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Problem 1:

 

  The  Gregorian  calendar puts  365  days in every ordinary year,  366  days in every 
leap year.  Leap years are those years evenly divisible by  4  except for century years  (the years 
divisible by  100),  which are leap years only if divisible by  400  too.  For example,  1600  and  
2000  were leap years,  but  1700,  1800  and  1900  were not,  nor will  2100  be.

Assuming that the world retains the  Gregorian  calendar forever,  prove that the probability that 
future  Christmas Days  (25 Dec.)  will fall on  Wednesdays  is  NOT  exactly  1

 

/

 

7

 

 

 

.

 

Proof 1:

 

  Every  400  years the  Gregorian  calendar repeats its pattern of  days-of-the-week  

 

vs

 

.  
days-of-the-month.  This happens because the number of days in  400  years,  namely

400 

 

x

 

 365  +  ( 100 – 3 )   =   146097   =   7 

 

x

 

 20871

 

 

 

,
is evenly divisible by  7

 

 

 

.  ( The term  100 – 3  accounts for the leap years,  one every four years 
except for the three century years not divisible by  400

 

 

 

.)  In every  400  years,  Christmas Day  
falls on a  Wednesday  N  times for some integer  N

 

 

 

.  As eons go by,  the relative frequency 
with which  Christmas  has fallen on a  Wednesday  must tend to  N

 

/

 

400

 

 

 

,  its probability;  but 
this fraction cannot simplify to  1/7

 

 

 

.

 

This problem comes from an old  Putnam  exam.  Aside from dynastic and religious considerations,  there are 
technical reasons to doubt that the  Gregorian  calendar,  instituted in  Catholic  countries in  1582  by skipping 
from  4  to  15  Oct.,  and in the  British Empire  in  1752  by skipping from  2  to  14 Sept.,  will persist forever.  
The  Gregorian  year is too long,  about a day too long in  4000  years.  This could be remedied by denying leap-
year status to millennial years divisible by  4000  as well as century years not divisible by  400 .  Were this remedy 
adopted,  6000  and  10000  would be leap-years  (as was  2000),  but not  3000,  4000,  5000,  7000,  8000  nor  
9000 .  Such a remedy would keep the seasons in their now familiar places in the calendar for more than  16000  
years.  If this modified  Gregorian  calendar were adopted and kept forever,  what would be the probability that  
Christmas  will fall on a  Wednesday

 

 

 

?   For  M

 

ATLAB

 

  programs to predict days of the week see 

 

 <www.cs.berkeley.edu/~wkahan/daydate>      

 

Problem 2:

 

  A standard deck of  52  playing cards will be shuffled to randomize them thoroughly.  
Then they will be dealt face up one at a time until the first ace appears.  The next card—  the one 
following the first ace—  will be put in an envelope.  Of two cards,  the ace of spades and the two 
of clubs,  which is more likely to go into the envelope?

 

The future tense has been used above because the probability of finding a card in the envelope is zero if it has 
already appeared face up.  The probability we wish to compute pertains to our state of knowledge before any card 
has been dealt.

At first sight,  the two of clubs seems the more likely to go into the envelope because the first ace may be the ace of 
spades.  However,  we must take account of the possibility that the two of clubs will precede the first ace.  Since 
each of the four aces is as likely as any other to be first,  the probability that the first ace will be the ace of spades is  
1

 

/

 

4

 

 

 

.  In the set of five cards consisting of the two of clubs and the four aces,  the probability is  1

 

/

 

5  that the first to 
appear will be the two of clubs.  This seems to imply that the two of clubs is more likely than the ace of spaces to be 
put in the envelope.  But this paragraph’s reasoning is wrong.  What is the right answer to the problem’s question?

 

Solution 1

 

:  Shuffling the cards  “to randomize them thoroughly”  implies that every ordering of 
the  52  cards is as likely as any other ordering;  there are  52

 

!

 

  different orderings.  In how many 
of these orderings does the ace of spades follow immediately after the first ace?  We can count 
them by removing the ace of spades,  ordering the  51  remaining cards,  and then putting the ace 
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of spades back immediately after the first ace;  there are  51

 

!

 

  such orderings.  Therefore the 
probability that the ace of spades will be found in the envelope is  (51

 

!

 

)/(52

 

!

 

) = 1/52 .  The same 
argument yields the same probability  1/52  for finding the two of clubs  (or any other card)  in 
the envelope.  Surprisingly,  each of the  52  cards in the deck is as likely as any other to go into 
the envelope.

 

Prof. M. Klass  suggested this problem.  Probabilistic arguments are easy to bungle.  This is no excuse for avoiding 
them.  Instead,  practice them until you get them right.  Aristotle,  tutor to  Alexander the Great,  is said to have 
advised him …

“ Consider what is probable,  even if others deem it impossible,  before considering possible improbabilities.”
Don’t confuse this advice with the better-known advice  Aristotle  offered playwrights and novelists:
“ Rather choose  (for dramatic purposes)  a plausible impossibility than an improbable possibility.”  (

 

Poetics

 

 §24)

 

Problem 3:

 

  A dart board is partitioned into disjoint regions each assigned an integer,  and then 
three darts are thrown at the board at random independently,  and the three integers so selected 
are added.  Let  p  be the probability that their sum is divisible by  3

 

 

 

.  Find the minimum of  p  
over all possible partitionings and assignments.

 

Solution 3:

 

  The minimum  p  is  1

 

/

 

4 .  Here is why:  Let  x, y, z  be the probabilities that the 
number recorded for a throw of a dart yield a remainder of  0, 1, 2  respectively when divided 
by  3 .  The sum of three such remainders can be divisible by  3  only if all three remainders are 
the same or all three are different.  Taking their order into account,  different remainders can be 

selected in six ways,  so the probability of divisibility by  3  is   p := x

 

3

 

 + y

 

3

 

 + z

 

3

 

 + 6xyz

 

 

 

.  This 
yields  p = 1

 

/

 

4  when  x = y = 1

 

/

 

2  and  z = 0

 

 

 

.  Therefore,  we seek a proof that  p  cannot be less 
than  1/4  when  x 

 

≥

 

 0 ,  y 

 

≥

 

 0 ,  z 

 

≥

 

 0  and  x+y+z = 1 .  We remove this last sum constraint by 
replacing  p  above by a redefined function with the same range of values:

p(x, y, z) :=  ( x

 

3

 

 + y

 

3

 

 + z

 

3

 

 + 6xyz )

 

/

 

(x+y+z)

 

3

 

 .
Thus redefined,  p  is homogeneous of degree  0 ;  

 

i.e.

 

,  p(x, y, z) = p(tx, ty, tz)  for all  t 

 

≠

 

 0

 

 

 

.  
Therefore the three variables  x, y, z  need merely be assumed nonnegative and not all zero.  In 
other words,  the point  (x, y, z)  can be assumed to lie in a region  P  consisting of the closure of 
the positive orthant shorn of the vertex  (0, 0, 0)

 

 

 

,  instead of lying in a triangular section of  P

 

 

 

.

Now  Lagrange  multipliers are not needed to locate the extrema of  p  in  P

 

 

 

.  Strictly inside  P ,  
the stationary values of  p  are taken where all its partial derivatives vanish;  there we find

x

 

2

 

 + 2yz  =  y

 

2

 

 + 2zx  =  z

 

2

 

 + 2xy  =  (x+y+z)

 

2

 

·p .
Subtracting pairs of the first three expressions and factoring yields

(x–y)(x+y – 2z)  =  (y–z)(y+z – 2x)  =  (z–x)(z+x – 2y)  =  0 ,
from which follows necessarily   x = y = z   and   p = 1

 

/

 

3

 

 

 

.  This stationary value turns out to be 
neither a maximum nor minimum of  p  in  P

 

 

 

.  On the faces of  P

 

 

 

,  where just one variable  

(

 

 

 

say  z

 

 

 

)  vanishes,  the stationary values of  p = ( x

 

3

 

 + y

 

3

 

 )

 

/

 

(x+y)

 

3

 

 = ( x

 

2

 

 – xy + y

 

2

 

)

 

/

 

(x+y)

 

2

 

  are 
taken where its partial derivatives with respect to the other two variables vanish.  There we find

2x – y  =  –x + 2y  =  2(x+y) p ,
which implies   x = y   and  p = 1

 

/

 

4

 

 

 

.  This turns out to be its minimum.  On the edges of  P  two 
variables vanish and  p = 1

 

 

 

,  which is its maximum in  P

 

 

 

.
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Problem 4:

 

  This problem explores elementary probabilistic ideas.  On a computer,  a  

 

Random 
Number Generator

 

  U()  can be construed as a  “function”  that takes no argument but produces,  
each time it is invoked,  a random number independent of those it produces at other invocations.  
These random numbers are considered to be  

 

Uniformly Distributed

 

  in an interval,  say the 
interval between  0  and  1

 

 

 

,  just when the probability of finding one of those random numbers 
in any particular subinterval is proportional to its width;  

 

i.e

 

.,  just when
     Probability{ u 

 

≤

 

 U() 

 

≤

 

 v } =  max{ 0,  min{1, v} – max{0, u} }
=  v – u   provided   0 

 

≤

 

 u 

 

≤

 

 v 

 

≤

 

 1 .
These random numbers are deemed  

 

Independent

 

  when no information about the next value of  
U()  can be inferred from all its previous values.  (Of course,  a computer program cannot produce 
truly random numbers;  they are actually  “Pseudo-Random”  and,  if the program is constructed 
well enough,  are practically impossible to distinguish from truly random numbers.)  Given such a 
generator  U()

 

 

 

,  uniformly distributed between  0  and  1

 

 

 

,  your task is to construct out of it a 
generator of random  

 

Barycentric Coordinates

 

  {

 

λ

 

, 

 

µ

 

, 

 

ν} distributed uniformly and independently 
over a triangle,  and then to construct another generator of random barycentric coordinates  
{ κ, λ, µ, ν} distributed uniformly and independently over a tetrahedron.

What are  Barycentric Coordinates?  {λ, µ}  are the barycentric coordinates of the center of gravity of a pair 
of masses  λ  and  µ  situated at the ends of a line segment joining,  say,  x  and  y .  As  λ  and  µ  vary through 
nonnegative values,  the center of gravity  (λx + µy)/(λ+µ)  moves along the line segment.  Similarly  { λ, µ, ν }  
are the barycentric coordinates of the center of gravity of three masses  λ,  µ  and  ν  situated at a triangle’s three 
vertices,  say  x,  y  and  z  respectively.  As  λ,  µ  and  ν  vary through nonnegative values,  the center of gravity  
(λx + µy + νz)/(λ+µ+ν)  moves throughout the triangle.  And so on for a tetrahedron.  The masses are assumed to 
sum to a positive number,  customarily  1 ,  to avoid having all of them  0 .  A distribution of random coordinates is  
Uniform  just when the probability of finding a random point in any subregion is proportional to its area  (in the 
plane)  or its volume  (in 3-space).

Solution 4:  Given any three noncollinear vectors  x, y, z  that locate the vertices of a triangle  
T ,  the expression   t := λx + µy + νz   runs over the triangle's interior once as  { λ, µ, ν }  runs 
over all triples of positive numbers that add up to  1 .  In fact,  given any point  t  inside  T ,  the 
equation   t–x = (λ–1)x + µy + νz = µ(y–x) + ν(z–x)   determines  µ  and  ν  uniquely,  because  
y–x  and  z–x  are linearly independent,  and thus map  Bijectively  ( one-to-one )  the triangle

∆:    µ ≥ 0    and    ν ≥ 0    and    µ + ν ≤ 1 
in the  (µ, ν)-plane  to triangle  T .  This bijective map is also  linear,  so if it maps a subregion  
Ω  in  ∆  to a subregion  R  in  T  then  (Area of  Ω)/(Area of  ∆) = (Area of  R)/(Area of  T) .

Now,  Random  barycentric coordinates  { λ, µ, ν }  are said to be distributed  Uniformly  over a 
triangle when,  for every subregion  R  contained in the foregoing triangle  T ,  the random point  
λx + µy + νz  falls into  R  with probability  (Area of  R)/(Area of  T) .  Equivalently,  since the 
random barycentric coordinates always satisfy  λ + µ + ν = 1 ,  they are distributed uniformly 
when the point  (µ, ν)  in the  (µ, ν)-plane falls into a subregion  Ω  in  ∆  with probability  
(Area of  Ω)/(Area of  ∆) .  Our task is to invent formulas for  λ,  µ  and  ν  that employ a given 
uniform and independent random number generator  U() .
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Before devising three ways to use the given uniform random number generator  U()  to generate 
points uniformly over a triangle,  let us solve a simpler problem:

How can we generate  Random Barycentric Coordinates
{ µ, ν}  distributed  Uniformly  along a line segment?

Here  µ  and  ν  must be nonnegative and sum to  1 .  By setting  ν := U()  and  µ := 1 – ν   we 
obtain random barycentric coordinates that distribute random points   µx + νy = x + ν(y–x)  
uniformly along the line segment joining points  (vectors)  x  and  y .

The foregoing construction inspired  Ms Svetlana Zuev,  a student taking  Math. H90  in  1995,  to 
observe that setting first  u1 := U()  and then  u2 := U()  produces a pair  {u1, u2}  of independent 
random variables distributed uniformly over a square that can be mapped to a parallelogram  P  
thus:  For any noncollinear vectors  x, y, z  the point   x + u1·(y–x) + u2·(z–x)   runs randomly and 
uniformly over the parallelogram  P  whose vertices are  x,  y,  z  and  y+z–x = x + (y–x) + (z–x) :

This  P  consists of two triangles:  One of them is  T  with vertices  x,  y,  z ;  the other is  T'   with
vertices  y+z–x,  z,  y .  These congruent triangles share a common edge,  the diagonal of  P  from  
y  to  z ;  and each triangle is the reflection of the other through the midpoint  (y+z)/2  of  P .  Point  
t'   in  T'   reflects through that midpoint to   t = y+z – t'   in  T .  If randomly generated points that 
fall into  T'   are relocated to their reflections in  T ,  the random points distributed uniformly in  P  
will then be mapped to random points distributed uniformly in  T ,  as desired.  The relocation is 
accomplished as follows,  which is  Svetlana Zuev’s  elegant solution of the given problem:

µ := U() ;   ν := U() ;    …  each random,  independent,  uniform on  [0, 1] . 
if  1–µ < ν  then do  { µ := 1–µ ;   ν := 1–ν } ;   …  { reflection from  T'   to  T }  if necessary. 
λ := (1–µ) – ν .     …  and  λ ≥ 0 . 

…    Now random  λ, µ, ν  are nonnegative and sum to  1 ,  and 
…    λx + µy + νz   is distributed uniformly over the triangle  T .

It’s a neat process to execute and to explain,  but can’t be generalized so neatly to tetrahedra.

Rejection is an alternative to relocation,  and gives rise to the following alternative solution for the 
given problem;  simply discard any random point that falls into  T'   and try again to generate a 
random point in  T :

Repeat  { µ := U() ;   ν := U() ;   λ := 1 – µ – ν }  until  λ ≥ 0 .
…    Now random  λ, µ, ν  are nonnegative and sum to  1 ,  and 
…    λx + µy + νz   is distributed uniformly over the triangle  T .

When the repeated block  { µ := … – ν }  generates a point that falls into  T'   it is rejected,  which 
happens about as often as not on average.  How many times will this rejection procedure invoke  
U() ?  On average,  we can expect  U()  to be invoked twice half the time,  four times a quarter of 

o
x

y

z

y+z–x

Parallelogram  P
T

T'•
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the time,  six times an eighth of the time,  …,  amounting to a total of four invocations of  U()  on 
average.  This means that the rejection procedure can be expected to take about twice as long on 
average as  Svetlana Zuev’s  reflection procedure takes;  worse,  the rejection procedure will take 
a very long time on extremely rare occasions.

An inept attempt to speed up the rejection procedure might modify it thus:
µ := U() ;   repeat  { ν := U() ;   λ := 1 – µ – ν }  until  λ ≥ 0 .

This modification destroys the  Uniformity  of the distribution of random points in  T ;  can you see why?  If not,  run 
the modified procedure on a computer and plot the points it generates until the distribution’s nonuniformity becomes 
evident.

Here is a third neat algorithm,  and it does generalize to tetrahedra.  Divide a parallelogram  P  
whose vertices are  x,  y,  z  and  x+z–y  in cyclic order  (different from the previous  P )  into 
two triangles along the diagonal from  x  to  z .  Now triangle  T ,  with vertices  x,  y  and  z ,  is 
a reflection of the other triangle  T'   with vertices  z,  x+z–y  and  x ,  but in a less obvious way.

The point  t := x + ξ(y–x) + η(z–y)  runs over all of  P  as coordinates  ξ  and  η  both run 
independently between  0  and  1 .  If  η ≤ ξ  then  t = (1–ξ)x + (ξ–η)y + ηz  is a positively 
weighted average of  T’s  vertices and therefore lies in  T ;  if  η ≥ ξ  then  t  lies in  T'  .  If  ξ  
and  η  are random variables distributed independently and uniformly between  0  and  1  then  t  
is randomly distributed uniformly over  P ,  and so also over each of  T  and  T'   when not in the 
other.  To map  T'   to  T  we simply swap  ξ  and  η  whenever  η ≥ ξ .  Here is the algorithm:

ξ := U() ;  η := U() ; ...  two independent random variables uniform on  [0, 1] .
if  ξ < η  then swap  {ξ, η} ;  …  so  ξ ≥ η  now.
λ := 1 – ξ ;  µ ;= ξ– η ;  ν := η ;  ...  all nonnegative.

...  Now { λ, µ, ν }  are barycentric coordinates  ( nonnegative and sum to  1 )  randomly

...  and uniformly distributed over a triangle.
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As neatly as the foregoing three solutions for the given problem exploit its geometry,  they are not 
the only neat solutions.  Another scheme besides reflection and rejection deserves consideration,  
and it will generalize to a tetrahedron.

Given a random number generator  U()  whose  Probability Density  is  Uniform  on  [0, 1] ,
i.e.,   if  0 ≤ u ≤ 1  then   Probability{ u ≤ U() < u+du } = 1·du ,   otherwise it is  0 ,

let us derive from  U()  a random number generator  V()  whose  Probability Density  is  Linear :
i.e.,   if  0 ≤ v < 1  then   Probability{ v ≤ V() < v+dv } = 2v·dv ;   otherwise it is  0 .

One way to accomplish this is to set   V() := √U() ,  as we’ll see;  and then we’ll apply it to  T .

More generally,  consider a random variable  X()  whose  Probability Density  is  f(x) ,  which 
means that

Probability{ x ≤ X() < x + dx } = f(x)·dx   for infinitesimal  dx .
Here  f(x)  must be nonnegative and integrable and its integral over the range of  X()  must be  1 .

o
y

z

x

x+z–y

Parallelogram  P
T

T'•
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Next define  F(x)  to be the  Cumulative Distribution  function for  X() ,  which means

Probability{ –∞ < X() ≤ x }  =  F(x)  =  ∫–∞
x f(ξ) ·dξ .

This  F(x)  is a nondecreasing function rising from  F(–∞) = 0  to   F(+∞) = 1 ;  and  F'(x) = f(x)  
wherever the derivative  F'(x)  exists.  For example,  for the random variable  U()  distributed 
uniformly between  0  and  1  we find the probability density is

f(u) = 1   if  0 ≤ u ≤ 1 ,   otherwise  f(u) = 0 ;
and the cumulative distribution of  U()  is

F(u) = 0   if  u ≤ 0 ,
        = u   if  0 ≤ u ≤ 1 ,
        = 1   if  u > 1 .

We shall need another function  M(x)  which,  for simplicity’s sake,  is presumed to be a strictly 
increasing continuous function that runs from  –∞  to  +∞  as  x  runs from  –∞  to  +∞ .  Then the 
equation  y = M(x)  can be solved for  x = W(y) ;  here  W(y)  is also a strictly increasing 
continuous function whose domain and range are the whole real axis.  The functions  M  and  W  
are  Inverse  to each other in the sense that   W(M(x)) = x  and  M(W(y)) = y  for all real  x and y .

Now consider a new random variable  Y() := M( X() )  obtained from a given random variable  X()  
with known density  f(x)  and cumulative distribution  F(x) ;  how is  Y()  distributed?  In other 
words,  what density  g(y)  and cumulative distribution  G(y)  belong to  Y() ?  Here they are:

  G(y) :=  Probability{ –∞ < Y() ≤ y }
 =  Probability{ –∞ < M( X() ) ≤ y }
 =  Probability{ –∞ < X() ≤ W(y) }  =  F(W(y)) ;   and therefore

   g(y) :=  G'(y)  =  F'(W(y))·W'(y)  =  f(W(y))·W'(y)     wherever all derivatives exist.

For example take  V() = √U()  for  U()  distributed uniformly on the interval  [0, 1] ,  so its density  
f(u) = 1  for  0 ≤ u ≤ 1 .  Here  M(u) := √u  is specified on that interval.  What  M  does elsewhere 
does not matter much;  we can extend  M  to the whole real axis by setting  M(u) := √|u|·sign(u) .  

Its inverse is then  W(v) = v·|v| ,  so  W(v) = v2  on the interval  [0, 1] ,  which is what matters.  
Now the density of  V()  is  g(v) = f(W(v))·W'(v) = 2v  on that interval,  as was predicted above,  

and the cumulative distribution of  V()  is   G(v) = F(W(v)) = v2 .  This random number generator  
V()  with its linear density will be used later to generate random points distributed uniformly over 
the triangle  T .

There is another altogether different way to produce a random variable  V()  with the same 
distribution.  It requires two invocations of  U() ,  instead of one plus a square root.  We could 
write cryptically   V() := 1 – | U() + U() – 1 | ,  but here is a more conventional rendering of the 
algorithm:

U1 := U() ;   U2 := U() ;   V := 1 – |U1 + U2 – 1| .
These  U1  and  U2  are independent random variables each distributed uniformly over the interval  
0 ≤ Uj ≤ 1 ,  thereby distributing random points  (U1, U2)  uniformly over the square wherein   
0 ≤ U1 ≤ 1   and   0 ≤ U2 ≤ 1 .  Here  “uniformly”  means that  (U1, U2)  falls into any region  R  
contained in the square with probability equal to the area of  R .  Then how is  V()  distributed?   
0 ≤ V() ≤ 1  since  0 ≤ U1 + U2 ≤ 2 .  Moreover,   for  0 ≤ v ≤ 1 ,



Solutions to Problems for  Math. H90                                          Issued  19 Oct. 2007

Profs. Vera Serganova & W. Kahan            Version dated October 19, 2007 4:26 pm                             Page 7 of 12

   G(v) =  Probability{ 0 ≤ V() ≤ v }  =  Probability{ 1–v ≤ |U1 + U2 – 1| ≤ 1 }

=  Probability{ 0 ≤ U1 + U2 ≤ v   or   2–v ≤ U1 + U2 ≤ 2 }  =  v2/2 + v2/2  =  v2 .

The two contributions  v2/2  come from the triangles cut at two corners of the square by the previous inequalities.

Therefore random variables   V() := 1 – |U() + U() – 1|   and   V() := √U()   have the same linear 
distribution;  to compute  V()  on your computer choose whichever of these formulas runs faster.

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us resume the construction of random barycentric coordinates uniformly distributed over the 
triangle  T .  Suppose noncollinear vectors  x,  y,  z  locate the vertices of  T ,  and consider the 
random vector   t() := x + V()·( (y–x) + U()·(z–y) )   wherein  U()  is distributed uniformly and,  
independently,  V()  is distributed with a linear density  ( 2V() ),  both over the interval from  0  to  
1 .  How is  t()  distributed?

t()  sweeps out  T  as  U()  and  V()  sweep independently from  0  to  1  because the scalar 
coefficients of vectors  x,  y  and  z  sweep through all nonnegative barycentric coordinates with 
sum  1 .  Determining how densely  t()  is distributed over  T  raises a technical question that will 
be answered twice to illustrate first a geometrical technique and secondly an analytical technique.

First cut  T  into strips all of equal infinitesimal width and parallel to the edge of  T  opposite  x .  
Fixing  v  between  0  and  1  selects a strip,  and then vector  x + v·(y–x + u·(z–y))  runs along this 
strip as  u  runs from  0  to  1 .  The random vector   x + v·( y–x + U()·(z-y) )   is distributed 
uniformly along this strip,  whose length and therefore area are proportional to  v .  Consequently  
t() = x + V()·( y–x + U()·(z-y) )   is distributed uniformly along each strip at a density which,  
when accumulated over the whole strip,  contributes to its probability an amount proportional to 
the density  2V()  of  V() ,  and thus proportional to the strip’s area.  Therefore the density of  t()  
per unit area is the same in every strip,  and thus uniform over  T .

An analytic technique confirms that conclusion:  As  U()  and  V()  sweep independently through 
an infinitesimal rectangle wherein   0 ≤ u ≤ U() < u+du ≤ 1   and   0 ≤ v ≤ V() < v+dv ≤ 1 ,   which 
they do with probability  (1·du)(2v·dv) ,  vector  t()  runs through an infinitesimal parallelogram 
with a vertex at   x + v·( y–x + u·(z-y) )   and adjacent edges  v·(z–y)·du  and  (y–x + u·(z–y))·dv .  
The area of this parallelogram is proportional to the determinant of the edges’ coefficients of the 

independent constant vectors  z–y  and  y–x ,  namely  det( ) = v·du·dv .  Since this 

U1

U2

U1+U2 = v

U1+U2 = 2–v

0

1

1

Triangle has

area  v2/2 .

v du⋅ 0

u dv⋅ dv
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infinitesimal parallelogram’s area turns out proportional to the foregoing probability  2v·du·dv  
that  t()  will fall into it,  t()  must be distributed uniformly over the triangle  T ,  as desired.

The desired barycentric coordinates  {λ, µ, ν}  distributed uniformly over a triangle are the 
random coefficients of  x,  y  and  z  in  t() = x + (y–x + (z–y)·U())·V() ,  and are computed by this 
algorithm:

U := U() ;   V := V() ; …  independent uniform and linear random variables. 
λ := 1–V ;   ν := V·U ;   µ := V–ν . …  Don’t confuse  “V”  with  Greek  letter  “ν”  (nu). 

This is the last of the algorithms,  namely
reflection, rejection, and a square root or sum to generate a linear distribution,  

devised to solve the given problem of barycentric coordinates distributed uniformly in a triangle.
    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The foregoing problem is one of a sequence of such problems of which the next is to generate 
barycentric coordinates  {κ, λ, µ, ν}  randomly,  independently and uniformly distributed over the 
tetrahedron wherein they are nonnegative and add up to  1 .  The tetrahedron is swept out by  
κ·w + λ·x + µ·y + ν·z  provided the tetrahedron’s vertices reached by vectors   w,  x,  y,  z   are not 
coplanar;  the differences   x–w ,  y–x ,  z–y   must be linearly independent vectors.  A simple 
algorithm to compute those barycentric coordinates resembles the last technique described above;  
here it is:

First use one of the algorithms above to generate random barycentric coordinates
{ λ' , µ' , ν'}   distributed uniformly and independently over the triangle;

q := 3√U() ; ...  the independent random cube root has density  3q2  on   0 ≤ q ≤ 1 . 
κ := 1–q ;    λ := q·λ'  ;    µ := q·µ'  ;    ν := q·ν'  .

A vindication of this algorithm is left to the reader.

Another algorithm to generate random barycentric coordinates  { κ, λ, µ, ν }   uniformly 
distributed over the tetrahedron is analogous to the second neat algorithm above for the triangle,  
based upon a uniform distribution of  t := w + ξ·(x–w) + η·(y–x) + ζ·(z–y)  over a parallelepiped 
with a vertex at  w  and three adjacent edges  x–w ,  y–x  and  z–x .  The triple  {ξ, η, ζ}  must 
be randomly distributed uniformly and independently over the cube  0 ≤ ξ ≤ 1 ,  0 ≤ η ≤ 1   and  
0 ≤ ζ ≤ 1 .  in  (ξ, η, ζ)-space.  This cube breaks into six tetrahedra of which one consists of 
those points  (ξ, η, ζ) so ordered that  0 ≤ ξ ≤ η ≤ ζ ≤ 1 ;  then the other five tetrahedra are 
obtained by permuting coordinates.  Sorting  {ξ, η, ζ}  maps those five tetrahedra upon the first 
in a way that preserves the distribution’s uniformity as follows:

ξ := U() ;  η := U() ;  ζ := U() ; …  now  (ξ, η, ζ)  is uniform over the cube.
Sort  (ξ, η, ζ)  so that  ξ ≤ η ≤ ζ ; …  so  (ξ, η, ζ)  is uniform over the tetrahedron.
κ := 1–ζ ;   λ := ζ–η ;   µ := η–ξ ;   ν := ξ .

The verification that random barycentric coordinates  { κ, λ, µ, ν }  are now distributed 
uniformly over a tetrahedron is left to the reader.
    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The last two algorithms can be generalized further to distribute random barycentric coordinates 
uniformly over a simplex of arbitrarily high finite dimension.  The  MATLAB  program  barand   
below generates  N  random barycentric coordinate-sets distributed uniformly over a simplex of 
dimension  K–1 .  How can its correctness be proved?  How should it be tested?

function  R = barand(K, N)
%   R = barand(K, N)  is a  KxN  array of random  Barycentric Coordinates
%   ( R >= 0  and  sum(R) == ones(1,N) )   distributed uniformly over the
%   (K-1)-Simplex,  which is a line segment when  K = 2 ,  a triangle when
%   K = 3 ,  a tetrahedron when  K = 4 ,  etc.  In general,  the vertices
%   of a simplex are the columns of  X = [x1 x2 x3 ... xK] ,  provided all
%   K-1  differences  x2-x1, x3-x2, x4-x3, ...  are linearly independent;
%   and then  X*barand(K, N)  scatters  N  points at random distributed
%   uniformly throughout the simplex.  For example,  to test  barand(3,N) ,
%                 plot( ([0 1 i]*barand(3,N)).' , '.' )
%   should fill a triangle in the complex plane uniformly with dots if  N
%   is big enough.  To test  barand(4,N) ,  running
%                  Z = [ 1 0 0 1 ;  0 1 -1 0 ]*barand(4,N) ;
%                  plot( Z(1,:)' + (Z(1,:).*Z(2,:))'*i , '.' )
%   should scatter dots uniformly over a lens.

%   Program  barand  uses  Matlab’s  rand(m,n)  to create an  m-by-n  array
%   of pseudo-random numbers distributed independently and uniformly between
%   0  and  1 .                                      W. Kahan,  9 Dec. 1996

K = round(K) ;  N = round(N) ;  % ...  Force  K  and  N  to be integers.
R = ones(K, N) ;  %...  Preallocate memory for  R .
if  K < 2 ,  return,  end
if  K == 2
    R(1,:) = rand(1,N) ;  % ...  uniformly distributed between  0  and  1 .
    R(2,:) = diff(R) ;
    return
  end
%  Svetlana Zuev's  method for  K = 3  distributes uniformly over a triangle:
k = [1 2] ;
R(k,:) = rand(2,N) ;  j = ( sum(R(k,:)) > 1 ) ;
R(k,j) = R([3; 3],j) - R(k,j) ;  % ...  = 1 - R(k,j)
R(3,:) = R(3,:) - sum(R(k,:)) ;  % ...  = 1 - sum(R(k,:))
%  If  K > 3 ,  distribute points over simplices of increasing dimensions:
for  j = 3:K-1
    k = [1:j] ;
    v = rand(1,N).^(1/j) ;
    R(k,:) = R(k,:).*v(ones(j,1),:) ;
    R(j+1,:) = R(j+1,:) - v ;  % ... = 1 - v = 1 = sum(R(k,:)) .
  end %...  of  barand

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

An extensive discussion of pseudo-random number generators,  with many citations of the 
relevant literature,  appears in  vol. II  of  The Art of Computer Programming  by  D.E. Knuth,  
now in its third edition.
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Problem 5:  You dare not offend nor disappoint rich  Great Uncle Willy  lest he disown you.  He 
has placed  $2000  in your hands to bet on the outcome of the  World Series,  which is a baseball 
contest won by whichever of two teams first wins  4  games.  Draws are not tolerated.  Willy  has 
chosen a team and given you  $2000  before the  Series  starts.  At the end of the  Series  he 
expects you to return to him either  $4000  if the team he chose wins,  or nothing if it loses.

But you can find nobody who will accept bets on the entire  World Series.  However,  there are 
wagerers who will take on even-odds bets,  in any amount(s),  on each game individually.  What 
strategy for placing bets on individual games will achieve the cumulative result  Willy  expects?

Solution 5:  The betting strategy is laid out in the following array.  It is organized into eight 
columns,  one for each time just before the first,  or just after the last,  or between two games,  of 
which at most seven will be played.  These are the times at which money changes hands both to 
place a bet and to receive its winnings.  At each time but the last,  you must decide how much to 
bet and how much to hold;  these amounts are entered into the array thus:  [Amount  Bet]  

    [Amount Held] 

Whenever  Willy’s  team wins,  move to the array’s next entry upward to the right;  whenever 
his team loses,  move to the array’s next entry downward to the right.  The last move must go 
either to an entry  [4000]   if  Willy’s  team has just won the  Series,  or to an entry  [ 0 ]   if his 
team has just lost the  Series.  The array can be filled in from right to left because each entry’s  
[Amount  Bet]  + [Amount Held]   must match the  [Amount Held]   from a previous lost game 
as well as the sum  [Amount Held]  + 2[Amount  Bet]   from a previous win.

    Game #   1      2      3      4      5      6      7      #Won – #Lost
             :      :      :      :      :      :      :
             :      :      :       [4000]:      :      :       ...  4
             :      :       [ 250]/      :      :      :
             :      :       [3500]\       [4000]:      :       ...  3
             :       [ 500]/       [ 500]/      :      :
             :       [2750]\       [3000]\       [4000]:       ...  2
              [ 625]/       [ 750]/       [1000]/      :
  Start       [2000]\       [2000]\       [2000]\       [4000] ...  1
       [ 625]/       [ 750]/       [1000]/       [2000]/
       [1375]\       [1250]\       [1000]\       [  0 ]\       ...  0
  here        [ 625]/       [ 750]/       [1000]/       [    ]
              [ 750]\       [ 500]\       [  0 ]\       [  0 ] ... -1
                     [ 500]/       [ 500]/       [    ]
         Win         [ 250]\       [  0 ]\       [  0 ]        ... -2
  [ Bet]/                   [ 250]/       [    ]
  [Held]\                   [  0 ]\       [  0 ]               ... -3
         Lose                      [    ]
                                   [  0 ]                      ... -4

( Prof. Elwyn Berlekamp  supplied this problem in  1995  and said this task had been set before job-seekers at a  
Wall Street  brokerage in  1994.)
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Problem 6:  Show how to distribute nine points around the surface of a sphere in such a way that 
each point is equidistant from its four nearest neighbors.

Solution 6:  To describe it we shall need two coordinate systems for  Euclidean 3-space.  First,  
the  rectangular  (x, y, z)  coordinate system identifies a point  p  with a row-vector  p = [x, y, z]  of 
its coordinates.  Second,  the spherical coordinate system uses radial distance  r ≥ 0 ,  azimuth 
angle  θ ,  and elevation angle  φ  to locate a point.  The coordinate systems are related:

x = r·cos(θ)·cos(φ) ,   y = r·sin(θ)·cos(φ)    and    z = r·sin(φ) ;   and conversely

   r = √(x2 + y2 + z2) ,    –π/2 ≤  φ = arcsin(z/r)  ≤ π/2 ,   –π ≤  θ = 2·arctan(y/(x + √(x2+y2)))  ≤ π .
( If  x < 0 ,  use  θ = 2·arctan((√(x2+y2) – x)/y)  to get better numerical accuracy.)

Since all the points in this solution lie on a sphere,  say the unit sphere with  r = 1 ,  the angles  θ  
and  φ  suffice to determine the vector  s(θ, φ) := [cos(θ)·cos(φ), sin(θ)·cos(φ), sin(φ)]  to the point  
s(θ, φ)  on the sphere.  These angles could be used to describe our nine points on the sphere;  but 
there would be  18  angles,  and the  36  distances between points would have to be computed 
from these angles as was done on  pp. 66-7  of  The College Math. Journal 27 #1 (Jan. 1990),  the 
source of this problem.  Let’s find a way to avoid most of that trigonometric computation.

Recall the scalar product  p1·p2'  = x1·x2 + y1·y2 + z1·z2  of two row-vectors  pj = [xj, yj, zj] .  It 
figures in a vector’s length  ||p|| = √(p·p')  and in the distance  ||p1–p2||  between two points  p1  

and  p2 ;  in fact  ||p1–p2||
2 =  (p1–p2)·(p1–p2)'   =  ||p1||

2 + ||p2||
2 – 2·p1·p2'  .  Consequently 

distances between points  s1  and  s2  on the sphere depend only on their vectors’ scalar products:

||s1 – s2||
2 =  2(1 – s1·s2')  .

The bigger the scalar product,  the smaller the distance.  Scalar products are so easy to compute in 
rectangular coordinates that these shall be used exclusively to solve our problem.

Angles involve rotations,  which are represented by matrices in a rectangular coordinate system.  
To describe our solution we need one rotation and two reflections:

Rotation  R takes  θ  to  θ + 2π/3 . Consequently  R–1 = R2 .

Reflection  V takes  φ  to  –φ . Consequently  V–1 = V .

Reflection  H takes  θ  to  –θ . Consequently  H–1 = H .

R =   ,    V =  ,    H =   .

Evidently  RV = VR ,  HV = VH ,  and  HRH = R'  = R–1 .

Nine points distributed as the problem requires are reached by vectors

b := [1, 0, 0] = bV = bH , bR , bR–1 = bRH ,

c := [–2/3, 0, √5/3] = cH , cR , cR–1 = cRH ,

cV = cVH , cRV , cR–1V = cRHV = cVRH .

Note that this set of vectors is rotated to itself by  R  and by  R–1 ,  and reflected to itself by  V  and 
by  H .  Of course,  scalar products of pairs of vectors are unchanged when both vectors are 
subjected to the same rotation or reflection.  Therefore,  instead of computing  36  scalar products 

1
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of all pairs from the set of nine,  we need compute only  8  scalar products of  b  with all others,  
plus  7  of  c  with all others,  to determine all  36  scalar products and hence all  36  distances.

The scalar products of  b  with its four nearest neighbors  cR,  cRV,  cRH  and  cRHV  are all  1/3 ,  
as are the scalar products of  c  with its four nearest neighbors  bR,  bRH,  cR  and  cRH .  The 
scalar products of  b  with its other four neighbors  c,  cV,  bR  and  bRH  are all negative,  as are 
the scalar products of  c  with its other four neighbors  b,  cV,  cRV  and  cRHV .

The figure shows all nine points connected only to their nearest neighbors.
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