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You don’t have to solve them all.

 

Problem 0:  

 

A  Wire-Frame Cube  is constructed out of idealized wire of infinitesimal thickness 
run along the edges of the cube and fastened at its corners thus:

It can be assembled out of four pieces of wire as shown below just before they are joined at the 
corners:

Note that no edge is traversed more than once by any wire or wires.  Subject to this constraint,  
can the wire-frame cube be assembled out of fewer than four pieces of wire?  Justify your answer.

 

Solution 0:

 

  NO;  the desired construction needs at least four pieces of wire.  Here is why:  The 
cube has eight vertices.  At each vertex either one wire-end joins a wire’s interior  (perhaps of the 
same piece of wire),  or else three wire-ends join.  Therefore the pieces of wire must have at least 
eight ends all told.  Each piece has two ends,  so there must be at least four pieces of wire.

 

Problem 1:

 

  Mathematicians who disparage ambiguity sensitize themselves to its symptoms so as 
to detect and correct it.  Many other intellectuals remain insensitive.  For example,  intelligence 
tests promulgated by  

 

American Mensa

 

,  a self-styled  “American High I.Q. Society”,  have been 
notorious for unintended ambiguities that elicit  “incorrect”  responses from test takers more 
imaginative and intelligent than the test makers,  thus thwarting the tests’ ostensible purpose.

The following three questions,  framed by a  

 

Mensa

 

  psychologist,  came from the back of a box of  

 

Raisin Bran

 

.  For each question devise answers,  as many as you can,  all at least as valid as the 
one answer the psychologist deemed  “correct”.

1

2

3

4
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1a:

 

  Which one of the following five words doesn’t belong with the others,  and why?
pail      skillet      knife      suitcase      card .

 

Answers

 

:  

 

card All the rest have handles.   (The expected answer)
“card” All the rest include the letter  “i” .
“card” All the rest have two or more vowels.
 suitcase None of the others separates its empty interior from its exterior.
“suitcase” has a  4-bit  number  1000  (in binary)  of letters;  others have  3- .
“suitcase” has  four  vowels;  all others have one or two.
“suitcase” is the only word obtained by adjoining two words with no overlap.
“knife” has a silent consonant  “k”;  others have no silent consonants.

 

1b:

 

  One of the six figures below lacks a characteristic common to the other five figures.  Which 
is that one,  and why?

 

Answers

 

:

 

#4 is the only one containing no triangles.  (The expected answer)
#4 is the only one rotated onto itself by a quarter-turn  (

 

π

 

/2) .
#4 is the only one containing a number of internal regions not divisible by its label.
#5 is the only one containing no intersecting lines strictly inside it.
#6 is the only one containing an intersection of three lines strictly inside it.
#3 is the only one not rotated onto itself by a half-turn  (

 

π

 

) .
#3 is the only one none of whose internal regions is congruent to any other.
#2 is the only one with an obtuse triangle in it.
#1 contains more internal regions than any other.
#1 is the only one rotated onto itself by a sixth of a turn  (

 

π

 

/3) .

 

1c:

 

  One of the following five diagrams doesn’t fit with the others;  which one,  and why?

 

Answers

 

:

 

#5 is the only one not rotated onto itself by a quarter-turn  (

 

π

 

/2) .  (Expected)
#5 is the only one with a square inside a circle.
#1 is the only one without any circle.
#4 is the only one consisting entirely of circles.
#2 is the only one all of which appears on a face of one of a pair of dice.

The design of valid tests requires more knowledge,  guile and imagination than the design or production of whatever 
is being tested,  be it hardware,  software,  medicine,  food or education.  Especially objectionable are exams reliant 
exclusively upon multiple-choice questions that will be graded entirely mechanically.  Such exams prevent examinees 
from handling flawed questions intelligently,  and incline their examiners to deny that their questions could be flawed.  

#1 #2 #3

#4 #5 #6

o o

o o
o o o o

o o o
o o o
o o o

#1 #2 #3 #4 #5
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Similar issues undermine the value of scores from  

 

Teaching Surveys

 

;  I derive more value from what is revealed by 
students’ thoughtful comments.  More valuable again are responses to  

 

Exit Surveys

 

  that ask both graduates and drop-
outs which instructors most influenced,  helped or hindered them,  and why.

The  Putnam Competition Exam  will be set and graded entirely by humans.  They can become intolerant of an 
inconsiderate examinee’s illegible handwriting or unintelligible assertions,  so rewriting your solution carefully to 
clarify it can pay off,  especially if it exposes a lapse you overlooked earlier.  If you think a question is flawed,  don’t 
ask the proctor about it;  response to such a query is forbidden.  Instead either skip the question or else explain what 
you think the question should have asked and answer that.

Worse than test questions with unintended answers are testing policies with mostly unintended consequences.  While 
purporting to impose  “Accountability”  upon school teachers,  “No Child Left Behind”  is actually corroding the  
American  school system by forcing teachers to teach not the subject matter but instead how to psych out the tests.  
Instead of encouraging students to learn and cultivating each one’s talents for leadership,  this misguided policy 
exacerbates the impediments students must overcome to survive the educational system with their native intellectual 
endowments not abraded.  I remember how that worked:

Unlike most of my schoolmates,  I enjoy histories and biographies.  We were turned off history by the way it was 
taught in high school.  It was not the teacher’s fault.  I still remember and admire him.  But the format of the province-
wide  History  exam forced him to stress non-historical aspects of the syllabus.  For instance,  if the exit exam asked 
for the causes of the  American Revolution,  we had to list  20  causes;  neither  19  nor  21  would be deemed correct.  
All of us disdained the minds that dreamt up those requirements,  but I overcame them and even earned a prestigious 
scholarship.  Most of my schoolmates remember about history only how much they disliked it.

 

Problem 2:

 

  Violins produced on the island of  Grxcd  have become collectors’ items since it sank 
into the sea two centuries ago.  All the island’s violins were produced by  Bropcs  or one of his 
sons,  or by  Czwyz  or one of his sons.  Every violin was labelled ostensibly to reveal its maker 
but,  although  Bropcs  and his sons always labelled their violins truthfully,  Czwyz  and his sons 
always labelled their violins with falsehoods.  Both families playfully interfered with collectors’ 
attempts to establish provenances for their violins.  For example,  collectors figured out that a 
violin labelled  “ This violin was not made by any son of  Bropcs.”  was made by  Bropcs  Sr.;  can 
you see why?  The most desirable violins are so labelled that a connoisseur can tell that it must 
have been made by one of the fathers,  either  Bropcs Sr.  or  Czwyz Sr.,  but cannot tell which.  
How might such a violin be labelled?

 

Solution 2:

 

  “ Made by  Bropcs  himself,  or by a son of  Czwyz.”    (… among other possibilities)
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Problem 3:  

 

What are the minimum and maximum numbers of times that  Friday the 13th  can 
occur in the same calendar year,  and why?

 

Solution 3:

 

  The  13th  day of a month falls on  Friday  at least once and at most thrice in any 
calendar year.  Why?  Friday the 13th  occurs only in a month whose first day is  Sunday.  Let’s 
renumber weekdays  

 

mod

 

 7

 

 

 

,  making  Sun. 

 

≡

 

 0 ,  Mon. 

 

≡

 

 1 ,  Tues. 

 

≡

 

 2 ,  … ,  Sat. 

 

≡

 

 6 

 

mod

 

 7

 

 

 

.  
Suppose  Jan. 1  falls on a weekday  numbered  n 

 

mod

 

 7

 

 

 

;  on what days of the week will the 
other months begin?  Table 1  answers this question for a calendar year that is not a  Leap-year:

How often in this calendar year does a month begin on any specified day-of-the-week?  Table 2  
counts these occurrences from the last row of  Table 1 :

Therefore,  in any calendar year not a leap-year,  a month will begin on  Sunday  at least once  
(when  Jan. 1  falls on a  Sat.,  Fri.  or  Wed.)  and at most thrice  (when  Jan. 1  falls on  Thurs.).

Tables 3 and 4  exhibit the same calculations for a leap-year:

Therefore,  in any leap-year,  a month will begin on  Sunday  at least once  (when  Jan. 1  falls 
on a  Sat.,  Fri.,  Wed.  or  Tues.)  and at most thrice  (when  Jan. 1  falls on  Sun.).  Finished.

 

Table 1: Non-Leap-Years

 

Month: Jan. Feb. Mar. April May June July Aug. Sept. Oct. Nov. Dec..

# days in Month: 31 28 31 30 31 30 31 31 30 31 30 31

# days 

 

mod

 

 7 :  3  0  3  2  3  2  3  3   2  3  2  3

1st day 

 

mod

 

 7 :  n n+3 n+3 n+6 n+1 n+4 n+6 n+2 n+5  n n+3 n+5

 

Table 2: Frequencies

 

 n n+1 n+2 n+3 n+4 n+5 n+6

2 1 1 3 1 2 2

 

Table 3: Leap-Years

 

Month: Jan. Feb. Mar. April May June July Aug. Sept. Oct. Nov. Dec..

# days in Month: 31 29 31 30 31 30 31 31 30 31 30 31

# days 

 

mod

 

 7  3  1  3  2  3  2  3  3   2  3  2  3

1st day 

 

mod

 

 7:  n n+3 n+4  n n+2 n+5  n n+3 n+6 n+1 n+4 n+6

 

Table 4: Frequencies

 

 n n+1 n+2 n+3 n+4 n+5 n+6

3 1 1 2 2 1 2
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Problem 4:

 

  This  “proof”  explains why division by a variable called  “

 

 

 

y

 

 

 

”  is always mistaken:  

Define   ƒ(x, y) := (x + y)

 

2

 

   and then substitute   x = u – v   and   y = u + v   to determine that

 

∂

 

ƒ/

 

∂

 

x = 

 

∂

 

ƒ/

 

∂

 

y = 2(x+y) ,   

 

∂

 

x/

 

∂

 

v = –1 ,   and   

 

∂

 

y/

 

∂

 

v = +1 .
Now the  

 

Chain Rule

 

  implies

 

∂

 

ƒ/

 

∂

 

v =  (

 

∂

 

ƒ/

 

∂

 

x)·(

 

∂

 

x/

 

∂

 

v) + (

 

∂

 

ƒ/

 

∂

 

y)·(

 

∂

 

y/

 

∂

 

v)  =  2(x+y)·(–1) + 2(x+y)·(1) = 0 .

But the definition of   ƒ(u, v) = (u + v)

 

2

 

   implies also   

 

∂

 

ƒ/

 

∂

 

v = 2(u+v) = 2y

 

 

 

.  Therefore  y = 0

 

 

 

.  
This appears to preclude division by a variable named  “

 

 

 

y

 

 

 

”

 

 

 

.   Where is the flaw in the  “proof” ?

 

Solution 4:

 

  Of course,  this flawed argument does not prove  y = 0

 

 

 

.  The flaw arises from the 

careless use of the same name for two different functions.  One is  ƒ(x, y) := (x + y)

 

2

 

 

 

.  The other 

is  F(u, v) := ƒ(u–v, u+v) = (2u)

 

2

 

 

 

.  The chain rule delivered not  “

 

 

 

∂

 

f/

 

∂

 

v

 

 

 

”  but  

 

∂

 

F/

 

∂

 

v = 0

 

 

 

.  The 
second appearance of  “

 

 

 

∂

 

ƒ/

 

∂

 

v

 

 

 

”  refers not to  

 

∂

 

F/

 

∂

 

v  but to what was computed earlier as  

 

∂

 

ƒ/∂y  
though now with  (u, v)  in place of  (x, y) .  The notation  “ ∂ƒ/∂v ”  is ambiguous;  better is to let  
ƒx(x, y) := ∂ƒ(x, y)/∂x  and  ƒy(x, y) := ∂ƒ(x, y)/∂y  define as functions  ƒx  and  ƒy  the partial 
derivatives of  ƒ ,  and then invoke the chain rule in the form

∂ƒ(x, y)/∂v =  ƒx(x, y)·(∂x/∂v) + ƒy(x, y)·(∂y/∂v)  =  2(x+y)·(–1) + 2(x+y)·(1) = 0 . 

We should all try to avoid notational ambiguities.  Unfortunately,  ambiguity probably cannot be avoided entirely 
since the set of all worthwhile ideas may well be uncountable whereas the set of all utterances is surely at most 
countably infinite.  Thefore some distinct ideas have to share an utterance that can be disambiguated only by context.  
Let’s try not to make the situation worse.

(This  “proof”  that  y = 0  came from the  College Math. Journal  25 #1 (Jan. 1994) p. 35.)

Problem 5:  Theorem?:  nn – n2 + n – 1  is divisible by  (n–1)3  for every integer  n > 1 .  Proof?:  

If  n > 2  factor  nn – n2 + n – 1 = (n–1)·P(n)  where  P(n) := 1 + n2(1 + n + … + nn–4 + nn–3) .  

Since  nn–3 ≡ nn–4 ≡ … ≡ n2 ≡ n ≡ 1 mod (n–1) ,  we find  P(n) ≡ 1 + n(n–2) = (n–1)2 mod (n–1) ,  

and therefore  P(n)  is divisible by  (n–1)2
 ,  whence follows the claim in the  “Theorem”.

How do you reconcile the alleged  “proof”  with what happens to the  “Theorem”  when  n = 3 ?

Solution 5:  The mistake is deducing from  “ P(n) ≡ 1 + n(n–2) = (n–1)2 ”  that  P(n)  is divisible 

by  (n–1)2 ;  actually  P(n) ≡ 0 mod (n–1)  is all that has been proved.  Corrected,  the theorem 

should say  “ nn – n2 + n – 1  is divisible by  (n–1)2  for every integer  n > 1 ,  and divisible by  

(n–1)3  when  n  is  even.”  Can you prove it now?    Hint:  P(n) = (n–1)·(nn–2 + 2nn–3 + 3nn–4 + … + ? ) .  



Solutions to Problems for  Math. H90                                         Issued    16 Nov. 2007

Profs. Vera Serganova & W. Kahan            Version dated November 29, 2007 5:07 pm                             Page 6 of 20

Problem 6:  Theorem?:  πe  is rational.  Proof?:  Observe first that  logπr  is irrational for every 

rational  r  because otherwise,  were  s = logπr  rational,  we would find  πs = r  and hence  π  
would be algebraic,  contradicting the known transcendence of  π .  Now suppose,  for the sake of 

argument,  that  πe ≠ r  for every rational  r .  This would mean  e = logππe ≠ logπr  for every 
rational  r ,  implying that  e  is not an irrational number because of the first observation.  But  e  is 

known actually to be irrational.  The contradiction establishes that  πe = r  for some rational  r .

Is the foregoing  “proof”  correct?  If not,  what is wrong with it?

Solution 6:  The proof is mistaken because the countable subset of irrational numbers  logπr  
generates,  as  r  runs through all rational numbers,  does not constitute the uncountable set of  all  

irrational numbers,  to which  e  belongs,  so no contradiction has been exposed.  πe  is probably 
irrational,  since thousands of its decimal digits have been computed with no periodicity apparent,  
but nobody knows for sure yet.

This spoof-proof devised by  C. Counts  appeared in  The College Mathematics Journal 24 #3 (May 1993) p. 229.  It 
exemplifies a kind of logical lapse committed all too often,  especially by propagators of letters sent to prestigious 
universities’ mathematics departments announcing or containing lengthy alleged proofs of  Fermat’s Last Theorem,  
or  Goldbach’s Conjecture,  or the  Twin-Primes Conjecture,  or a procedure to  TrisectAngles,  or … .  Sometimes 
such a letter will offer a reward to anyone who exposes a flaw in the alleged proof,  but the reward will amount to 
meager compensation for time spent trying to explain the flaw well enough to persuade its perpetrator.

Problem 7:  Theorem?:  If  1+2+3+…+n = n(n+1)/2  for all positive integers  n  then  n = 1 .  
Proof?:  If  n ≥ 2  then replace  n  in the theorem’s true hypothesis by  n–1  to get the equation

1 + 2 + 3 + … + (n–1)  =  (n–1)n/2 .
Add  1  to both sides of the equation,  producing

1 + 2 + 3 + … + n  =  (n–1)n/2 + 1 .
Invoke the theorem’s hypothesis again to turn this equation into   n(n+1)/2 = (n–1)n/2 + 1 ,  whose 
only finite root is  n = 1 ;  thus the theorem is confirmed.  Where did this  “proof”  go wrong?

Solution 7:  “Add  1  to both sides of the equation,  producing …”  actually produces   
“ 1 + 2 + 3 + … (n–2) + (n–1) + 1 ”   instead of  “ 1 + 2 + 3 + … (n–2) + (n–1) + n ” .

This silly spoof was produced by  R. Euler  for  The College Mathematics Journal 24 #3 (May 1993) p. 229.
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Problem 8:  Two candidates stand for election to a parliamentary seat in ancient  Braczia.  Each 
candidate votes for himself by placing a ballot in his one of two big glass bowls.  Then,  in turn,  
each of another  10000  Braczian  voters places his ballot in the bowl of his choice.  But because 
so many voters like to vote for a winner,  the probability is  m/(m+n)  that the next ballot will go 
into a bowl containing  m  ballots already when the other bowl contains  n  ballots.  Choose a bowl 
before the voting starts;  what is the probability that fewer than a quarter of the  10000  ballots cast 
will go into that bowl?

Solution 8:   The requested probability is  1/4.0004 .  Here is why:

The following random process is probabilistically equivalent to the balloting.  Construct a long 
horizontal trough much longer then long enough to hold  10000  glass marbles.  Throw a red 
marble into the trough,  and then throw in  10000  white marbles one at a time at random,  each as 
likely to fall into any position as into any other between or beyond previously thrown marbles.

When there are  m–1  white marbles to the left and  n–1  to the right of the red marble,  the next 
white marble will fall to the left of the red with probability  m/(m+n) ,  with probability  n/(m+n)  
to the right,  thus mimicking the next  Braczian  ballot’s deposit into the left or right bowl.  After 
the  10000th  white marble has been thrown into the trough it will hold  10001  marbles in some 
order as likely as any other.  Therefore the red marble is as likely to sit in one position as in any 
other of  10001  positions among the marbles.  There are  2500  positions with fewer than  2500  
white marbles to the left,  say,  of the red marble.  Therefore the probability that fewer than a 
quarter of the white marbles lie to the left of the red marble is  2500/10001 ,  so this is the 
requested probability.

This problem was supplied by  Computer Science  Prof. Umesh Vazirani.

Problem 9:  Every member of the  Braczian  parliament serves on at least one of its committees,  
of which there are more than there are members of parliament.  Every committee has just three 
members;  no two committees have the same membership.  Explain why parliament has at least  5  
members,  and then why at least one pair of committees must share exactly one member.

Solution 9:  Here is  David Blackston’s  solution of a problem adapted from the  1979 U.S. Math. 
Olympiad.  Let  M  be the number of members of parliament.  M ≥ 5  because otherwise the 
maximium possible number of distinct three-member committees,  namely  M(M–1)(M–2)/6 ,  
would not exceed  M .  To simplify the explanation,  discard any member who serves on only one 
committee,  and discard that committee too even if it shared just one member with another;  the 
diminished parliament still has more committees than members,  and another pair of committees 
that have just one member in common will be shown to exist.  In other words,  we can assume 
with no loss of generality that  M ≥ 5  and that every member serves on at least two committees.

For argument’s sake  Assume  further that no two committees share just one member;  this  
Assumption  will be shown to lead to a contradiction:
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Since at least  3(M+1)  committee seats have to be filled by  M  members,  at least one member 
must serve on four or more committees;  let  A  be such a member,  and let  { A, B, C }  and  
{ A, B, D }  be two of his four or more committees.

Can  { A, C, X }  be a third?  If so,  X  could not be  B  ( because committees are distinguishable )  
nor different from  D  ( because of the  Assumption );  therefore three of  A’s  committees would 
have to be  { A, B, C },  { A, B, D }  and  { A, C, D } ,  and a fourth would have to include some 
other member  E .  But,  no matter who served as the third member of this fourth committee,  it 
would violate the  Assumption  by sharing only member  A  with some other of his committees:

(The last row’s parentheses show which committee(s) would share exactly one member with committee  4  if it 
included the member listed above in the corresponding column.) 

Therefore the  Assumption  would imply that  A  can serve on no second committee with  C  nor,  
for similar reasons,  with  D .  Instead,  B  must serve on each of  A’s  committees and,  by 
symmetrical reasoning,  A  must serve on each of  B’s  committees:

This would leave no other committee for  C  to serve on without violating the  Assumption;  but all 
members who,  like  C ,  can serve on only one committee were presumed to have been discarded 
at the beginning.  Therefore the  Assumption  must be inconsistent,  and the desired explanation is 
complete.

Alternative Solution 9:  This gem is due to  Robert Mena.  Suppose parliament has  M  members 
and  N  committees;  N > M > 0 .  Let  M-by-N  arrray  C  have,  in its row  #i  and column  #j ,

cij  := 1  just when parliament member  #i  belongs to committee  #j ;  otherwise  cij  := 0 .
Every column of  C  has exactly three  1’s  because every committee has three members.  Next let  
N-by-N  matrix  H := C'·C .  Here  C'   is  C’s  transpose.  In row  #i  and column  #j  of  H  we find

hij  =  the number of members belonging to both committees  #i  and  #j .
Every diagonal element  hjj  = 3 .  Every off-diagonal element  hij  < 3  because no two committees 
have  the same members.  Therefore  H ’s  off-diagonal elements are all drawn from  {0, 1, 2} .  
The problem is to prove that some  hij  = 1 .  The proof goes by contradiction:

For argument’s sake suppose no element of  H  were  1 .  Then  H ≡ I mod 2 ;  here  I  is the  N-by-

Table 5:   Four Committees on which  A  would serve

Committee 1 A B C — — —

Committee 2 A B — D — —

Committee 3 A — C D — —

Committee 4 A ?(3) ?(2) ?(1) E ?(1,2,3)

Table 6:   Four Committees on which  A  could serve

Committee 1 A B C — — —

Committee 2 A B — D — —

Committee 3 A B — — E —

Committee 4 A B — — — F
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N  identity matrix.  Consequently  det(H) ≡ 1 mod 2 .  But  det(H) = 0  because the rank of a 
matrix product cannot exceed the rank of any factor,  so  rank(H) ≤ rank(C) ≤ M < N .

Can you see why the assumption that committees outnumber members is essential for the problem’s conclusion and 
not just the proofs?

Problem 10:   Protagoras,  who  taught  Law  at his school in ancient  Greece,  accepted a penniless but bright 
student on condition that the student pay all of the school’s fee after winning his first case at law.  The student agreed 
to this contract but took no law cases after graduating.  Instead he made a lot of money dealing in real estate.  After a 
while  Protagoras  sued him for payment of the school’s fee,  arguing …
• “If the court rules in my favor it must compel this former student to pay me.

  If I lose this case,  the student will have won his first case and the court must enforce
the contract to which he agreed,  and compel him to pay me.”

The former student refused to pay,  arguing …
• “If I win this case the court has sided with me,  so I need not pay the fee.

  If I lose this case the contract between  Protagoras  and me does not oblige me to pay.”

This is one of the earliest paradoxes on record.  How can the court best resolve it?

Solution 10:  Protagoras  loses,  and must pay the court’s costs,  after which he can sue again and 
win.  Then the court will enforce the contract and compel the former student to pay the fee owed 
plus the court’s costs.  Turning one lawsuit into two eliminates the paradox and sets a profitable 
precedent for courts to cope with similar contracts,  should any be brought before the court.  This 
resolution does not violate prohibitions of  Double Jeopardy;  they apply only to criminal cases 
brought by the state.  Neither do laws against  Barratry  apply to the second lawsuit in so far as the 
contract renders it inevitable under the circumstances.

Why did the former student choose to represent himself?  Had he hired a lawyer instead.  the court would surely have 
ruled in his favor,  but then he would have had to pay his lawyer.

Problem 11:  Several gentlemen seated at a round table in a restaurant are reputed each to be a proficient jewel 
thief though none has been caught nor convicted.  They are all suspects in the theft of a fabulous diamond,  the  Blue 
Napoleon,  from a museum.  Evidence at the scene has convinced the police that only one thief took the diamond but,  
knowing nothing more,  the police have placed all these gentlemen under surveillance.  These,  surmising correctly 
that a microphone has been planted at their table,  have said nothing about the theft though they are curious to know  
whether  one among them stole the diamond.  However,  to protect the thief from betrayal,  they wish not to know  
who  stole it.  By prearrangement,  each gentleman flips a coin and,  using a menu or a napkin,  hides it from everyone 
except himself and his neighbor on the right at the table.  Then each gentleman winks one eye or the other  (the 
policeman watching could see only some of them do it)  for a few seconds after which,  from the expressions of 
satisfaction on their faces,  the policeman watching has inferred that they know whether one among them stole the 
diamond but,  if one did,  not who did it.

How did they communicate just that information?



Solutions to Problems for  Math. H90                                         Issued    16 Nov. 2007

Profs. Vera Serganova & W. Kahan            Version dated November 29, 2007 5:07 pm                             Page 10 of 20

Solution 11:  In principle each gentleman could communicate two bits of information by winking 
one eye,  both or neither.  Thus each gentleman could reveal the status,  heads or tails,  of both his 
coin and his right-hand neighbor’s;  that information would be useless unless the thief,  if he is 
among them,  alters his two bits.  But then discrepancies with his two neighbors would identify 
him.  A less risky policy is to communicate just one bit per gentleman.  Here is one way to do it:

Each gentleman sees how his coin and his neighbor’s on the right have turned up,  heads or tails,  
either the same or different.  If different he winks his left eye;  if the same he winks his right eye;  
but if he stole the diamond he does the opposite.  The number of pairs of adjacent coins that differ 
must be even;  do you see why?  Consequently the gentlemen know that the thief is one among 
them if they see an odd number of left eyes winked;  but then they cannot know for sure who the 
thief is.  Honor among Thieves  precludes that any gentleman would wink the wrong eye.

The foregoing communications protocol was suggested by  David Chaum  in  1988.  Note that “several” exceeds two.

Problem 12:  A computerized algebra system has supplied a simple but incorrect closed-form 
formula for 

 ∫0arctan(t) √2·tan(x) dx  =  arctan( √2t/(1–t) ) – log( (t + √2t + 1)/√(1 + t2) )  for all  t ≥ 0 .
What’s wrong with it?   Supply a similarly simple but correct closed-form formula.

Solution 12:  The derivative of the formula shown above does  “simplify”  to   √2t/(1 + t2 ) ,  
which is the derivative of the integral,  but the integral is a continuous function of all  t ≥ 0  
whereas the formula is discontinuous;  it jumps by  –π  as  t  increases through  1 .  The formula is 
wrong.  Computerized algebra systems like  Mathematica,  Maple  and  Derive  are fallible,  alas.

Several correct formulas for the integral   J(t) :=  ∫0arctan(t) √2·tan(x) dx  =  ∫0t √2τ dτ/(1 + τ2)   
have been coaxed out of different computerized algebra systems:

 J(t) =  π/2 – arcsin((1–t)/√(1+t2)) – log((t+√2t+1)/(1+t2))  from  Maple V r3  on a  Mac.

 J(t) =  π – arccos((t–1)/√(1+t2)) – log((t+√2t+1)/(1+t2))  from  Maple 7.
 J(t) =  arctan(√2t–1) + arctan(√2t+1) + log((t–√2t+1)/(t+√2t+1))/2 

 from  Derive 4.11,  Macsyma 2.3,  Maple 7 & 11,  Mathematica 4.2.

The incorrect formula can be derived from this last formula by applying the trigonometric identity
arctan(y) + arctan(z) = arctan( (y+z)/(1 – y·z) )  provided  y·z < 1

and ignoring the  proviso.  Can you see how this identity must be changed when  y·z ≥ 1  ?

Here is a derivation  by hand  of the last correct formula:  Substitute  τ := 2w2  into  J(t)  to get

 ∫ √2τ dτ/(1 + τ2)  =  8∫ w2
 dw/(1 + 4w4)  =  32∫ w2

 dw/(((2w+1)2 + 1)·((2w–1)2 + 1)) 
    =  ∫ (4w–2 + 2) dw/((2w–1)2 + 1) – ∫ (4w+2 – 2) dw/((2w+1)2 + 1) 

   = log((2w–1)2 + 1)/2 + arctan(2w–1) – log((2w+1)2 + 1)/2 + arctan(2w+1)
  = log((t–√2t+1)/(t+√2t+1))/2 + arctan(√2t–1) + arctan(√2t+1) .      END.
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Problem 13:   Let  g(s) := 8s3 – 4s2 – 4s + 1 ;   why is   g(sin(π/14)) = 0  ?

       Hint:  First let  s2 = (1–c)/2  to confirm that   g(sin(π/14))·g(–sin(π/14)) = g(cos(π/7)) .

Solution 13:  Observe that  sin(π/14) = cos(3π/7) .  If  g(cos(3π/7)) = 0   then   g(cos(π/7)) = 0  
too,  apparently.  To create a polynomial that vanishes at  cos(kπ/7)  for small odd integers  k  set

  ƒ(z) := (z7 + 1)/(z4 + z3) = z3 + z–3 – z2 – z–2 + z + z–1 – 1 = (z+z–1)3 – (z+z–1)2 – 2(z+z–1) + 1 ,

and then substitute  x := (z+z–1)/2 ,  so   z = x ± √(x2–1) ,  to get   ƒ(z) = ƒ(x ± √(x2–1)) = g(x) .  
Now,   ƒ(z) = 0  just when  z = exp(kπı/7) = cos(kπ/7) ± ı·sin(kπ/7)  for  k = ±1,  ±3  or  ±5 ;  and 
then  x = cos(kπ/7)   to make   g(x) = 0 .  Therefore

g(s) = 8(s – cos(π/7))(s – cos(3π/7))(s – cos(5π/7)) 
       = 8(s – sin(5π/14))(s – sin(π/14))(s + sin(3π/14)) .    End of answer.

Maple 11 simplified  g(sin(π/14))  to zero but other automated algebra software didn’t.  

Problem 14:  In  Euclidean 3-space  a  Lattice-Point  is one whose three  Cartesian  coordinates 
are all integers.  What is the least integer  n  with the property that,  no matter which  n  lattice 
points be chosen,  at least one line segment whose end-points are both among the  n  chosen 
lattice points contains in its interior another lattice point  (chosen or not)?  Why?

Solution 14:  n = 9 .  To see why  n > 8 ,  examine a cube’s eight vertices  (x, y, z)  with every 
coordinate either  0  or  1 ;  no lattice-point can lie between two of these vertices.  To see why  
n = 9 ,  consider nine lattice-points’ coordinates  (x, y, z)  mod 2 .  Only eight possibilities exist,  
so some two chosen points have coordinates with respectively matching parities  (even or odd),  
and the midpoint between these two chosen points is a lattice-point.

Problem 15:  Over  2250  years ago  Archimedes  proved that the  (surface of the)  sphere of 
radius  1  has area  4π .  This area is divided into two hemispheres of equal area  2π  by any  Great 
Circle,  the intersection of the sphere with a plane through its center.  Two great circles intersect in  
Antipodal  points on the sphere and divide its area into four  Lunes.  Three nonconcurrent great 
circles divide the sphere into eight  Spherical Triangles,  which come in four pairs of antipodal 
triangles of equal areas.  Let  ∆  be one of those triangles and also its area;  and let  A,  B  and  C  
be that triangle’s vertices and also the radian angles at those vertices.  Prove that  Area  
∆ = A + B + C – π .  (The proof is short and needs no trigonometry.)

Solution15:  Begin the proof by observing that the area of each lune between two great circles is 
proportional to the angle at its two antipodal vertices.  If this angle is measured in radians it must 
be half the lune’s area,  which falls strictly between  0  and  2π .
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Let  ∆  be the spherical triangle antipodal to  ∆ .  Because each of these triangles is the other’s 
reflection through the sphere’s center,  they have the same area  ∆ = ∆ ;  moreover the angles at 
antipodal vertices  A,  B  and  C  are the same respectively  as at  A,  B  and  C .

Now,  to obtain names for all eight spherical triangles and their vertices,  we need a picture.  To 
this end,  Stereographic Projection  from a point strictly inside  ∆  onto the plane tangent to the 
sphere at the antipodal point inside  ∆  projects each great circle onto a circle in the plane.  It 
projects seven of the spherical triangles onto curvilinear triangles in the plane;  the eighth,  ∆,  is 
projected onto the plane outside all the other seven curvilinear triangles.  Here is how such a 
projection might look:

Names  α,  β  and  γ  have been given to three 
spherical triangles and their areas each of which 
is complementary to  ∆  in a lune;  for example,  
colunar  triangles  ∆  and  α  form a lune whose
vertices are  A  and  A ,  and whose area is  2A .  
The  overstrikes  mark antipodal images equal in 
angle or area.  The three lunes that overlap  ∆  
have areas
  2A = α + ∆ ,    2B = β + ∆   and    2C = γ + ∆ .
Add these together and note that antipodal area  
γ = γ ,  and note too that   α + β + γ + ∆ = 2π  is 
the area of a hemisphere,  to complete the proof of

Girard’s Theorem (1629): Area  ∆ = A + B + C – π .

The last expression has come to be known as the triangle’s  Spherical Excess  because the area of a spherical triangle 
on the unit sphere is the amount by which the sum of the spherical triangle’s angles exceeds the sum  π  of every plane 
triangle’s angles.

Problem 16:  The  Disordered Inequality  is worth knowing:   It says if   x0 ≤ x1 ≤ x2 ≤ … ≤ xN  
and  y0 ≤ y1 ≤ y2 ≤ … ≤ yN ,  and if  π(…)  is any permutation of the integers  0, 1, 2, 3, …, N ,  

then   ∑k xk·yN–k  ≤  ∑k xk·yπ(k)  ≤  ∑k xk·yk .   Prove it.

Proof 16:   The first inequality is an application of the second after replacing every  yk  by  –yk ,  
and the second is proved by  undoing the permutation  through a sequence of swaps thus:  
Whenever some  j < k  but  π(j) > π(k) ,  change  π(…)  by swapping  π(j)  and  π(k) .  Doing so 
replaces the middle sum’s terms  xj·yπ(j) + xk·yπ(k)  by  xj·yπ(k) + xk·yπ(j)  and increases that sum,  
if it changes,  because (xj·yπ(k) + xk·yπ(j)) – (xj·yπ(j) + xk·yπ(k))  =  (xk – xj)·(yπ(j) – yπ(k)) ≥ 0 .  
Repeating such swaps ultimately  Bubble-sorts  the permutation  π(…)  into increasing order,  
turning it into the identity and increasing the middle  ∑…  to the second  ∑…  unless they were 
equal initially.  Equality between these  ∑’s  can occur only if  π(…)  reorders only equal  x’s  or 
equal  y’s .

∆

∆
A

B
C

A

B
C

α

βγ

α

β

γ
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Problem 17:  Generally   “ ∫oH e–x·ƒ(x)·dx = ∫oh ƒ(x)·dx  for some  h  in  0 < h < H ”  is obvious 
when  ƒ(x)  does not reverse sign in  0 < x < H .  ( Can you see why? )  Otherwise,  if  ƒ(x)  may 
reverse sign,  the quoted equation and inequality deserve an explanation.  Supply one.

Solution 17:  Let  F(x) := ∫ox ƒ(ξ)·dξ  for  x  in  0 ≤ x ≤ H .  This  F(x)  is continuous even if  ƒ(x)  
is not,  and  F(0) = 0 .  Integration by parts yields

  ∫oH e–x·ƒ(x)·dx = ∫oH e–x·dF(x) = e–H·F(H) – 0 – ∫oH F(x)·d(e–x) = e–H·F(H) + ∫oH e–x·F(x)·dx 

   = (e–H·F(H) + ∫oH e–x·F(x)·dx)/(e–H + ∫oH e–x·dx) ,   
which is a positively weighted average of values taken by  F(x)  on the interval  0 ≤ x ≤ H .  

Therefore   ∫oH e–x·ƒ(x)·dx = F(h)   for some  h  strictly inside that interval,  as claimed.

The quoted equation and inequality were asserted as if obvious in the official solution of a  Putnam Exam’s problem.

Problem 18:  Explain why no continuous real-valued function on a real interval  (finite or infinite)  
can take every value in the function’s range exactly twice.

Solution 18:  Suppose for the sake of argument by contradiction that  ƒ(x)  were real,  continuous  
and took every value in its range exactly twice for  a ≤ x ≤ b .  Necessarily  a < b ;  we allow  
a = –∞  and/or  b = +∞ ,  and we allow either or both of  ƒ(a)  and  ƒ(b)  to be infinite.  Let  ƒ  be 
the maximum value taken  (exactly twice)  by  ƒ ,  and say  ƒ = ƒ(x) = ƒ(y)  with  a ≤ x < y ≤ b .  
We allow  ƒ  to be infinite.  Similarly let the minimum value taken  (exactly twice)  of  ƒ  be  
ƒ = ƒ(x) = ƒ(y)  with  a ≤ x < y ≤ b .  Necessarily  ƒ < ƒ .  Consider how the pairs  (x, y)  and  
(x, y)   could be situated relative to each other.  Only three possibilities could arise:

•  Neither element of either pair separates the other pair;  say  x < y < x < y .

•  One pair straddles the other;  say  x < x < y < y .

•  The pairs interlace;  say  x < x < y < y .

In the first two cases we could locate  z  where  ƒ(z) ;= min x<z<y ƒ(z) ,  so that  ƒ < ƒ(z) < ƒ ;  then 
values of  ƒ  between  ƒ(z)  and  ƒ  would have to be taken at least three times,  at least once in 
each of the intervals separating  y < x < z < y  in the first case,  x < x < z < y  in the second.  In the 
third case,  values of  ƒ  between  ƒ  and  ƒ  would have to be taken at least three times,  at least 
once in each of the intervals separated by  x < x < y < y .   Three > two.   END of proof.
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Problem 19:  Suppose infix operator  #  acting upon members of a set  S  satisfies the identities
Idempotent: x#x = x   for every  x  in  S ,    and
Circular: (x#y)#z = (y#z)#x   for all  x,  y and  z  in  S .

Show why  #  must be  Commutative  ( x#y = y#x )  and  Associative  ( (x#y)#z = x#(y#z) )  too.

Solution 19:  Repeated application of the  Circular  identity produces nothing new:
Circular: (x#y)#z = (y#z)#x = (z#x)#y   for all  x,  y and  z  in  S .

The second equation is a rewrite of the first with circularly permuted names of variables,  but it 
also reminds us that both directions of circular permutation are allowed.  This indicates that an 
expression with at least four operands will be needed to generate anything new.  And the operands 
will have to be repeated to elicit the  Commutative  relation.  This will be attacked first because 
afterwards  Commutativity  will imply  Associativity  easily as follows:

 (x#y)#z = (y#x)#z = (z#y)#x = (y#z)#x = x#(y#z) .
Commutativity  is elicited as follows: 

     x#y = (x#y)#(x#y) = ((x#y)#x)#y … after  I.  and then reversed  C.
= ((x#x)#y)#y = (x#y)#y … after reversed  C.  and then  I.
= (y#y)#x = y#x … after  C.  and then  I.   END.

This was problem B1  on the  1971 Putnam Exam.  It said  “binary operation”  instead of  “infix operator”.

Problem 20:  Let  P  be a given convex polygon with  n > 2  sides.  Show how to find a set  S  of  
n–2  points inside  P  with this property:  Every three different vertices of  P  are the vertices of a 
triangle that has strictly inside it exactly one of the points of  S .                                   (This is hard.)

Solution 20:  A solution is easy when  n = 3  or  n = 4  but is already challenging when  n = 5 .  As  

n  increases,  the number  nC3 = n·(n–1)·(n–2)/6  of triangles in question grows rapidly,  and the 
number of solutions increases too.  Hereunder is one solution:

Assume  n > 4  to simplify the exposition.  Number  P’s  vertices  0, 1, 2, …, n–1  in consecutive 
order around  P .  Let  ∆(i, j, k)  be the triangle whose vertices are numbered  i,  j  and  k ;  if these 
are distinct,  ∆(i, j, k)  must be a non-degenerate triangle because  P  is convex.  Let  £(i, j)  be the 
line segment joining distinct vertices numbered  i  and  j .

For each  m = 1, 2, 3, …, n–2  the triangles  ∆(0, m, n–1)  and  ∆(m–1, m, m+1)  intersect in a 
non-degenerate triangle  ∆m  because the vertices numbered  0, m–1, m, m+1, n–1  are the vertices 
of either a convex pentagon,  if  2 ≤ m ≤ n–3 ,  or else a convex quadrilateral,  so  £(m–1, m+1)  
cuts through  ∆(0, m, n–1)  and separates vertex  m  and the interior of  ∆m  from the base  
£(0, n–1)  of  ∆(0, m, n–1)  as shown here:

•
• • •

•

•
••

••
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Choose any point  sm  strictly inside ∆m  to construct set  S := {s1, s2, s3, …, sn–2}  .  This was the 
easy part of the solution.  The hard part is proving that  S  so constructed satisfies the requirements 
of the problem,  namely that every non-degenerate  ∆(i, j, k)  contains exactly one point of  S .

Nothing is lost by assuming that  0 ≤ i < j < k ≤ n–1 .  Then  sj  must lie inside  ∆(i, j, k)  because  
∆(i, j, k) ⊃   ∆(0, j, n–1)∩∆(i, j, k)  ⊇   ∆(0, j, n–1)∩∆(j–1, j, j+1)  = ∆j ⊃  sj .  What remains to be 
proved is that no other point  sm  of  S  lies in  ∆(i, j, k) .  There are two cases to consider:

•  When  0 < m ≤ i  or  k ≤ m < n–1 ,  the point  sm  inside  ∆(0, m, n–1)  is separated from the 
interior of  ∆(i, j, k)  by its base  £(i, k) ,  so  sm  cannot lie in  ∆(i, j, k) .

•  When  i < m < j  or  j < m < k ,  the point  sm  inside  ∆(i, m, j)  or  ∆(j, m, k)  respectively is 
separated from the interior of  ∆(i, j, k)  by a side  £(i, j)  or  £(j, k)  respectively.

These cases exclude from  ∆(i, j, k)  all points  sm  for  1 ≤ m ≤ n–2  except  sj .  END of proof.

This problem was posed in  2002  by  Andor Lucács  and  Szilard András  in  Romania.

Problem 21:  Why is  n = 1  the only positive integer  n  for which  4n + n4  is a prime?

Solution 21:  When  n  is even so is  4n + n4 ,   so only odd  n = 2k+1 ≥ 3  need be considered.   

Then   4n + n4 = (2n + n2)2 – (2k+1·n)2 = (2n + n2 + 2k+1·n)·(2n + n2 – 2k+1·n) .  The smaller factor 

is  2n + n2 – 2k+1·n = (2k – n)2 + 4k ,  which is at least  5 ,   so  4n + n4  cannot be a prime.

Problem 22:  Given integer  N > 0  your task is to partition set  S := { 0, 1, 2, …, 2N–2, 2N–1}   
into two disjoint subsets  X := { x1, x2, x3, …, xN}   and  Y := { y1, y2, y3, …, yN}   in such a way 
that every value  i + xi – yi ,   for  i = 1, 2, 3, …  and  N ,   is an integer multiple  (perhaps  0 )  of  
2N .  Show that your task is feasible for  N = 1, 4  and  5 ,  but not for  N = 54 .

0 n–1

m = 1 2

∆1 m–1 m+1

m

0 n–1

∆m

2 ≤ m ≤ n–3

0 n–1

m = n–2n–3

∆n–2•

•

•
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Solution 22:
A Partition for  N = 4                                 A Partition for  N = 5  

For  N = 4  only  32  out of  8! = 40320  partitions are eligible,  and among these only six have 
every value  i + xi – yi = 0 .  For  N = 5  only  80  out of  3628800  partitions are eligible,  and 
among these only ten have every value  i + xi – yi = 0 .  I do not know an efficient way to cope 
with larger integers  N  except that the task is impossible if  N  is congruent to  2  or  3  mod 4 .

For instance,  the task is impossible for  N = 54  because  S  has an even number  ( N = 54)  of odd 
members,  but the number  (  (N+1)/2  = 27 )  of odd indices is odd.  If a partition were eligible,  
the number of odd members  xi  and  yi  with even indices  i  would have to be even to make their 
values of  i + xi – yi  even.  The number of odd members  xi  and  yi  with odd indices  i  would 
have to be the same as the odd number of odd indices  i  to make their values of  i + xi – yi  even.  
Thus,  the total number of odd members of  S  would have to be odd,  which it isn’t for  N = 54 .

For similar reasons,  the task is impossible for small numbers  N = 2, 3, 6  and  7 .  Experiments with these small 
examples in  1992  may have lead to an insight that  Howard Morris  generalized to create the previous paragraph.

Problem 23:  Can a finite-dimensional  Euclidean  space contain an uncountable infinitude of 
disjoint open subsets of the space?  Justify your answer.

Solution 23:  No,  the disjoint open subsets must constitute a countable infinitude.  Here is why:  
Let  N  be the dimension of the space.  Every open subset must contain a ball  (a disk if  N = 2 ,  a 
solid sphere if  N = 3 ,  a solid hypersphere if  N > 3 )  of positive radius.  Since rational numbers 
are dense among the reals,  each ball must contain points  (x1, x2, x3, …, xN)  whose coordinates  
xj  are all rational.  Choose one such rational point from each open subset.  The rational numbers 
are countable;  see  http://www.cs.berkeley.edu/~wkahan/MathH90/S12Oct07.pdf   for 
examples of enumerations.  Therefore all  N-tuples (x1, x2, x3, …, xN)  of rational coordinates are 
countable,  as are all the chosen rational points,  no two of which can lie in the same open subset 
since these are disjoint.  Therefore these are countable too.

Prof. G. Caviglia  put a problem like this on his  Midterm Test  for  Math. 104.

i xi yi i + xi – yi i xi yi i + xi – yi 

1 0 1 0 1 0 1 0

2 3 5 0 2 3 5 0

3 4 7 0 3 6 9 0

4 2 6 0 4 4 8 0

5 2 7 0
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Problem 24:  Find as compact an expression as possible for the limit,  as  n → ∞ ,   of  

(n+2)n+2/(n+1)n+1 – (n+1)n+1/nn .

Don’t make the mistake of assuming that a limit of products always equals the product of limits.

Solution 24:  The limit is  e .  To see why,  set  n := –1 + 1/x  and  ƒ(x) := (1 + x)1/x ,  and use 

the  Taylor  series for  ln(1+x)  to find that  ƒ(x) = exp(1 – x/2 + x2/3 – x3/4 + … ) .  
Consequently  ƒ(x) —› e   and  ƒ'(x) —› –e/2  as  x —› 0 .  Apply this to  
ƒ(x) + ƒ(–x) +(ƒ(x) – ƒ(–x))/x . 

Problem 25:  Alice  and  Bob  play a game.  Starting with  Alice,  they select  alternate digits for a 
six-digit decimal number  UVWXYZ  they construct from left to right.  Alice  chooses  U ;  Bob  
chooses  V ;  Alice chooses  W ;  and so on.  No digit may be repeated.  Alice  wins if  UVWXYZ  
is not a prime.  Why can  Alice  always win?

Solution 25:  David Blackston  supplied a strategy whereby  Alice  can win every time:   First let  
Alice  choose  U = 3 .  If  Bob  chooses  V = 9  then  Alice  chooses  W = 6 ;  otherwise she chooses  
W = 9 .  Her final choice for  Y  is a digit other than  5  that makes  U+V+W+X+Y + 1  exactly 
divisible by  3 .  That will force  Bob  to choose for  Z  a  5 ,  or an even digit,  or a  1  or a  7  that 
makes  U+V+W+X+Y+Z  ( and hence  UVWXYZ )  exactly divisible by  3 .  Alice’s  choice for  
Y  is feasible because of the counts of decimal digits  modulo 3 .  ( We say that  “ N  is congruent 
to  n  mod 3 ”  if and only if  N  and  n  leave equal remainders when divided by   3 .)

Four digits,  namely  0, 3, 6  and  9,  are congruent to  0 ;
three,  namely  1,  4  and  7,  are congruent to  1 ;  and
three,  namely  2,  5  and  8,  are congruent to  2 . 

Bob’s  two prior choices will leave at least one digit in each congruence class available for  Alice  
to choose for  Y  unless  Bob  has chosen  2  and  8 ,  in which case  Y = 7  will make  
U+V+W+X+Y  congruent to  2 .  Bob  must choose  Z  from a set of five remaining digits among 
which those congruent to  0  are all even,  those congruent to  2  are all even or  5 ,  and those 
congruent to  1  make  UVWXYZ  divisible by  3 ,  so he loses.

Swapping digits  3  and  9  provides another winning strategy for  Alice.  Are there any others?

Problem 26:  A chessboard is covered completely by  64  dice each of which covers exactly one 
square.  Dice may be turned over,  but only if all eight dice in a  Rank (row),  or all eight dice in 
a  File (column),  are rotated through some integer multiple of a quarter turn  (π/2)  about the 
axis through all eight dice’s centers as if they constituted a rigid body.  Each die’s six faces are 
numbered with spots in the standard way.  Your task is to turn the dice to bring every die’s  five-
spots-face  facing upward  (away from the board)  no matter how the dice faced initially.  Then 
all the dice’s exposed faces will look alike.  How will you do it?
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Solution 26:  Let’s number the chessboard’s  Ranks  1 - 8  and  Files  a - h  in the customary 
way as the figure shows,  and orient the  Files  North-South  and the  Ranks  East-West.  Our 
task will be accomplished by alternating two sub-procedures.  Sub-procedure  East-Face(n)  will 
act upon each of the dice in  Rank n,  for  1 ≤ n ≤ 8 ,  to align  Eastward  all their five-spots-
faces.  Then sub-procedure  North-Face(n)  will act upon them to align all their five-spots-faces  
North.  Laid out hereunder are the sub-procedures’ actions:

East-Face(n):  For  z = a, b, …, h  in turn,  rotate the dice in  Rank  n  and then the dice in  File  z 
to align  Eastward  the five-spot-face of the die in  (Rank n,  File z) .  Doing so will 
not misalign dice in  Rank n  previously aligned with five-spots-faces facing  East.
The amounts of  East-Face(n)’s  rotations will depend upon the initial orientations of the dice. 
When the time comes to rotate the die in  (Rank n,  File z),  if its five-spots-face faces  North  or 
South  rotate its rank through a quarter-turn.  Then at most two quarter-turns of the dice in  File  z 
will have that face facing  East.

North-Face(n):  Now every die in  Rank  n  has its five-spots-face facing  East.  For  z = a, b, …, h 
  in turn,  rotate  File  z  through a quarter turn to align upwards the five-spots-face 
  of the die in  (Rank n,  File z) .  Doing so will not misalign any  five-spots-faces 
  previously aligned to face  North.  Next,  rotate  Rank n  through a quarter-turn to 
  align all its dice’s five-spot-faces facing  North.

To accomplish our task,  we invoke  East-Face(1), North-Face(1),  East-Face(2), North-Face(2), 
… ,  East-Face(8), North-Face(8),  and then,  for  n = 1, 2, …, 8  in turn,  rotate  Rank(n)’s  dice 
through a quarter-turn to align every five-spots-face from  Northward  to  upward,  as desired.

Had we chosen to align all the six-spots-faces upward,  instead of the five-spots-faces,  could we get all the exposed 
faces to look alike regardless of their initial orientations?

N
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“Down”  faces into the page.
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Problem 27:  Let  Z = –ZT  be an  N-by-N  skew-symmetric matrix whose elements  ζi,j = –ζj,i  

are real variables.  Then  det(Z) = det(–ZT) = (–1)N·det(Z) ,  so  det(Z) = 0  if  N  is odd.  If  N  is 

even,  det(Z)  is a nonzero polynomial in the elements  ζi,j  ;  for example  det(Z) = ζ12
2  if  N = 2 ,  

and  det(Z) = (ζ12·ζ34 – ζ13·ζ24 + ζ14·ζ23)
2  if  N = 4 .  More generally,  prove that  …

  If  N  is even,  det(Z)  is the square of a polynomial in the elements  ζi,j  with integer coefficients.

Proof 27:  This polynomial is called  “The  Pfaffian”  of  Z .  Nobody knows how to compute it 
quickly using only additions,  subtractions and multiplications  (no divisions nor square roots)  
when  N  gets huge unless  Z  is very special,  like tridiagonal:  For instance,  by induction,  …

  if even N-by-N   Z =    then   det(Z) = ( ζ1·ζ3·ζ5…·ζN–1 )2 .

In general,  the proof that  Pfaffians  exist proceeds by induction.  They have been exhibited above 
for  N = 2  and  N = 4 ,  so for some  n ≥ 2  suppose there exists a polynomial  Pn  with integer 

coefficients such that every  2n-by-2n  skew-symmetric  Z = –ZT  with elements  ζi,j = –ζj,i  has  

det(Z) = Pn({ ζi,j})
2

 .  Any  (2n+2)-by-(2n+2)  skew-symmetric  S = –ST  can be partitioned thus:

S =  = ·   wherein   Z = –ZT ,   J = –JT = –J–1 = ,   and

C  is some  2n-by-2  matrix.  We must assume temporarily that  η ≠ 0 .  Then,  because

Z – CJCT/η = (η·Z – CJCT)/η  is  2n-by-2n  and skew-symmetric,  the induction hypothesis yields 

det(S) = det(ηJ)·det(η·Z – CJCT)/η2n = ( Q({σi,j}) /ηk
 )2  for some nonnegative integer  k ≤ n – 1  

and some polynomial  Q({σi,j})  in the elements  σi,j = –σj,i  of  S  with integer coefficients.  This  

Q({σi,j})  is obtained from  Pn({ ζi,j})  by substituting the elements of  η·Z – CJCT  in place of  
{ ζi,j}  respectively,  and then factoring out from the result as high a power of  η  as possible.  
Because  det(S)  is a polynomial in  η  among other things,  k = 0  and therefore,  as claimed,  
Q({σi,j}) =: ±Pn+1({ σi,j})  except possibly if  η = 0 .  Unless  S = O ,  we get rid of this exception 
by permuting the rows and columns of  S  symmetrically to put a nonzero  σi,j  in place of  η  
without changing  det(S) .  Thus we advance our induction hypothesis from  n  to  n+1 .

Actually  Pn({ ζi,j})  is a sum of  (2n)!/(2n·n!) ≈ √2·(2n/e)n  products of  n  different   ζi,j  ‘s  with coefficients all  ±1 .  
The number of products grows very quickly with  n .  There are  15  products in
    P3({ ζi,j}) = z12·z34·z56 – z12·z35·z46 + z12·z36·z45 – z13·z24·z56 + z13·z25·z46 – z13·z26·z45 + z14·z23·z56 –

          – z14·z25·z36 + z14·z26·z35 – z15·z23·z46 + z15·z24·z36 – z15·z26·z34 + z16·z23·z45 – z16·z24·z35 + z16·z25·z34  
and  105  products in  P4({ ζi,j}) ,  945  in  P5({ ζi,j}) ,  10395  in  P6({ ζi,j}) ,  135135  in  P7({ ζi,j}) ,  … .  Our proof 
exploits divisions in a  Recursive  procedure  (not a  Recurrence)  that can compute the  Pfaffian  of a  2n-by-2n  skew-

symmetric numerical  (not symbolic)  matrix  Z  in time and  (alas)  memory proportional to  n3  instead of  (2n/e)n .  

A recursion  (not a recurrence)  without divisions but taking time proportional to  n4  was found several years ago.
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Much to be desired is a recursion  (or preferably a recurrence)  using only additions,  subtractions and multiplications 

to compute a  Pfaffian  in time proportional to  n3 .  Such a procedure would serve to compute also the determinant of 

an  n-by-n  matrix  B  in the same time because  det(B)  is the  Pfaffian  of  .  Perhaps no such procedure exists.

Here are two easy exercises about  Pfaffians:
•  Show that,  if  ζi,j := – ζj,i := signum(j–i) = ±1  if  j ≠ i , otherwise  0 ,  then every  Pfaffian  Pn({ ζ,i,j}) = 1 .
•  Show that,  if  Z  and  S  are skew-symmetric matrices of the same dimension,  then  √det(I + S·Z)  is a  Pfaffian.

The  Pfaffian  was named in  1852  by the  British  algebraist  Arthur Cayley  in honor of a  German  mathematician  
Johann Friedrich Pfaff (1765 - 1825)  associated also with the treatment of certain partial differential equations.  
Pfaffians  figure in some combinatorial and graph-theoretic. problems.

The Pfaffian  goes unmentioned in most modern texts on  Matrix Theory  or  Linear Algebra.  To read about it  (with 
difficulty in an over-condensed notation)  see  §410 et seq.  of  A Treatise on the Theory of Determinants by Thomas 
Muir  revised and enlarged by  Wm. H. Metzler,  republished in  1960  by  Dover,  N.Y.   W.H. Greub’s Multilinear 
Algebra (1967,  Springer-Verlag,  N.Y.) has a tensor treatment on pp. 176-8.  A neater treatment is on pp. 242-3 of 
P.M. Cohn’s Algebra vol. 1, 2nd ed. (1982, Wiley,  N.Y.)  and pp. 235-7 of his  Classic Algebra (2000, Wiley, N.Y.).  
To  Google  “Pfaffian”  without being drowned in partial differential equations,  include some of the words  
“determinant”,  “permanent”  and  “hafnian”.
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