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Problem 1:

 

   Prove that no rectangular array of real numbers  ß
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Proof 1:

 

   Let column vector  
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The problem’s inequality says that  ||
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,  whereas this norm’s  
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  of the same dimension unless one 
is a nonnegative scalar multiple of the other,  in which case  ||
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  to infer first,  by induction,  that the problem’s inequality must actually be an 
equality  ||
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.  In the trivial case that   
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  the problem’s  (in)equality  forces every  
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,  so 

disregard this case henceforth.  Now  
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  whence  b1 = x·µ1  either for  µ1 := µ/(µ+1)  
if  y ≠ o  or else  µ1 := 1  if  y = o .  The same reasoning works for any  bj  in place of  b1  to prove 
that each  bj = x·µj  for some  µj ≥ 0 ,  and then the elements of  x  provide the problem’s  ξi .

An alternative more computational proof starts from first principles without assuming the triangle 
inequality.  Define  ||…||  and  x := ∑j bj  as before,  so the problem’s inequality still says that  
||x|| = ||∑j bj|| ≥ ∑j ||bj|| ;   and suppose further that  x ≠ o  since the alternative makes every  bj = o  

trivially.  Next define  µj := xT·bj/xTx = xT·bj/||x||2  and   r j := bj – x·µj = (I  – x·xT/||x||2)·bj ,  

whence follows   xT·r j = 0   and then   ||bj||
2 = ||r j + x·µj||

2 = ||r j||
2 + µj

2·||x||2 ≥ µj
2·||x||2 ;  therefore 

every  ||bj|| ≥ µj·||x|| .  But now the sum of all terms   ||bj|| – µj·||x|| ,  all nonnegative,  satisfies

0 ≤ ∑j (||bj|| – µj·||x||) = ∑j ||bj|| – ∑j µj·||x||  ≤  ||∑j bj|| – xT·∑j bj/||x|| = ||x|| – ||x|| = 0 ,

whence every   ||bj|| = µj·||x||  and then,  because  µj
2·||x||2 = ||bj||

2 = ||r j||
2 + µj

2·||x||2  above,  every  

r j = o  and thus each  bj = x·µj  for  µj = ||bj||/||x|| ≥ 0 ,   as claimed.

Problem  2:   For any real  x  and  p > 0  the  Remainder  or  Residue   r := x mod p   is the least 
nonnegative number for which  (x – r)/p  is an integer,  so  0 ≤ r < p .  A set  {xj}  of real numbers  
xj  is called  “Dense”  in an interval if its every nonempty  Open  subinterval contains infinitely 
many members of that set.  (The endpoints of an  Open  subinterval are excluded from it.)  Prove 
that the set  { sin(n) }  generated as  n  runs through all integers is dense in the interval between  –1  
and  1 .  (You may take for granted that  π  is irrational.  Still,  this classical problem is not easy.)

Proof  2:  Problem 2  demands a proof that the set  { n mod 2π }  generated as  n  runs through all  
integers is dense in the interval between  0  and  2π ,  which  sin(…)  maps continuously  (twice)  
onto the interval between  –1  and  1 .  To simplify notation let the irrational number  µ := 1/(2π) ,  
and let  Fractional Part  function  ƒ(x) := x mod 1  for any real  x ,  so  0 ≤ ƒ(x) < 1 .  Now the set  
{  ƒ(n·µ) }  generated as  n  runs through all integers will be proved dense between  0  and  1 .

Since  µ  is irrational,  0 < ƒ(n·µ) = 1 – ƒ(–n·µ) < 1  for every positive integer  n .  No two values 
of  ƒ(n·µ)  can coincide because,  were  ƒ(n·µ) = ƒ(m·µ)  for integers  m  and  n ≠ m ,  then  
(n – m)·µ  would be an integer  (do you see why?)  and  µ  would have to be rational.   In the closed 
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interval  [0, 1]  containing the infinite set  { ƒ(n·µ) }  of points generated as  n  runs through all 
positive integers,  there must be at least one  Condensation Point   æ .  This means  0 ≤ æ ≤ 1  and,  
for every tiny positive  ∆ < 1/2 ,  the inequality  |ƒ(n·µ) – æ| < ∆/2  is satisfied by infinitely many 
integers  n > 0 .  Let  M  and  N > M  be any two of them;  then  |ƒ(N·µ) – ƒ(M·µ)| < ∆ .  This 
inequality implies either  0 < δ := ƒ((N–M)·µ) < ∆  or else  0 < δ := ƒ((N–M)·(–µ)) < ∆ ;  do you 
see why?  Let’s treat the latter case since the former is easier to treat.  For every positive integer  
k < 1/δ  the value of  k·δ = ƒ(k·(N–M)·(–µ)) = 1 – ƒ(k·(N–M)·µ)  falls strictly between  0  and  1 ;   
do you see why?  Inside  [0, 1]  every open subinterval of width  ∆  (no matter how tiny,  but tinier 
than  1/2 )  contains at least one of the values  k·δ  and therefore at least one value  ƒ(n·µ)  too.

Actually,  the fractional parts  ƒ(n·µ)  are  Distributed Uniformly  in the interval between  0  and  1  in this sense:  Let  
Ç(N, w)  count the number of values in the set  { ƒ(µ), ƒ(2µ), ƒ(3µ), …, ƒ(N·µ) }  that fall into some chosen open 
subinterval of width  w  (so  0 < w < 1 )  inside that interval.  Then,  no matter which subinterval has been chosen,  
Ç(N, w)/N → w  as  N → +∞ .  For proofs see  Ch. XXIII  of  An Introduction to the Theory of Numbers (4th ed.) by 
G.H. Hardy and E.M. Wright (1960, Oxford Univ. Press) ;  or see Ch. 3  of I. Niven’s Diophantine Approximations 
(1963, Wiley, New York).  (But watch out!  They write just  “ (x) ”  for  “ ƒ(x) ” .).

Problem 3:  What is   Limn → ∞ (1 + 1/2)·(1 + 1/4)·(1 + 1/16)·(1 + 1/256)·(…)·(1 + 1/ ) ?  Why?

Solution 3:  The limit is  2 .  Here is why:  Observe that at  n = 2 ,  for example, 

(1 + 2–1)·(1 + 2–2)·(1 + 2–4)  =  2–7 + 2–6 + 2–5 + 2–4 + 2–3 + 2–2 + 2–1 + 2–0 = 2 – 2–7 .
For the sake of a proof by induction,  suppose for some  n ≥ 1  that the product of  n  factors is

 pn := (1 + 2–1)·(1 + 2–2)·(1 + 2–4)·(…)·(1 + ) = 2 –  .
Then

 pn+1 = pn·(1 + ) = (2 – )·(1 + ) = 2 –  ,
which advances the hypothesis about  pn  to  pn+1 .  Now let  n → ∞   to get  Lim pn = 2 .

Problem  4:   For a chosen constant  ß > 0  and any initial  x0 > 0  define this sequence  {xn} n>0 :

 xn+1 := (xn + ß/xn)/2 .  for  n = 0, 1, 2, 3, …  in turn.  Does  Limn→∞ xn  exist?  Why?

Solution  4:   Yes,  Limn→∞ xn = √ß  and convergence is fast.  Why?  Confirm these assertions: 

   (xn+1 – √ß)/(xn+1 + √ß) = ((xn – √ß)/(xn + √ß))2 = ((x0 – √ß)/(x0 + √ß)) → 0  as  n → ∞ .

Until several years ago,  all electronic computers obtained  √ß  by computing  xn  starting from a cleverly chosen  x0  
up to a small integer  n  dependent upon the arithmetic’s precision.  This procedure was devised by  Heron  of  
Alexandria  in the first century  AD.  Before that,  Egyptian  priests accepted  x1  as an adequate approximation.  Now 
that computers’ memories are so huge,  and division is so much slower than multiplication and addition,  square roots 
of modest precision are computed by interpolation in tables.
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Problem  5:  Suppose  p(z)  is a polynomial with real or complex coefficients,  and suppose a 
convex polygon  P  includes all the zeros,  real and complex,  of  p(z) .  Show that  P  also includes 
all the zeros of the derivative  p'(z) .
(This problem is intended for students who have learned something about complex variables,  perhaps from  Math. 
185,  but the solution is accessible also to students who have not taken that course.  All you have to know is that,  in a 
vector space,  a  Convex Body  contains the closed line segment joining any two points in this body;  and the  Convex 
Hull  of a set of points is the smallest convex body containing all the set’s points.)

Solution  5:  Let the factorization  p(x) = µ·(x – z1)·(x – z2)·(x – z3)·(…)·(x – zn)  for a suitable 
constant  µ ≠ 0  employ all the zeros  zk  of  p(z) ;  some of them may be repeated.  Then take the  

Logarithmic Derivative  (log(p(x)))'  = p'(x)/p(x) = ∑k 1/(x – zk) = ∑k (x – zk)/|x – zk|
2  wherein 

the overbar on  x  denotes the complex conjugate of  x ,  so  x·x = |x|2 .  Each zero  y  of  p'(x)  that 

is not also a zero of  p(x)  satisfies an equation  0 = ∑k (y – zk)/|y – zk|
2  whose complex conjugate 

tells us that   y = (∑k zk/|y – zk|
2)/(∑k 1/|y – zk|

2) ,  which exhibits this zero  y  of  p'(x)  as a  
Positively Weighted Average  of the zeros  zk  of  p(x) .  Consequently  (do you see why?)  y  lies 
in the  Convex Hull  of the zeros of  p(x) ,  which is contained in polygon  P .

Problem 5’s assertion is known as  “Lucas’ Theorem”.

Problem  6:  Let  x  := (the largest integer no larger than  x )  for any real  x .  For  0 < y < 1  and 

any integer  n > 1  obtain a much simplified expression for   ∑k≥1 ( nk·y  mod n )/nk
 .

Solution  6:  The expression simplifies to  y .  Treat  n  as the  Radix  for arithmetic;  for example,  
if  y = 3/4  and  n = ten  then  y = “0.75ten”  but if  n = two  then  y = “0.11two”.  In general, 

    y = “0.y1 y2 y3 … yk … n” = ∑k≥1 yk/nk  for integers  (“digits”)  yk  each in  0 ≤ yk ≤ n–1 .
In the ambiguous case when  yL < n–1 = yk  for every  k > L ≥ 1  we replace this nonterminating 
expansion by the terminated expansion with a  (new yL) := 1 + (old yL)  and  (new yk) := 0  for all  
k > L  without changing the value of  y .  (Do you see why?)

Now it is evident that   nK·y = ∑1≤k≤K–1 yk·n
K–k + yK + h   for some nonnegative fraction  h < 1 ,  

whence  nK·y  mod n = yK  for each  K ≥ 1 ,  so  ∑k≥1 ( nk·y  mod n )/nk = ∑k≥1 yk/nk = y .


