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Problem 1:

 

  Given is an ellipse  E  neither a circle nor degenerate  (

 

i.e

 

.  a straight line segment).  
Let  

 

∆

 

  be the largest of the areas of triangles inscribed in  E

 

 

 

.  How many inscribed triangles have 
maximal area  

 

∆

 

 ?  At least two do since  E  is centrally symmetric.  Are there more?  Why?

 

Solution 1:

 

   There are infinitely many triangles of maximal area  

 

∆

 

  inscribed in  E ,  every 
boundary-point of which is a vertex of one such triangle.  Here is why:

E = L

 

–1

 

·O  is the image of a circle  O  mapped by some invertible linear operator  L

 

–1

 

 

 

.  This 
means that,  after we move  E  and  O  to center both of them at the origin  

 

o

 

 

 

,  running  

 

x

 

  through 

all  2-vectors of  Euclidean  length  ||

 

x

 

|| = 

 

ρ

 

 

 

,  the positive radius of  O

 

 

 

,  runs  L

 

–1

 

·

 

x

 

  around  E  as  

 

x

 

  runs around  O

 

 

 

.  We may choose  

 

ρ

 

  to make  O  have the same area as  E  has,  and then  L  can 

be chosen to have  det(L) = 1  so that area is preserved by operators  L  and  L

 

–1

 

 

 

.  Any triangle  T  
of maximal area  

 

∆

 

  inscribed in  E  is the image of  L·T

 

 

 

,  a triangle of maximal area  

 

∆

 

  inscribed 
in  O

 

 

 

.  Which inscribed triangles have maximal area?  This question’s answer is almost obvious:

At each vertex of a triangle of maximal area inscribed in  O  the tangent to  O  must be parallel to 
the triangle’s opposite side;  otherwise the vertex could be moved slightly,  without moving the 
opposite side,  to increase the triangle’s altitude and therefore its area.  Therefore a perpendicular 
dropped from a vertex to the triangle’s opposite side must pass through the circle’s center,  which 
makes the circle and the triangle each its own reflection in that perpendicular.  Consequently any 
two sides of the triangle must have equal lengths.  We conclude that every triangle of maximal 

area  

 

∆

 

  inscribed in  O  is equilateral;  every point of  O  is a vertex of one of them.  And  L

 

–1

 

  
maps every one of them onto a triangle of maximal area  

 

∆

 

  inscribed in  E ,  as claimed.

 

This solution takes far longer to read than to visualize after you have seen it.
Infinitely many tetrahedra of maximal volume are inscribed in an ellipsoid for similar reasons.

 

The next two problems have lengthy solutions which,  if you cannot find them for dimension  n  in 
general, should be solved first for dimension  n = 2

 

 

 

,  then  n = 3

 

 

 

,  in order to get the idea.

•
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Problem 2:

 

  In a  Euclidean  n-space,  where a vector  

 

v

 

  has length  ||

 

v

 

|| := 

 

√

 

(

 

v

 

T

 

·

 

v

 

)

 

 

 

,  a reflection 
in a line (

 

 

 

n = 2

 

 

 

)  or  (hyper)plane (

 

 

 

n 

 

≥

 

 3

 

 

 

)  through the origin  

 

o

 

  must be a linear operator of the 

form  V := 

 

I

 

 

 

–

 

 

 

2·

 

v

 

·

 

v

 

T

 

/

 

v

 

T

 

·

 

v

 

 = V

 

T

 

 = V

 

–1

 

  wherein  

 

v

 

  is any vector perpendicular to the mirror.  (Can 

you see why?  Think about  V·

 

v

 

 

 

,  and about  V·

 

x

 

  when  

 

v

 

T

 

·

 

x

 

 = 0

 

 

 

.)  The product  R := V·W  of any 

two such reflections is a rotation;  R

 

T

 

 = R

 

–1

 

  and  det(R) = 1

 

 

 

.  Given four nonzero vectors  

 

x

 

,  

 

y

 

 

 

≠

 

 

 

x

 

,  

 

s

 

  and  

 

t

 

 

 

≠

 

 

 

s

 

  with  ||

 

x

 

|| = ||

 

y

 

||

 

 

 

,  ||

 

s

 

|| = ||

 

t

 

||  and  

 

s

 

T

 

·

 

x

 

 = 

 

t

 

T

 

·

 

y

 

 

 

,  so that  |

 

∠

 

(

 

s

 

, 

 

x

 

)

 

 

 

| = |

 

∠

 

(

 

t

 

, 

 

y

 

)

 

 

 

|

 

 

 

,  
show how and why to construct reflections  V  and  W  so that  R := V·W  will rotate  

 

x

 

  to  R·

 

x

 

 = 

 

y  
and  s  to  R·s = t ,  provided such an  R  exists.  When does it not exist?  When is  R  unique?

Solution 2:  A requested  R := V·W  can be a product of two reflections  W := I  – 2·w·wT/||w||2  

and  V := I  – 2·v·vT/||v||2  in which  w := x – y  and  v := W·s – t ,  except that if  W·s = t  then  v  
may be any nonzero vector orthogonal to both  y  and  t  provided such a vector exists.  Here is 
why this works when it works:  First confirm that  W  swaps  x  and  y  by introducing  z := x + y ,  

observing that  wT·z = 0 ,  and then substituting  x = (z + w)/2  and  y = (z – w)/2  into the two 
equations  W·x = y  and  W·y = x  to confirm that both are satisfied.  Similarly,  if   v = W·s – t ≠ o  

then  V  swaps  W·s  and  t  while preserving  y  because  vT·y = 0 ;  grind through the algebra.  On 

the other hand,  if  W·s = t  and  v ≠ o  satisfies  vT·y = vT·t = 0  then  V  preserves both  t  and  y .  
Either way,  R := V·W  rotates  [x, s]  to  R·[x, s] = V·W·[x, s] = V·[y, W·s] = [y, t]  as required.

Provided  R  exists.  When can no such  R  exist?  Just when the dimension  n = 2 ,  and reflection  
W  swaps  s  and  t  as well as  x  and  y ,  and   t  and  y  are linearly independent  (neither parallel 
no antiparallel),  in which case  s  and  x  are linearly independent too because of the constraints  

[x, s]T·[x, s] = [y, t]T·[y, t]  that were given:  These constraints imply for every  2-vector  b  that  

||[x, s]·b||2 = ||[y, t]·b||2 ,   so neither  [x, s]·b  nor  [y, t]·b  could vanish unless the other did too.  

Then  W·s = t  but no  v ≠ o  can satisfy  vT·[y, t] = [0, 0] ;  instead the nonsingular linear equation  
R·[x, s] = [y, t] = W·[x, s]  would pre-emptively force  R = W ,  a reflection,  not a rotation.

What’s the difference between  Reflection  and  Rotation?  Reflection  V  has  det(V) = –1 .  This can be proved either 
by choosing a new orthonormal coordinate system with  v  as one of its basis vectors,  in which case  V  becomes a 
diagonal matrix obtained from the identity matrix  I   by reversing the sign of one of its diagonal elements,  or else it
can be deduced from an important determinantal identity

   det(I  – p·qT) = det( ) = 1 – qT·p ,

left for the diligent student to confirm.  And then  det(R) = det(V·W) = det(V)·det(W) = +1 .  In fact every  Proper  
rotation  R  that preserves the  left- or right-handed  orientation of a basis must have determinant  det(R) = +1 .

When is  R  determined uniquely by the given four nonzero vectors  x,  y ≠ x,  s  and  t ≠ s  with  

||x|| = ||y||,  ||s|| = ||t||  and  sT·x = tT·y ?  Not when dimension  n > 3 ;  simple examples show why.  
When dimension  n = 2  and  R  exists,  the data determine it uniquely.  This follows easily when  

s  and  x  are linearly independent;  then  R·[x, s] = [y, t]  implies  R = [y, t]·[x, s]–1
 .  Otherwise  

s = ß·x  for some scalar  ß ≠ 0 ,  and then putting  b := [–ß, 1]T  above implies  t = ß·y  too,  in 
which case  R  is determined uniquely and explicitly by  x  and  y  alone as follows:

Let  J :=  = –JT = –J–1
 ;  it rotates the plane a quarter turn because  vT·J·v = 0  for every  2-

I p

qT
1

0 1–

1 0
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vector  v .  Just as  R  rotates  x  to  R·x = y  so does it rotate  J·x  to  R·J·x = J·y ;  in other words,  

plane rotations commute.  Consequently  R·[x, J·x] = [y, J·y] ,  whence  R = [y, J·y]·[x, J·x]–1  is 

determined uniquely by  x  and  y .  An explicit formula   R := I ·xT·y/xT·x – J·xT·J·y/xT·x   is left 
for the diligent student to confirm.  ( This  R  rotates  s  to  R·s = t  too even if  s  and  x  are 
independent provided such an  R  exists.)

When dimension  n = 3  the given data  x,  y,  s  and  t  determine  R  uniquely only if  s  and  x  are 
linearly independent.  Then  R  rotates  x  to  R·x = y ,  s  to  R·s = t ,  and therefore the nonzero 

cross-product  x×s  to  R·(x×s) = (R·x)×(R·s) = y×t ,  whereupon  R = [y, t, y×t]·[x, s, x×s]–1
 .

Problem 3:  In a  Euclidean  n-space,  where a vector  v  has length  ||v|| := √(vT·v) ,  a  Box  is a  
Rectangular Parallelepiped,  a figure bounded by  2n  flat facets each of which intersects  2n–2  
perpendicular facets;  none need be parallel to coordinate (hyper)planes (n ≥ 3)  or lines (n = 2).  
The  Diameter  of a box is the distance between any two opposite vertices.  An  Ellipse (n = 2)  or  
Ellipsoid (n ≥ 3)  centered at  o  is the locus of points  x  that satisfy an equation of the form  

xT·H–1·x = 1  for some  Symmetric Positive-Definite  matrix  H ;  “symmetric”  means  H = HT ,  

and  “positive definite”  means  vT·H·v > 0  for every  n-vector  v ≠ o .  For any such  H ,  every 
box that circumscribes the ellipsoid tightly enough for all facets to touch it has the same diameter   
2·√(Trace(H))  where  Trace(H) = ∑j hjj   is the sum of the diagonal elements of  H .  Explain why.

Solution 3:  Let  ❏  denote the  n-dimensional unit (hyper)cube (n ≥ 3) or square (n = 2),  the 

convex hull of  2n  vertices each of whose  n  coordinates are all selected from the set  {1. –1} .  
Every box  BB  centered at the origin  o  is obtained from  ❏  by a  Dilatation  and a  Rotation;  this 
means  BB = R·V·❏  where  n-by-n  diagonal matrix  V  has  n  positive elements and represents the 

dilatation,  and  R  is an  n-by-n  Proper Orthogonal  matrix  ( RT = R–1  and  det(R) = +1 )  that 
represents the rotation.  Let  u  be the column  n-vector  whose every element is  1 .  Just as point  
c  lies in  ❏  just when  |c| ≤ u elementwise  (which means that no element of  c  exceeds  1  in 

magnitude),  so does point  b = R·V·c  lie in box  BB  just when  |V–1·R–1·b| ≤ u elementwise.

Changing coordinates to a new orthonormal basis consisting of the columns of  R  is tantamount 

to rotating everything in the space by  R–1
 .  Whatever point was represented by  x  in the original 

coordinate system is represented by  y := R–1·x  in the new coordinates.  Let  ❐  denote the new 
coordinates’ unit (hyper)cube;  don’t confuse it with the old coordinates’  ❏ .   Now the change of 

coordinates can be construed either as a rotation of box  BB = R·V·❏  to  R–1·BB = V·❏ ,  or else as 
providing a new representation for  BB = V·❐  in the new coordinates.

A symmetric positive definite matrix  H  represents an ellipsoid  HH  as the locus of points  x  

satisfying  xT·H–1·x = 1 .  How does the change to new coordinates alter the representation of  HH ?  

Substitute  x = R·y  into the equation to get  yT·W–1·y = 1  for the symmetric positive definite 

matrix  W := R–1·H·R  that represents  HH  in the new coordinates or  R–1·HH  in the old coordinates.  
Note that  Trace(W) = Trace(H) . This will be needed later and can be proved by rearranging the 
ordering of a triple summation;  can you do it?
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In the new coordinates,  BB = V·❐ ⊇  HH  just when  V·u ≥ |y|  whenever  yT·W–1·y = 1 ,  and we 
seek the smallest positive diagonal  V  for which  BB ⊇  HH  so that every facet of  BB  will touch  HH .  

This sought  V  is characterized by the equation  fT·V·u = { max fT·y  subject to  yT·W–1·y = 1 }  

for every  n-row  fT = [0, 0, …, 0, 1, 0, …, 0, 0]  whose elements are all zeros but one and it is  1 .
The desired maxima can be found by using  Lagrange Multipliers,  or more directly as follows:

Because  W  is positive definite,  (f·µ – W–1·y)T·W·(f·µ – W–1·y) ≥ 0  for every real scalar  µ .  The 
inequality’s left-hand side expands to a quadratic polynomial in  µ  that cannot reverse sign,  so its 

diacriminant cannot be positive:  (fT·y)2 ≤ (fT·W·f)·(yT·W–1·y) ,  with equality achieved when  

y = W·f/√(fT·W·f)) .  Consequently  { max fT·y  subject to  yT·W–1·y = 1 } = √(fT·W·f)) .

Let  fT  have its sole nonzero element in the  jth  position to see that the sought smallest positive 
diagonal  V  has diagonal elements  vjj  = √wjj  .  All the vertices of  BB = V·❐  have new coordinates  
[±v11, ±v22, ±v33, …, ±vnn]  whence follows the desired conclusion that  

 diameter(BB) = 2·√(∑j vjj
2) = 2·√(Trace(W)) = 2·√(Trace(H)) .

Problem 4a:  A polynomial  M(z) := ∑0≤k≤n µk·z
k  whose coefficients  µk  are all integers is called  

“Irreducible”  if it is not the product of two nonconstant polynomials with integer coefficients.  
Suppose some prime  p  divides  µ0, µ1, µ2, …, µn–2  and  µn–1  but not  µn  nor  µ0/p .  Show why  
M(z)  must be irreducible.  (A classical problem treated in some  Algebra  texts.) 

Proof 4a:  The proof builds a contradiction.  For the sake of argument suppose   M(z) = B(z)·P(z)  

where  B(z) = ∑0 ≤ k ≤ m ßk·z
k  and   P(z) = ∑0 ≤ k ≤ n–m πk·z

k  with  1 ≤ m ≤ n–1  and coefficients  

ßk  and  πk  all integers,  whence   µL = ∑max{0, L+m–n} ≤ k ≤ min{L,  m} ßk·πL–k   for  0 ≤ L ≤ n .

Because  µ0 = ß0·π0  is divisible by  p  but not  p2 ,  just one of  ß0  and  π0  would be divisible by  
p ;  for definiteness suppose it were  ß0  and not  π0 .  But  p  could not divide every  ßk  lest  p  also 
divide  µn = ßm·πn–m  contrary to our problem’s supposition.  Let  L  be the least index for which  

p  did not divide  ßL .  Necessarily  1 ≤ L ≤ m ,  so   ßL·π0 = µL – ∑L+m–n ≤ k ≤ L–1 ßk·πL–k ;  it 
would be divisible by  p  (as is every term in the right-hand side)  if not for our contradictory 
suppositions about  ßL  and  π0 .  This contradiction proves that  M(z)  must be irreducible.

Here is an alternative proof.  We work in the  Field  ZZp  of integers  mod p  consisting of  Residues 
(remainders)  0, 1, 2, …, p–1  obtained when integers are divided by the prime  p .  Let  µk,  ßk  
and  πk  be the residues when  µk,  ßk  and  πk  respectively are divided by  p ;  these are written  

µk := µk mod p  etc.  Then  M(z) := M(z) mod p = ∑0≤k≤n µk·z
k  and similarly for  B(z)  and  P(z) .  

Our problem’s hypotheses imply that  M(z) = µ0·z
n ≠ 0  and  µn ≠ 0 mod p2

 .  Our supposition for 

the sake of argument that  M(z) = B(z)·P(z)  would imply that  B(z)·P(z) = M(z) = µ0·z
n  whence
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would follow first that  ßm ≠ 0  and  πn–m ≠ 0  because  ßm·πn–m = µn ≠ 0 ,  and consequently that  

B(z) = ßm·zm  and  P(z) = πn–m·zn–m  (work it out).  These,  by forcing  ß0 = π0 = 0 ,  would make  

µ0 = ß0·π0 = 0 mod p2  contrary to the problem’s last hypothesis.  Therefore  M(z)  is irreducible.

Note: These proofs work also for a polynomial  xn·M(1/x)  whose coefficients are  M(z)’s  in reverse order.

Problem 4a’s  assertion is called  “Eisenstein’s Criterion for Irreducibility”.  It applies to some,  not all irreducible 
polynomials.  The only other scheme we know to determine whether an arbitrary polynomial is irreducible is to 
submit it to the factorization program in a computerized algebra system like  Maple,  Macsyma,  Mathematica,  etc.  If 
none of them can factorize the polynomial,  it is irreducible unless a bug not yet discovered lurks in their programs.

Problem 4b:   Prove that,  for every integer  n ≥ 1 ,  there exist irreducible polynomials of degree  
n  whose  n  zeros are all real.  (Not so easy!)

Proof 4b:   There are many such polynomials.  We’ll use  Chebyshev Polynomials  defined thus:
      T0(x) := 1 ,  T1(x) := x ,  and  Tn+1(x) := 2x·Tn(x) – Tn–1(x)   for  n = 1, 2, 3, …  in turn.

By induction we confirm that  Tn(x)  is a polynomial of degree  n  whose coefficient of  xn  is  2n–1 

for  n ≥ 1 ,  and  T2n(0) = (–1)n ,  T2n–1(0) = 0 ,  and  Tn(x) = cos(n·arccos(x))  on  –1 ≤ x ≤ 1 .

As  x  runs down from  1  to  –1  the value of  Tn(x)  oscillates from  1  to  –1  to  1  to  –1  to … to  

(–1)n ,  crossing through zero  n  times.  Consequently the polynomials  Wn(x)  defined by 

 W2n–1(x) := 3·T2n–1(x) – 1   and    W2n(x) := 3·T2n(x) – 2·(–1)n  
have all zeros real and satisfy  Eisenstein’s Criterion  (reversed)  for Irreducibility  with  p = 3 .

An alternative proof shows that the polynomials in question do exist without providing an explicit 
construction for any of them.  First comes the following observation:

Lemma:  If  F(x)  is a real polynomial of degree  n ≥ 1  whose  n  zeros are all real and 
    distinct,  then the same is true of  F(x) – φ  for each nonzero real constant  φ 
    with  |φ|  small enough.

Proof of the Lemma:  Rolle’s Theorem  says that the derivative  F'(x)  has  n–1  real zeros  yj  each 
between adjacent zeros of  F(x) .  Consequently  F(y1),  F(y2),  …  and  F(yn–1)  are the  n–1  local 
maxima of  |F(x)| ,  with signs alternately positive and negative;  each  yj  is located between two 
adjacent zeros of  F(x) .  Provided  |µ| < minj |F(yj)|  the same is true of  F(x) – µ ;  its  n  real zeros 
straddle the same locations  yj  where each  F(yj) – µ  has the same sign as  F(yj) .  End of proof.

The  Lemma  will be used to generate in turn polynomials  F1(x),  F2(x),  F3(x),  …,  Fn(x),  … :  
each  Fn  will be irreducible with integer coefficients,  have degree  n ,  and have  n  real distinct 
nonzero zeros.  We start with  F1(x) := x – 3 ,  say.  Next,  after  Fn(x)  has been determined for any 
integer  n ≥ 1  we construct  Fn+1(x) := pn·x·Fn(x) – 1  where  pn  is a huge prime chosen thus:

Since all  n+1  zeros of  x·Fn(x)  are real and distinct,  the  Lemma  says some positive  φn  exists 
such that all  n+1  zeros of  x·Fn(x) – φ  are real and distinct  (and nonzero)  for every nonzero  φ  
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with  |φ| < φn .  Choose prime  pn  bigger than  1/φn  and also bigger than every prime divisor of 

the leading coefficient of  xn  in  Fn(x) .  This is feasible because,  as  Euclid  showed,  there are 
infinitely many primes.  Then all  n+1  zeros of  Fn+1(x) := pn·x·Fn(x) – 1  are real,  distinct and 
nonzero,  and  Fn+1  satisfies  Eisenstein’s Criterion  (reversed)  for Irreducibility  too.

This  Problem 4b  was taken from the  Fall 2007 Prelim. Exam  for  Math. Grad Students.

Problem 5a:  Suppose the plane is colored with two colors;  in other words,  suppose some points 
are red,  say,  and the rest blue.  Must some two points an inch apart have the same color?  Why?

Solution 5a:  Yes;  here is why:  Consider the vertices of any equilateral triangle whose sides are 
one inch long.  Among the three vertices are only two colors;  two vertices must be colored alike.

Problem 5b:  The same questions if the plane is colored with three colors instead of two.  (Hard!)

Solution 5b:  Yes,  some two points an inch apart must be colored alike;  here is how to find some:  
First examine any circle of radius  √3  inches.  If all points on the circle are colored alike,  all of its 
chords one inch long join two points colored alike.  Otherwise,  some point(s) on the circle must 
be colored differently than its center.  Suppose its center  C  is red,  say,  and a point  P  on the 
circle is green,  say.  Two circles of radius one inch centered at  C  and at  P  intersect at two points  
A  and  B  each distant one inch from the other,  from  C ,  and from  P .  (Can  you see why?)  If  
A  and  B  are colored differently,  one of them must be colored the same as either  C  or  P  since 
there are at most three colors among the four points.  Therefore some two of the four points  A, B, 
C  and  P  must be colored alike,  and those two are not  C  and  P .  End of explanation.

What if the plane is colored with  four  colors instead of two or three?  Five ?  Nobody knows.

Problem 6:  ∑0≤k≤n cos(2k·x) = cos(n·x)·sin((n+1)·x)/sin(x) .  Why?  (Supply a short proof.)

Proof 6:   The trigonometric identity   sin((2k+1)·x) – sin((2k–1)·x) = 2·cos(2k·x)·sin(x)  turns 
twice the sum into   2·∑0≤k≤n cos(2k·x) = ∑0≤k≤n (sin((2k+1)·x) – sin((2k–1)·x))/sin(x)  which 

first collapses into   2·∑0≤k≤n cos(2k·x) = (sin((2n+1)·x) – sin((0–1)·x))/sin(x)  and then becomes

 2·∑0≤k≤n cos(2k·x) = (sin((n+1+n)·x) + sin((n+1–n)·x))/sin(x) = 2·cos(n·x)·(sin((n+1)·x)/sin(x)) 
to confirm the problem’s assertion.  If  x  is an integer multiple of  π  replace  (0/0)  by  n+1 .

An alternative proof uses the complex variable  z := eıx = cos(x) + ı·sin(x)  wherein  ı := √–1 :

Then  z2k = cos(2k·x) + ı·sin(2k·x)  and the sum in question turns into the real part of the finite 
geometrical series  

 ∑0≤ k≤n z
2k = (z2n+2

 – 1)/(z2
 – 1) = zn·(zn+1

 – z–n–1)/(z – z–1) = zn·sin((n+1)·x)/sin(x) 

whose real part is   cos(n·x)·sin((n+1)·x)/sin(x) ,  confirming the problem’s assertion again.



Solutions to Problems for  Math. H90                                          Issued  27 Aug. 2007

Profs. Vera Serganova & W. Kahan            Version dated September 6, 2007 6:13 am                             Page 7 of 7

Problem 7:  Given an arbitrary non-degenerate triangle  ABC ,  erect three equilateral triangles  
ABC'  ,  BCA'   and  CAB'  ,  one on each edge of  ABC ,  with  C  and  C'   on opposite sides of  
AB ,  A  and  A'   on opposite sides of  BC ,  and  B  and  B'   on opposite sides of  CA .  Let  C"   be 
the center of  ABC'  ,  A"   the center of  BCA'  ,  and  B"   the center of  CAB'  .  Explain why  
A"  B"  C"   must constitute a fourth equilateral triangle.

Proof 7:  Matrix  R := /2  is  Orthogonal  ( R–1 = RT
 )  and represents a rotation of the

plane counter-clockwise through  2π/3  radians  ( 120° ),  so  R3
 – I = O .  This last equation factors 

into  (R – I)·(R2
 + R + I) = O ,  but  det(R – I) = 3 ≠ 0 ,  so  R2

 + R + I = O .  This last equation will 

let us eliminate  R2 = –R – I  from equations below.

Choose an origin  o  in the plane arbitrarily,  and let  A  be the  2-vector  that displaces  o  to vertex  
A .  Do similarly for  A' , A" , B, B' , B" , C, C'   and  C"  .  Evidently  C'  – B = R·(B – A) ,  so  
C'  = (I + R)·B – R·A .  Similarly  A'  = (I + R)·C – R·B  and  B'  = (I + R)·C – R·B .  Substitute these 
equations into the expressions for the centers  C"  = (A + B + C')/3 ,  A"  = (B + C + A' )/3  and  
B"  = (C + A + B')/3  to get   3·C"  = (I – R)·A + (2I + R)·B ,   3·A"  = (I – R)·B + (2I + R)·C   and   
3·B"  = (I – R)·C + (2I + R)·A .  Note these equations’ rotational symmetry  A → B → C → A  
which yields two more equations from any one of them,  thus diminishing the algebraic work.

Now the edge-vectors of triangle  A"  B"  C"   will be computed:
  3·(C"  – A" ) = (I – R)·A + (I + 2R)·B – (2I + R)·C  =  3R·(B"  – C" ) ;
  3·(A"  – B" ) = –(2I + R)·A + (I – R)·B + (I + 2R)·C = 3R·(C"  – A" ) ;   and
  3·(B"  – C" ) = (I + 2R)·A – (2I + R)·B + (I – R)·C  =  3R·(A"  – B" ) .

The rightmost three equations are confirmed by simplification after substituting  –R – I  for  R2
 .

They say that each edge of  A"  B"  C"   is obtained by rotating a neighboring edge through  2π/3 ,  
whence  A"  B"  C"   must be equilateral,  as problem  7  claimed.

By the way,  Problem 7’s  claim is valid also when  ABC  is a degenerate triangle but not just a single point.
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