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Problem 1(a):

 

  

 

Maple V

 

  used to say that the series  S := 1 – 1 + 1 – 1 + 1 – 1 + …  converged to  
1/2 .  It was wrong because  S  converges to  P/Q  where  P  and  Q  are your favorite odd primes.  
For instance,  if  P = 3  and  Q = 7  then we find for all  |x| < 1  that
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and letting  x 

 

→

 

 1  on both sides yields  3/7 = S  in the limit.  Right?  Why?

 

Solution 1(a):

 

  “ 3/7 = S ”  is wrong because  S  does not converge.  The faulty reasoning 
misapplies an important theorem due to  N.H. Abel (1802-1829)  about the convergence of any 
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 ;  it converges to a differentiable function  ƒ(z)  of a complex argument  z  
inside but not outside the biggest circle centered at  0  in the complex plane and containing no 
singularity of  ƒ

 

 

 

.  If the series converges at a point on that circle it converges to the limit  ƒ(z)  
reaches as  z  moves there along any straight line segment starting inside the circle.  But continuity 
of  ƒ  around a point on the circle does not guarantee convergence of the series there.

 

Abel’s  theorem is proved on  pp. 37-40 of 

 

Classical Complex Analysis

 

 by L-S. Hahn & B. Epstein (1996, Jones & 
Bartlett,  Mass.)

 

Problem 1(b):

 

  Has the series  1/6
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…  two sums?  One is  
(1/2 – 1/3) + (1/3 – 1/4) + (1/4 – 1/5) + (1/5 – 1/6) + (1/6 – 1/7) + …  =  1/2 .  The other sum is  
(1 – 5/6) + (5/6 – 3/4) + (3/4 – 7/10) + (7/10 – 2/3) + (2/3 – 9/14) + …  =  1 .  Can you explain it?

 

Solution 1(b):

 

  The series  1/2 – 1/3 + 1/3 – 1/4 + 1/4 – 1/5 + … + 1/k – 1/(k+1) + …   converges 
to  1/2  but the series  1 – 5/6 + 5/6 – 3/4 + 3/4 – 7/10 + … + (1/2 + 1/k) – (1/2 + 1/(k+1)) + …   
does not converge at all.

 

Problem  2:

 

   The cubic polynomial  ƒ(x) := x
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  has integer coefficients  
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none of which exceeds  99  in magnitude,  and   |ƒ(2
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?  Why?

 

Proof  2:

 

  Let  
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α + β)√3 .  The 
conjugate of  θ  is  Θ := ƒ(2 – √3) = 26 + 7α + 2β + γ – (15 + 4α + β)√3 ,  and their product turns 

out to be  θ·Θ = (26 + 7α + 2β + γ)2 – 3(15 + 4α + β)2 ,  an integer.  This integer must be small; 
    |θ·Θ| < (0.0001)·(|26 + 7α + 2β + γ| + |15 + 4α + β|√3) 

 < (0.0001)·(26 + 700 + 200 + 100) + (15 + 400 + 100)·√3) 
 < (0.0001)·(1026 + 515·2) = 0.2056 .

The only integer that small is zero.  Therefore  θ·Θ = ƒ(2 + √3)·ƒ(2 – √3) = 0 ,  so at least one of  
ƒ(2 + √3)  and  ƒ(2 – √3)  must vanish.  Actually both must vanish since  √3  is irrational.

Consequently  ƒ(x) = (x2 – 4x + 1)·(x + γ)  for some integer  γ  in  –24 ≤ γ ≤ 25 .  This problem was modified from one 
in the  6th  Chinese Girls’ Mathematics Olympiad  of  14 Aug. 2007.
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Problem 3:   Suppose positive variables  x,  y  and  z  satisfy  x2
 + y2

 + z2 = 1 .  Prove that 

 √( x2 + (y2
 – z2)2/4 ) + y + z ≤ √3 .

Solution 3:  Define  Q(y, z) := √( 1 – y2
 – z2 + (y2

 – z2)2/4 ) + y + z = Q(z, y)  over the circular disk 

where  y2 + z2 = 1 – x2 < 1 .  We observe that the inequality  Q(y, z) ≤ √3  to be proved is almost 
false since  Q(1/√3, 1/√3) = √3 .  This suggests that we prove first  Q(y, z) ≤ Q((y+z)/2, (y+z)/2) ,  

and then  Q(w, w) ≤ √3  if  2w2 ≤ 1 .  Note:  Point  [(y+z)/2, (y+z)/2]  lies in the disk whenever  

[y, z]  does because then  2·((y+z)/2)2 ≤ y2 + z2 < 1 .  We shall apply these inequalities again later.

To prove  Q(y, z) ≤ Q(w, w)  at  w := (y+z)/2  we examine 

   Q((y+z)/2, (y+z)/2) – Q(y, z) = √( 1 – 2·((y+z)/2)2 ) – √( 1 – y2
 – z2 + (y2

 – z2)2/4 )  
which has the same sign as has

  ( 1 – 2·((y+z)/2)2 ) – ( 1 – y2
 – z2 + (y2

 – z2)2/4 ) = (y – z)2/2 – (y2 – z2)2/4 = (y–z)2·(2 – (y+z)2)/4 ,
which the last inequalities above prove positive as needed to prove what was just claimed.

Now differentiate  Q(w, w) = √(1 – 2w2) + 2w  to find its maximum value  Q(1/√3, 1/√3) = √3 .

A short alternative solution by  Roman Vaisberg  substitutes  y := (u + v)/√2  and  z := (u – v)/√2  

into  Q(y, z)  to get   u = (y + z)/√2 > 0 ,   v = (y – z)/√2 ,   u2
 + v2 = y2

 + z2 < 1 ,   and  

  G(u, v) := Q((u + v)/√2, (u – v)/√2) = √( 1 – u2
 – v2 + u2·v2

 ) + √2·u = √((1 – u2)·(1 – v2)) + √2·u .
Evidently  G(u, v) ≤ G(u, 0) = Q(u/√2, u/√2) ≤ √3  as above.

This problem was modified from one in the  6th  Chinese Girls’ Mathematics Olympiad  of  14 Aug. 2007.

Problem  4:   The  Monastic Archipelago  consists of several small circular mostly rocky tropical 
islands in the ocean far from shipping lanes.  Each island has a monastery housing a number of 
monks,  different numbers on different islands.  After a month of monsoon rains have washed 
shoreline sand away,  each monk dredges back a pile of sand and spends subsequent days mostly 
praying and meditating at the shore next to his pile.  At dusk every monk performs a virtuous act 
of sharing:  He divides his pile into two halves and donates them to his two nearest neighbors 
along the shore.  They do likewise to him,  so his next day’s sand pile is the average of his two 
neighbors’ piles for the day just ending.  As the days pass,  the piles tend to become nearly equal 
on some islands,  but not on others.  Explain why.

Solution  4:   The piles approach equality on every island with an odd number of monks,  but do 
so only rarely on islands with even numbers of monks.  Here is why:  Let  N  be the number of 
monks on some one of the islands.  N ≥ 2  because  “a number of monks”  means more than one.  
(For more than a millennium,  meticulous scholars construed  Euclid’s  slightly sloppy definition 
of  “a number”  as  “a quantity of things” in the plural  to imply that neither  0  nor  1  could be 
numbers.)  Assign a different integer  j mod N  to each of the island’s monks in such a way that 
the shoreline neighbors of monk  #j mod N  are monks  #j±1 mod N .  Let  xj,k  be the amount of 
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sand in the pile next to monk  #j mod N  on day  #k  after the monsoon rains end.  Our problem 
says that  xj,k+1 = (xj+1,k + xj–1,k)/2  with the understanding that the first subscript be construed  
mod N .

Let us rewrite this equation as   xk+1 = (E·xk + E–1·xk)/2   in which  xk  is the column vector whose 
components are  xj,k  and  E  is the  N-by-N  Circular Shift  matrix exemplified when  N = 6  by

  E =     and    E–1 =  = ET .

Thus we see that  xk+1 = H·xk = … = Hk·x1  wherein  H := (E + E–1)/2 = HT .  To understand what  
xk  does as  k → ∞  requires an appreciation of the eigenvalues and eigenvectors of  H .  Here it is:

Let  w := e2πı/N = cos(2π/N) + ı·sin(2π/N)  be the  Principal  Nth  root of  1 ;  this means  wN = 1  

but  wn ≠ 1  if  0 < n < N .  The  N  column vectors   wn := [1,  wn,  w2n,  w3n,  …,  w(N–1)n]T   for  

n = 1, 2, …, N–1, N  are the eigenvectors of  E  because  E·wn = wn·wn .  The  N  eigenvalues  wn  
are distinct,  so the eigenvectors  wn  are linearly independent and constitute a basis for the space 

of  N-dimensional  complex column vectors.  They are also eigenvectors of  H = (E + E–1)/2  

because  H·wn = θn·wn  for the eigenvalues  θn := (wn + w–n)/2 = cos(2πn/N)  of  H .  Note that  

wN = [1,  1,  1,  …,  1]T   and,  if  N  is even,  wN/2 = [1,  –1,  1,  –1,  …,  1,  –1]T .

The basis matrix  B := [w1, w2, w3, …, wN]  must have an inverse.  It turns out to be  BT/N  where 

the overstroke  …  means  Complex Conjugate;   wn := [1,  w–n,  w–2n,  w–3n,  …,  w–(N–1)n]T .  To 

confirm that  B–1 = BT/N  we shall use the  polynomial  ƒ(z) := (zN
 – 1)/(z – 1) = ∑0≤j<N z

j   whose  

ƒ(w±n) = 0  for  0 < n < N  but  ƒ(w0) = ƒ(w±N) = ƒ(1) = N .  Consequently for  1 ≤ m ≤ N  too,

 wm
T·wn = ∑0≤j<N w

j·(n–m) = ƒ(w(n–m)) = { N  if  n = m  but  0  otherwise } ,

which explains why  BT·B = N·I  and thus  B–1 = BT/N .

An expansion of  x1 = B·(B–1·x1) = ∑n wn·ξn  as a linear combination of eigenvectors  wn  exists;  

it has coefficients   ξn := wn·x1/N .  Then  xk+1 = Hk·x1 = ∑n cosk(2πn/N)·wn·ξn .  What this does 

as  k → ∞  is now evident because  cosk(2πn/N) → 0  for all  n  except  n = N  and  n = N/2 .

If  N  is odd no  n = N/2 ,  so  xk+1 → wN·ξN = wN·(wN
T·x1)/N ;  all sand piles approach equality 

with the nonzero average of the piles’ initial values.  This confirms the solution’s first claim.

If  N  is even,  xk+1  comes ever closer to   wN·(wN
T·x1)/N + (–1)k·wN/2·(wN/2

T·x1)/N   which 

oscillates around the average with constant amplitude  wN/2
T·x1/N  except in the unlikely event 

that this amplitude vanished initially.  This confirms the solution’s second claim.  It seems obvious 
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after  Steven Lu’s  observation that,  when  N  is even,  the two sums  Ek := ∑1≤j≤N/2 x2j,k  and  
Dk := ∑1≤j≤N/2 x2j–1,k  alternate:  Ek+1 = Dk  and  Dk+1 = Ek .  This reveals that when  E1 ≠ D1  the 
sand piles can never approach equality.

Problem  5:  A solid cube  20x20x20  is built out of bricks each  2x2x1 .  All are laid with their 
faces parallel to the cube’s faces,  though bricks need not all be laid flat.  Prove that at least one 
straight line perpendicular to a face of the cube pierces its interior but no brick’s interior.  (Hard!)

Solution  5:  Partition each face of the cube into an array of  20x20  unit  squares. Through 
every interior corner of these unit squares pass a  needle,  a straight line perpendicular to all four 

squares  through whose common corner the  needle  passes.  There are  3·192 = 1083  needles.  
Each of the  2000  bricks in the cube is pierced internally by just one needle,  so some  needles 
must pierce more than one brick.  We shall discover that at least  83  needles  pierce no brick!

Consider any one  needle.  Through it pass two orthogonal planes parallel to faces the  needle 
does not penetrate.  These planes cut the cube into four  quadrants,  each of which has a volume 
that must be an even number of cubic units.  The planes may cut through some of the bricks.  A 
brick cut by one plane is cut into  halves  each of volume  2 .  A brick cut by two planes is cut 
into  quarters  each of volume  1 .  Each quadrant contains an even number of  quarters  since 
the quadrant’s volume is even,  so every needle pierces an even number of bricks,  if any.  2000  
bricks can be pierced by at most  1000  needles,  leaving at least  83  needles to pierce no brick.

(This is  Jan Mycielski’s  problem found on  pp. 801-2 of  Amer. Math. Monthly 78 #7 Aug-Sept 1971.  The same 
reasoning succeeds if  “20”  is replaced by  “2”,  “4”,  “6”,  …,  or  “18”,  but not by  “22”.  What happens then?)

Problem  6:  Suppose  ∆  is a nondegenerate triangle  (its vertices aren’t collinear).  Prove that …
6(a):  Three points can be chosen,  one on each edge of  ∆  but none at a vertex,

  through which three chosen points no ellipse inscribed in  ∆  can possibly pass.
6(b):   An ellipse can be inscribed in  ∆  and touch the midpoints of all its edges.

Proof 6(a):  To see why no inscribed ellipse need touch the triangle’s edges at three points chosen 
arbitrarily,  perform a linear transformation  L  that maps  ∆  onto the triangle  L(∆) := ∆  in the  
Cartesian  (x, y)-plane  whose edges’ equations are  y = 1 ,  x = 1  and  2x + y = 0 .  An ellipse  E  
inscribed in  ∆  maps to an ellipse  E := L(E)  inscribed in  ∆ .  Points where  E  touches  ∆  are 

mapped by  L–1  to points where  E  touches  ∆ .  Can an ellipse  E  be inscribed in  ∆  and touch 
its edges at any chosen points,  say  (0, 1) ,  (1, 0)  and  (0, 0)  respectively?  No;  we shall show 
that such an ellipse  E  would generate a contradiction.  Thus we shall infer that no ellipse  E  

inscribed in  ∆  can touch it at the points on it to which our chosen points are mapped by  L–1
 .
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If such an inscribed  E  existed,  let its equation be  ƒ(x, y) = 0  where

ƒ(x, y) :=  a·x2 + 2b·x·y + c·y2 + 2d·x + 2e·y .
Evidently  ƒ(0, 0) = 0  already.  Also  ƒ(0, 1) = c + 2e = 0 ,  and  ƒ(1, 0) = a + 2d = 0 .  These 

simplify  ƒ  to  ƒ(x, y) = a·x2 + 2b·x·y + c·y2 – a·x – c·y .  Since  E  must be tangent to each edge 
at its contact point,  at  (x, y) = (0, 1)  we would have  dy/dx = –ƒx(x, y)/ƒy(x, y) = 0 ,  and this 
would imply that  2b – a = 0 ;  similarly at  (1, 0)  we’d find  dx/dy = –ƒy(x, y)/ƒx(x, y) = 0 ,  so  

2b – c = 0 .  Now  ƒ  would simplify to  ƒ(x, y) = c·(x2 + x·y + y2 – x – y)  for some arbitrary 
constant  c ≠ 0 .  But this would force  dy/dx = –ƒx(x, y)/ƒy(x, y) = –1  at  (x, y) = (0, 0)  although 
the edge’s slope is  dy/dx = –2 .  Impossible!  Therefore no ellipse  E  inscribed in our  ∆   touches 
its edges at the three points we chose arbitrarily.  Likewise for  E  inscribed in  ∆ .

There must be something special about the points at which an inscribed ellipse  E  can touch  ∆ .  
Hye-Jin Jang’s  neat solution for  Problem 6(a)  reveals what’s special:  Let  ∆  have vertices  P,  Q  
and  R ,  and suppose that  E  touches edge  PQ  at  r ,  QR  at  p ,  and  RP  at  q ;  then she shows 
why  (||Pr||/||rQ||)·(||Qp||/||pR||)·(||Rq||/||qP||) = 1  is the special condition.  It is derived from any 
invertible linear function  L  that maps  E  to a circle  C := L(E)  touching  ∆ := L(∆)  at  p = L(p)  
on  QR = L(QR) ,  q = L(q)  on  RP = L(RP) ,  and  r = L(r)  on  PQ = L(PQ) .  Although lengths of 
the edges of  ∆  may differ from the lengths of corresponding edges of  ∆ ,  the ratios of lengths 
measured in parallel directions are preserved since  L  maps parallel lines to parallel lines.  Thus

  ||Pr||/||rQ|| = ||Pr||/||rQ|| ,   ||Qp||/||pR|| = ||Qp||/||pR|| ,   and   ||Rq||/||qP|| = ||Rq||/||qP|| .
But now the two tangents from each vertex of  ∆  to  C  have equal lengths:  ||Pr|| = ||qP|| ,  
||Qp|| = ||rQ||  and  ||Rq|| = ||pR|| ,  so that  (||Pr||/||rQ||)·(||Qp||/||pR||)·(||Rq||/||qP||) = 1 .  Because  L  
preserves these ratios,  (||Pr||/||rQ||)·(||Qp||/||pR||)·(||Rq||/||qP||) = 1  too,  as claimed.

Proof 6(b):  Given any nondegenerate triangle  ∆  in the  Euclidean  plane,  many linear maps  L  
can be found to produce  ∆ = L(Æ)  for some equilateral triangle  Æ .  For instance,  if  ∆’s  
vertices are points  p,  q  and  r  ,  and if  P,  Q  and  R  are the vertices of an equilateral triangle  T ,  
let  L  be the linear operator that maps vectors  P–R  to  p–r   and  Q–R  to  q–r  ;  do you see why 

such an  L  must exist?  Then  ∆ = L·Æ  for an equilateral triangle  Æ := T – R + L–1·r  .  Now let  
C  be the circle inscribed in  Æ  and touching all its edges’ midpoints.  E := L·C  is the ellipse 
inscribed in  ∆  and touching all its edges’ midpoints.  That was easy.

Problem 7:  Suppose the triangle  ∆  and ellipse  E  in  Problem 6(b)  are drawn in the complex 
plane.  Prove that the foci of  E  are the zeros of the derivative of whatever cubic polynomial’s 
zeros are just the vertices of  ∆ .

You should know that the foci of an ellipse earned their name because light emanating from one focus and reflecting 
off the ellipse as if it were a mirror converges,  thus focussed by the mirror,  at the other focus.

Proof 7:  Let the triangle  ∆  have vertices  p,  q  and  r ;  now these are complex numbers.  Let  φ  
and  ψ  be the zeros of the derivative of a cubic whose zeros are just  p,  q  and  r .  The derivative 
of such a cubic,  say  (z–p)(z–q)(z–r) ,  is  3(z–φ)(z–ψ) ;  their ratio is the rational function
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    ƒ(z) :=  d ln((z–p)(z–q)(z–r))/dz  
=  1/(z–p) + 1/(z–q) + 1/(z–r)  =  3(z–φ)(z–ψ)/((z–p)(z–q)(z–r)) .

Rather than try to express  φ  and  ψ  explicitly in terms of  p,  q  and  r  we shall infer what we 
need to know from the properties of  ƒ .

Denote by  z := x–ıy  the complex conjugate of  z = x+ıy .  Since  ƒ(φ) = 0 ,  so does  

0 = ƒ(φ) =  1/(φ–p) + 1/(φ–q) + 1/(φ–r)  =  (φ–p)/|φ–p|2 + (φ–q)/|φ–q|2 + (φ–r)/|φ–r|2 .  This 
equation says that  φ  is a positively weighted average of  p,  q  and  r ;   therefore  φ  lies inside  ∆ ,  
and the same goes for  ψ .  (Thus have we verified an instance of  Lucas’ Theorem:  The zeros of a 
polynomial’s derivative lie in the convex hull of the polynomial’s zeros.)

Now let  P := (q+r)/2 ,  Q := (r+p)/2  and  R := (p+q)/2  be the midpoints of  ∆’s  edges.  We know 
from  Problem 6(b)  that an ellipse  E  inscribed in  ∆  touches its edges at  P,  Q  and  R ,  and we 
wish to prove that  φ  and  ψ  are  E’s  foci.  To do this we use the  Reflection Characterization of 
an ellipse:  Rays of light from one focus are reflected to the other by the ellipse.  Since the edges 
of  ∆  are tangents to  E  at the contact points  P,  Q  and  R ,  we need merely show that two line 
segments joining  φ  and  ψ  to any contact point make equal angles with the edge there.  Consider 
contact point  R  and its edge  p ↔ q .  Since  R–q = –(R–p) = (p–q)/2 ,  1/(R–q) = –1/(R–p)  and 
therefore  ƒ(R) = 1/(R–r) .  This implies  ((φ–R)/(p–R))·((ψ–R)/(q–R)) = 1/3 ,  whence follows  
Arg((φ–R)/(p–R)) = –Arg((ψ–R)/(q–R))  as required the reflection property.

It is not hard to deduce from equations like  ƒ(P) = 1/(P–p)  that  |P–φ| + |P–ψ|  =  |Q–φ| + |Q–ψ|  =  |R–φ| + |R–ψ| ,  
which puts  P,  Q  and  R  on some ellipse  É  with foci  φ  and  ψ .  But,  until  É  is proved not to cross any edge of  
∆ ,  we cannot be sure  É  is the desired inscribed ellipse  E .

How is the  Reflection Characterization  deduced from some other characterization of an ellipse,  say as the locus of 
points  z  whose distances from the foci  φ  and  ψ  sum to a given constant?  Revert now to vector notation for points 

in the  Euclidean  plane where length  ||v|| = √(vTv) .  Then its differential is  d||v|| = vTdv/||v||  provided  v ≠ o .  As  z  
runs on the ellipse whereon  ||z–φ|| + ||z-ψ|| = constant > ||φ–ψ|| ,  the tangent at  z  is in the direction of  dz  satisfying  

0 =  d(||z–φ|| + ||z-ψ||)  =  ( (z–φ)/||z–φ||  +  (z-ψ)/||z-ψ|| )Tdz .  This says the tangent direction  dz  is perpendicular to 

the sum of the two unit-vectors  (z–φ)/||z–φ||  and  (z-ψ)/||z-ψ||  directed from the foci to  z  on the ellipse.  A nonzero 
sum of unit vectors always bisects the angle between them;  draw the rhombus whose vertices are at  o,  one unit 
vector,  the other,  and their sum to see why.  This confirms the picture above with  z = R  and  dz  parallel to  q–p .

Conversely,  given two points  φ  and  ψ ,  if  z  moves on some curve whose tangent at  z  always bisects the exterior 
angle between  z–φ  and  z–φ  then the curve must be an ellipse with foci  φ  and  ψ  because  ||z–φ|| + ||z-ψ||  stays 
constant on that curve.
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Problem 8:  The Biggest Ellipse in a Triangle
Prove that,  of all ellipses inside any given nondegenerate triangle,  the one  ellipse of largest 
area touches the triangle’s edges at their midpoints.  (Cf.  Problems 6 & 7  above.)

Proof 8:  Let  E  be  an  ellipse of largest area inscribed in a nondegenerate triangle  ∆ .  E  must 
touch all three edges of  ∆ ;  otherwise,  were some edge untouched,  E  could be translated very 
slightly towards this edge and away from the other two edges,  and then enlarged.  Call  E’s  
three points of contact  P,  Q  and  R  in  ∆’s  edges  p,  q  and  r  respectively.  We shall prove 
by contradiction that  PQ  is parallel to  r ,  QR  to  p ,  and  RP  to  q ,  from which will follow 
via  Similar  triangles that  P,  Q  and  R  are midpoints of their respective edges.

Suppose  PQ  were not parallel to  r .  Then a line  n  parallel to  r  through the midpoint  o  of  
PQ  would separate  P  and  Q ;  suppose  P  were closer than  Q  to  r .  A  Shear  S  that left  n  
fixed,  but moved  P  slightly away from  p  and  Q  slightly away from  q ,  and slid  R  along  r  
slightly,  would change  E  into another ellipse with the same area but out of contact with  p  
and  q .  But then,  according to the previous paragraph,  E’s  area could not be a maximum.

The maximizing ellipse is unique because  Problems 6 & 7  determined its foci,  and distinct  
Confocal  (with the same foci)  ellipses never intersect.

What is that  Shear  S ?  Put the plane’s origin at  o  on line  n ,  whereupon  n,  P,  Q  and  R  can be treated as 

vectors.  Let  m  be any nonzero vector perpendicular to n ,  so that  mTn = 0 .  Then  S = I + ßnmT  is a linear 
operator with a tiny but nonzero scalar  ß .  Since  Sn = n ,  this shear leaves the line  n  fixed,  and slides  R  to  

SR = R + ß(mTR)n  along the line  r  parallel to vector  n .  Now  o = (P+Q)/2 ,  so  P = –Q ;  and  mTP = –mTQ ≠ 0  

since  P  and  Q  lie on opposite sides of line  n ,  not on it.  Therefore  SP – P = ß(mTP)n = –ß(mTQ)n = –(SQ – Q) ,  
which tells us  S  moves  P  and  Q  in opposite directions parallel to  n .  Choose the sign of  ß  so that  P  and  Q  
get moved closer together and therefore into  ∆  rather than out of it.  If  |ß|  is tiny enough,  S  will move  E  slightly 
to  SE  still inside  ∆  and touching edge  r  but not  p  nor  q .  Finally,  Area(SE) = det(S)·Area(E) = Area(E)  

because  det(S) = 1 ;  this last equation follows from a matrix identity  det(I – B·C) = det( ) = det(I – C·B)  

valid whenever the matrix products  B·C  and  C·B  are both square.  The identity’s proof is left to the reader.  Or 
else prove  Area(SE) = Area(E)  by cutting  E  into infinitesimally thin slices all parallel to  n  and unaltered in 
length and width by  S .
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