get simply 3-V(T)2-V" (r)=0.
Since V variesit cannot be zero everywhere, so V" =0, whichimpliesthat the acceleration V'
must be constant, except possibly for ajumpwhere V =0. But can V =0 somewhere? ...

This, M. Renardy’s solution of M.S. Klamkin’s problem, appearson pp. 525-6 of SAM Review 38 #3 (1996) but
with no consideration of whether v can vanish nor where on the x-axis the given relation with Average can hold.

Certainly v(x) cannot reverse sign lest, wherever the particle reversed course, v(x) would not be a single-valued
function of position x . Therefore the velocity could vanish only at a point where the particle had slowed to a stop
and then accel erated away without reversing direction, giving the graph of V(t) a V-shape. But this, asit turnsout,
would violate the given relationship with the Average. If V #0 everywhere, V' would be everywhere constant,
forcing V'=0; doyou seewhy? Thereforethe given Average relationship can hold on only part of thereal x-axis.
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Problem 5: Supposetheletters “O’ and “T” are drawn with infinitessmally thin lines. Show
that uncountably infinitely many copies (in diverse sizes) of the letter “O’ can be placed in the
plane without overlapping, but only countably infinitely many copiesof “T” can be so placed.
(This problem was supplied by Prof. C.C. Pugh.)

A Countable (or Denumerable) infinite set is one whose members can each be labelled with an integer without using
any integer more than once. The existence of uncountably infinite sets was first exposed by Cantor at the end of the
nineteenth century; hisfirst example was the set of real numbers between 0 and 1.

Solution 5: Concentric circleswith all real radii strictly between any two positive real numbers
provide uncountably infinitely many non-overlapping copies of the letter “O’ . To prove that
uncountably infinitely many non-overlapping copies of the letter “T” cannot be placed in the
plane, let usassume otherwise for the sake of argument in order to exhibit a contradiction:

Consider first the set of all circular disks with integer radii and with centers at points with integer
coordinates. There are countably infinitely many such disks, and every copy of “T” liesinside
some of them. Since every union of countably many countable setsis countable, some such disks
would have to contain uncountably many copiesof “T” . Let D be one such disk.

The copiesof “T” inside D shall beclassified by size asfollows. Each copy of “T” will be
characterized by four real parameters— two for the coordinates of the T's crossing, onefor the
direction in which the copy’stail points, and one for the multiplier p by which thiscopy isa
magnification (if w=1) orreduction (if ©<1) of somestandardized T . In other words,

figuratively speaking, each copy will be expressed as t + u-e'e-T where t isatransationand €'

arotation. The multipliers p will be collected into Binades each of the form 2" < p < 2™ for
aninteger n. Eachcopy of “T” inside D hasitsmultiplier i inone such binade. If, asis
alleged in the previous paragraph, D contained uncountably many copiesof “T” , then some
binade(s) would have to contain multipliers p for infinitely many copiesof “T” ; otherwise D
could contain at most countably many copiesof “T” . For definiteness suppose the binade
1< u <2 contained infinitely many such multipliers (not necessarily all distinct), sothat D
would contain infinitely many copiesof “T” of sizes determined by multipliers p between 1
and 2. Thisturnsout to be contradictory;

infact D can contain only finitely many copiesof “T” of those sizes.
Hereiswhy:

The binade’'s copies t + u-e'e-T of “T” in D areidentified by parameters constrained to satisfy
t liesin D, —-m<O<T1, and 1<pu<2. *)

Any three copies t; + p-exp(18))-T for j=1,2, 3 arefurther constrained by the requirement that

no two copiesintersect. Defineafunction f(tq, ty, t3, 64, 65, 63, Uy, Ko, H3) to be the diameter of

the smallest circle that contains the three crossing-points t;, t, and t3 of any three copies of

“T" . This f isacontinuous function of twelve real arguments (including two per t;), and as

they vary subject to the foregoing constraints, namely (*) and nonintersection of the three copies
of “T”, so f variesover someinterval of nonnegative real numbers. Set 3:=inf f , thelargest
number no larger than any number in that interval. We must show next that 3> 0.
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Asan infimum, 3 must bethelimit of aninfinite sequence of valuesof f evaluated at arguments
that satisfy all the constraints. Because al the arguments are drawn from a Bounded and Closed
regionina 12-dimensiona space (closed by replacing the inequalities 6 <t and u<2 in (*)
by 6<tmand p<2 resp.), its Compactness implies that there must be a subsequence of those
arguments convergent to alimit-point (t, to, t3, 84, 65, 03, 14, Ho, Mg) inside or on the boundary
of theregion. Thislimit-point determines three copiesof “T” , none more than twice as big as
any other, none crossing another though they may touch. For instance, one “[1" could lie atop
another “T” withtheir crossing-points coincident. Thiswould haveto happenif 3=0; but then
there would be no way to position the third copy of “T” so that its crossing-point would coincide
with the other two. Therefore 3> 0, aswas claimed at the end of the last paragraph. We
conclude that ...

Every circle that has diameter lessthan 3 can contain at most two crossing-points

of nonintersecting copiesof “T” whose multipliers p liebetween 1 and 2.

Some finite number of circular disks of diameter lessthan 3 can be arranged to cover disk D .
None of these covering disks can contain more than two crossing-pointsof D’s nonintersecting
copiesof “T” with multipliersin 1<p <2, andyet every such crossing-point liesin at least
one covering disk. Therefore D can contain only finitely many such copiesof “T” . End of
proof.

The foregoing proof takes for granted that every copy of “T” hasitstail (|) andcross-bar (—) inthe same
proportions as has the standardized “T” , so that the copy’s size is determined by one multiplier p. The proof
becomes a little more complicated if copiesof “T" are alowed to have different proportions but bounded so that no
copy’s shape can come arbitrarily closeto “ |” norto “—" .

Learn about continuity, limits, countable and uncountable sets, “infimum”, “closed”, “compact” (the Heine-Borel

theorem), and coveringsin acourseon Real Variables (Math. 104) taught from atext like C.C. Pugh's lively new
book Real Mathematical Analysis (2002, Springer-Verlag, New York).
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