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Problem 1:

 

  Suppose the real function  ƒ(x)  is continuous on the real  x-axis  and satisfies thereon  

2

 

 

 

ƒ(x) = 

 

∫

 

x–1
x+1 

 

ƒ(t)

 

 

 

dt    and   ƒ(x) 

 

→

 

 0  as  |x| 

 

→

 

 

 

∞

 

 .   Prove that  ƒ 

 

≡

 

 0 .

 

Proof 1:

 

  If  ƒ  could take positive values,  it would have to take its maximum value  M = ƒ(x)  at 

some real  x  since  ƒ 

 

→

 

 0  at the ends of the real axis.  But then  M = ƒ(x) = 

 

∫

 

x–1
x+1 

 

ƒ(t)

 

 

 

dt

 

/

 

2 

 

≤

 

 M  
with equality in the last inequality only if the continuous  ƒ(x) = M  throughout the interval  
x–1 

 

≤

 

 x 

 

≤

 

 x+1 .  By induction,  ƒ 

 

≡

 

 M  everywhere on the real axis instead of  ƒ 

 

→

 

 0  at the ends.  
Therefore  ƒ  cannot take positive values;  negative values are ruled out similarly.  End of proof.

 

This is  R. Chapman’s  solution of  M. Chamberland’s  problem;  see  p. 678  of  SIAM Review 38 #4 (Dec. 1996).    A 
weaker hypothesis that  ƒ(x) 

 

→

 

 0  as  x 

 

→

 

 +

 

∞

 

  also implies  ƒ 

 

≡

 

 0 ,  but the proof is far harder.

 

Problem 2:

 

  The equation of a  

 

Central Quadric Surface

 

  in  

 

Euclidean

 

  n-space  is  

 

x

 

T

 

H

 

x

 

 = 1  
wherein  H  is a real symmetric  n-by-n  matrix.  Suppose no eigenvalue of  H  is repeated.  Prove 
that any  

 

Rectangular Parallelepiped

 

  all of whose vertices lie on that surface must have edges 
parallel to all  

 

Principal Axes

 

  of that surface.  (The principal axes run along eigenvectors of  H .)

 

Proof 2:

 

  A rectangular parallelepiped centered at  

 

c

 

  has  2

 

n

 

  vertices  

 

c
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±

 

 

 

r
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 … 

 

±
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where  

 

r

 

1

 

, 

 

r

 

2

 

, 

 

r

 

3

 

, …  and  

 

r

 

n

 

  are mutually orthogonal vectors of nonzero perhaps diverse lengths,  

so  

 

r

 

i
T

 

r

 

j

 

 = 0  if  i 

 

≠

 

 j .  No generality is lost by assuming that the vectors  

 

r

 

j

 

  are all parallel to 
coordinate axes since this can be accomplished by an orthonormal change of coordinates.  That all 

vertices lie on the surface implies  2

 

n

 

  equations of the form  

 

v

 

T

 

H

 

v

 

 = 1  as  

 

v

 

  runs over all vertices  
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 .  Let’s look at equations from four vertices of the form  

 

u
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i
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j

 

 :
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T

 

H(
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=
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T

 

H(

 

u

 

–
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i

 

+

 

r

 

j

 

)

 

 

 

= (u+ri–rj)
TH(u+ri–rj) = (u+ri+rj)

TH(u+ri+rj) = 1 .

These imply first that  (u±ri)
THrj = 0  and then that  ri

THrj = 0 ,  which tells us that all the off-
diagonal elements of  H  vanish in an orthonormal coordinate system whose axes are parallel to 
the edges of the rectangular parallelepiped.  Then the diagonal elements of  H  are its eigenvalues 
and,  since they are assumed distinct,  the coordinate axes are its eigenvectors each determined 
uniquely to within a nonzero scalar multiplier.  End of proof.

Problem 3:  The equation of an  Ellipsoid  in  Euclidean  n-space  is  xTHx = 1  wherein  H  is a 
real symmetric  n-by-n  matrix with all  n  eigenvalues positive and  n ≥ 3 .  Suppose no eigenvalue 

of  H  is repeated,  and suppose the  (hyper)plane  whose equation is  pTx = 0  for some  pT ≠ oT  
intersects that ellipsoid in a circle  (if  n = 3 ),  sphere  (if  n = 4 ),  or hypersphere  (if  n ≥ 5 ).  
Prove that  n = 3 .

Proof 3:  Without loss of generality  (do you see why?)  suppose the orthonormal coordinate 

system has  p  as its last coordinate vector.  Then the (hyper)plane of vectors satisfying  pTx = 0  
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consists of vectors  x =   each of which has zero for its last component.  In that  (hyper)plane  

the equation of the circle or  (hyper)sphere of intersection with the ellpsoid is  xTHx = µ·yTy = 1  

for some scalar  µ > 0 .  Therefore  H =   for some column  c ≠ o  (else  H  would have  µ  as 

a repeated eigenvalue)  and scalar  ß .  The characteristic polynomial of  H  turns out to be  

det(θI – H) =  (θ–µ)n–2·( (θ–µ)(θ–ß) – cTc ) .   (Can you see why?)  Now we find that  n–2 ≤ 1  
lest  µ  be a repeated eigenvalue of  H .  Therefore  n = 3  as claimed.

But the proof is not yet complete.  How do we know for  n = 3  that some nonzero  p  exists whose 
plane intersects the ellipsoid in a circle?  Here is how such a  p  can be found.  Since  H  has three 
distinct positive eigenvalues,  we consider vectors  p  orthogonal to the middle eigenvalue’s 
eigenvector.  As  p  rotates in the plane  E  of the two extreme eigenvalues’ eigenvectors,  the 

plane  P  whose equation is  pTx = 0  rotates about the middle eigenvector,  which always lies in  
P .  It intersects the ellipsoid in an ellipse one of whose principal axes runs along that middle 
eigenvector.  The other principal axis varies continuously,  while lying in the plane  E ,  from the 
shortest to the longest principal axis of the ellipsoid.  For some two pairs of directions of  ±p  this 
varying principal axis must coincide in length with the middle principal axis;  either choice for  
±p  makes the ellipse a circle.  End of proof.

Problem 4:  A particle moves on the real  x-axis  with varying velocity  v(x)  in such a way that 
the uniformly weighted average velocity over any interval  y ≤ x ≤ z  is determinable from the 

velocities at the interval’s ends thus:  Average = (2/3)·( v(y)2 + v(y)·v(z) + v(z)2 )/(v(y) + v(z)) .  
Must the particle’s acceleration be constant?  Explain why or why not.

Solution 4:  The short answer is  “Yes,  the acceleration must be constant.”  Here is why:  Let  x(t)  
be the position of the particle at time  t ,  so that  v(x(t)) = x'(t) .  If  x(θ) = y  and  x(τ) = z ,  the  
Average  in question is

      Average =  ∫yz v(x) dx /(z–y)  =  ∫θτ v(x(t))2dt /(x(τ) – x(θ))  =  ∫θτ v(x(t))2dt /∫θτ v(x(t)) dt .
Abbreviate  V(t) := v(x(t))  to write the relation between the  Average  and the end-velocities thus:

3·(V(θ) + V(τ))·∫θτ V(t)2dt  =  2·( V(θ)2 + V(θ)·V(τ) + V(τ)2 )·∫θτ V(t) dt .

Differentiate with respect to  τ  three times and then set  θ := τ  to get simply  3·V(τ)2·V"(τ) = 0 .  
Since  V  varies it cannot be zero everywhere,  so  V" = 0 ,  which implies that the acceleration  V'  
must be constant,  except possibly for a jump where  V = 0 .  But can  V = 0  somewhere?  …

This,  M. Renardy’s  solution of  M.S. Klamkin’s  problem,  appears on  pp. 525-6 of  SIAM Review 38 #3 (1996)  but 
with no consideration of whether  v  can vanish nor where on the  x-axis  the given relation with  Average  can hold.

Certainly  v(x)  cannot reverse sign lest,  wherever the particle reversed course,  v(x)  would not be a single-valued 
function of position  x .  Therefore the velocity could vanish only at a point where the particle had slowed to a stop 
and then accelerated away without reversing direction,  giving the graph of  V(t)  a  V-shape.  But this,  as it turns out,  
would violate the given relationship with the  Average.  If  V ≠ 0  everywhere,  V'  would be everywhere constant, 
forcing  V' ≡ 0 ;  do you see why?  Therefore the given  Average  relationship can hold on only part of the real  x-axis.

y
0

µI c

cT β
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Problem 5:  Suppose the letters  “O”  and  “T”  are drawn with infinitesimally thin lines.  Show 
that uncountably infinitely many copies  (in diverse sizes)  of the letter  “O”  can be placed in the 
plane without overlapping,  but only countably infinitely many copies of  “T”  can be so placed.
(This problem was supplied by  Prof. C.C. Pugh.)

A Countable  (or Denumerable)  infinite set is one whose members can each be labelled with an integer without using 
any integer more than once.  The existence of uncountably infinite sets was first exposed by  Cantor  at the end of the 
nineteenth century;  his first example was the set of real numbers between  0  and  1 .

Solution 5:  Concentric circles with all real radii strictly between any two positive real numbers 
provide uncountably infinitely many non-overlapping copies of the letter  “O” .  To prove that 
uncountably infinitely many non-overlapping copies of the letter  “T”  cannot be placed in the 
plane,  let us assume otherwise for the sake of argument in order to exhibit a contradiction:

Consider first the set of all circular disks with integer radii and with centers at points with integer 
coordinates.  There are countably infinitely many such disks,  and every copy of  “T”  lies inside 
some of them.  Since every union of countably many countable sets is countable,  some such disks 
would have to contain uncountably many copies of  “T” .  Let  D  be one such disk.

The copies of  “T”  inside  D  shall be classified by size as follows:  Each copy of  “T”  will be 
characterized by four real parameters—  two for the coordinates of the  T’s  crossing,  one for the 
direction in which the copy’s tail points,  and one for the multiplier  µ  by which this copy is a 
magnification  (if  µ ≥ 1 )  or reduction  (if  µ < 1 )  of some standardized  T .  In other words,  

figuratively speaking,  each copy will be expressed as  t + µ·eıθ·T  where  t  is a translation and  eıθ  

a rotation.  The multipliers  µ  will be collected into  Binades  each of the form  2n ≤ µ < 2n+1  for 
an integer  n .  Each copy of  “T”  inside  D  has its multiplier  µ  in one such binade.  If,  as is 
alleged in the previous paragraph,  D  contained uncountably many copies of  “T” ,  then some 
binade(s) would have to contain multipliers  µ  for infinitely many copies of  “T” ;  otherwise  D  
could contain at most countably many copies of  “T” .    For definiteness suppose the binade  
1 ≤ µ < 2  contained infinitely many such multipliers  (not necessarily all distinct),  so that  D  
would contain infinitely many copies of  “T”  of sizes determined by multipliers  µ  between  1  
and  2 .  This turns out to be contradictory;

in fact  D  can contain only finitely many copies of  “T”  of those sizes.
Here is why:

The binade’s copies  t + µ·eıθ·T  of  “T”  in  D  are identified by parameters constrained to satisfy
 t  lies in  D ,  –π ≤ θ < π ,  and  1 ≤ µ < 2 .                          (*)

Any three copies  tj + µj·exp(ıθj)·T  for  j = 1, 2, 3  are further constrained by the requirement that 
no two copies intersect.  Define a function  ƒ(t1, t2, t3, θ1, θ2, θ3, µ1, µ2, µ3)  to be the diameter of 
the smallest circle that contains the three crossing-points  t1, t2  and  t3  of any three copies of  
“T” .  This  ƒ  is a continuous function of twelve real arguments  (including two per  tj ) ,  and as 
they vary subject to the foregoing constraints,  namely  (*)  and nonintersection of the three copies 
of  “T” ,  so  ƒ  varies over some interval of nonnegative real numbers.  Set  ß := inf ƒ ,  the largest 
number no larger than any number in that interval.  We must show next that  ß > 0 .
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As an  infimum,  ß  must be the limit of an infinite sequence of values of  ƒ  evaluated at arguments 
that satisfy all the constraints.  Because all the arguments are drawn from a  Bounded  and  Closed  
region in a  12-dimensional space  (closed by replacing the inequalities  θ < π  and  µ < 2  in  (*)  
by  θ ≤ π  and  µ ≤ 2  resp.),  its  Compactness  implies that there must be a subsequence of those 
arguments convergent to a limit-point  (t1, t2, t3, θ1, θ2, θ3, µ1, µ2, µ3)  inside or on the boundary 
of the region.  This limit-point determines three copies of  “T” ,  none more than twice as big as 
any other,  none crossing another though they may touch.  For instance,  one  “⊥ ”  could lie atop 
another  “T”  with their crossing-points coincident.  This would have to happen if  ß = 0 ;  but then 
there would be no way to position the third copy of  “T”  so that its crossing-point would coincide 
with the other two.  Therefore  ß > 0 ,  as was claimed at the end of the last paragraph.  We 
conclude that …

Every circle that has diameter less than  ß  can contain at most two crossing-points 
of nonintersecting copies of  “T”  whose multipliers  µ  lie between  1  and  2 .

Some finite number of circular disks of diameter less than  ß  can be arranged to cover disk  D .  
None of these covering disks can contain more than two crossing-points of  D’s  nonintersecting 
copies of  “T”  with multipliers in  1 ≤ µ < 2 ,  and yet every such crossing-point lies in at least 
one covering disk.  Therefore  D  can contain only finitely many such copies of  “T” .  End of 
proof.

The foregoing proof takes for granted that every copy of  “T”  has its tail  ( | )   and cross-bar  ( — )  in the same 
proportions as has the standardized  “T” ,  so that the copy’s size is determined by one multiplier  µ .  The proof 
becomes a little more complicated if copies of  “T”  are allowed to have different proportions but bounded so that no 
copy’s shape can come arbitrarily close to  “ | ”  nor to  “—” .

Learn about continuity,  limits,  countable and uncountable sets,  “infimum”,  “closed”,  “compact”  (the Heine-Borel 
theorem),  and coverings in a course on  Real Variables  (Math. 104)  taught from a text like  C.C. Pugh’s  lively new 
book Real Mathematical Analysis (2002,  Springer-Verlag,  New York).


