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Problem 1:  Enumerating Ordered Pairs of Positive Integers

 

Supply fast arithmetical procedures to  

 

Enumerate

 

  provably all ordered pairs of positive integers.  
These procedures must achieve a  

 

Bijection

 

  (a  1-to-1  invertible map)  between the set of  

 

all

 

  
positive integers  k  and the set of  

 

all

 

  ordered pairs  

 

(

 

i, j

 

)

 

  of positive integers thus:
     k :=  £(

 

(

 

i, j

 

)

 

)   is the  

 

Label

 

  of integer pair  

 

(

 

i, j

 

)

 

 ;   and 

 

(

 

i, j

 

)

 

:=  

 

IJ

 

(k)   is the pair of positive integers labelled by  k .
Ideally,  the correctness of these procedures will be confirmed by  

 

proofs

 

  that
£(

 

IJ

 

(k)) = k   and   

 

IJ

 

(£(

 

(

 

i, j

 

)

 

))  =  

 

(

 

i, j

 

)

 

  
for all positive integers   i,  j  and  k .  Moreover each procedure must be  “fast”  in the sense that 
the computation time is practically independent of  k  until it exceeds the biggest integer upon 
which your computer’s or calculator’s hardware performs arithmetic operations atomically.

 

Solution 1:

 

  Here are two fast simple procedures for all positive integers   i,  j  and  k :

£(

 

(

 

i, j

 

)

 

)  :=  i + (i

 

 

 

+

 

 

 

j

 

 

 

–

 

 

 

2)·(i

 

 

 

+

 

 

 

j

 

 

 

–

 

 

 

1)

 

/

 

2    maps ordered pair  

 

(

 

i, j

 

)

 

  to label  k .

   L(k)  :=  

 



 

 

 

1

 

/

 

2 + 

 

√

 

2k – 1

 

 

 



 

  ;             ( 

 



 

x

 



 

  is the biggest integer no bigger than  x )
   M(k) :=  k – (

 

 

 

L(k)

 

 

 

–

 

 

 

1

 

 

 

)·L(k)

 

/

 

2  ; 

 

IJ

 

(k)  :=  

 

(

 

 

 

M(k),  L(k)

 

 

 

–

 

 

 

M(k)

 

 

 

+

 

 

 

1

 

 

 

)

 

    maps label  k  to ordered pair  

 

(

 

i, j

 

)

 

 .

Motivation for formula  £(

 

(

 

i, j

 

)

 

)  is best revealed by plotting its values at points  

 

(

 

i, j

 

)

 

  in the plane,  
but motivation is not proof.  The proof below is based upon properties of  

 

Triangular Numbers

 

 : 
T

 

j+1

 

  :=  (j

 

 

 

+

 

 

 

1)·j

 

/

 

2  =  1

 

 

 

+

 

 

 

2

 

 

 

+

 

 

 

3

 

 

 

+

 

 

 

...

 

 

 

+

 

 

 

(j

 

 

 

–

 

 

 

1)

 

 

 

+

 

 

 

j  =  T

 

j

 

 

 

+

 

 

 

j     for  j = 0, 1, 2, 3, ...

 

 

 

.
( T

 

0

 

 = T

 

1

 

 = 0 .)  These numbers partition the set of all positive integers  k  into disjoint intervals
T

 

j

 

 < k 

 

≤

 

 T

 

j+1

 

    for  j = 1, 2, 3, ... ,
into some one of which every positive integer  k  must fall.  Given  k  we find  j = L(k)  satisfies 
the last two inequalities because   L(k)  is a monotone nondecreasing function of  k  that satisfies

L(T

 

j

 

 

 

+

 

 

 

1) = j = L(T

 

j+1

 

)    for all positive integers  j

 

 

 

,
as can be verified by substitution and the employment of elementary inequalities.  Do so

 

!

 

  

 

The formula for  L(k)  would still work if  

 

√

 

2k - 1  were replaced by  

 

√

 

2k – 7/4 ,  and its verification would become 
simpler;  but then rounding errors could spoil the formula for very big values  k .  As it is now,  L(k)  is easily proved 
correct 

 

despite roundoff

 

 so long as  2k  is less than the smallest positive integer  1000....0001  that the computer’s 
floating-point arithmetic hardware cannot hold exactly.

 

Proof:  Suppose  k = £(

 

(

 

i, j

 

)) ;  then  Ti+j–1 < k = £((i, j)) = i + Ti+j–1 ≤ Ti+j ,  so  L(k) = i + j – 1  
and then  M(k) = k – TL(k) = i  and consequently  IJ (k) = (i, j)  as desired.  On the other hand,  
suppose  (i, j) = IJ (k) ;  then  i + j – 1 = L(k) ,  and consequently  £((i, j)) = M(k) + TL(k) = k  as 
desired.  Thus the formulas’ correctness is confirmed.

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Another procedure obtains  k – 1 = …i5j5i4j4i3j3i2j2i1j1i0j0  by interleaving the digits of  i – 1 = …i5i4i3i2i1i0  and  
j – 1 = …j5j4j3j2j1j0 ,  and conversely.  Sub-procedures for extracting digits and reassembling them have to be proved 
correct;  these are tedious to describe and slower on almost all modern computers than the procedures above.
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
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Problem 2:  Enumerating Positive Rational Numbers
The positive rational numbers  r = m/n  could be identified just with the pairs  (m, n)  of positive 
integers were it not necessary to reduce  m  and  n  to  “lowest terms”  by cancelling out their 
common factors in order to represent every rational  r  uniquely.  For that reason,  enumerating 
pairs  (m, n)  proves that the rationals are countable but does not provide an enumeration of them.

Provide an explicit enumeration in the form of a pair of functions  £(r)  and  R(k)  defined for  all 
rationals  r > 0  and integer indices  k > 0 ,  computable in a time short compared with the integer 
label  k = £(r)  when it grows huge,  and inverse in the sense that  r = R(£(r))  and  k = £(R(k)) .

Can you see why interlacing the digits of a rational number’s numerator and denominator  (even if first decremented 
by  1 )  into one integer does not meet our requirements?  Hint:  222222.

Solution 2: To obtain an explicit enumeration of the positive rationals  r ,  we express  1 + 1/r  as a  
Terminating Continued Fraction   1 + 1/r  =  a + 1/(b + 1/(c + 1/( ... i + 1/(j+1) ...)))   in which 
each of  a, b, c, ..., i  and  j  is a positive integer determined by a well-known repetitive process:

a :=   1 + 1/r   ;
b :=   1/(1 + 1/r – a)   ;
c :=   1/( 1/(1 + 1/r – a) – b )   ;

...  .
Here the rational numbers of which integer parts are taken have numerators and denominators that 
shrink in the course of the process,  so it must terminate;  look up  Euclid’s GCD Algorithm  in 
textbooks or  <www.cs.berkeley.edu/~wkahan/MathH110/gcd5.pdf> .  The last integer divisor  
j+1  exceeds  1  for the sake of the continued fraction’s uniqueness.

Thus,  every positive rational  r  can be associated with a finite sequence  (a, b, c, ..., i, j)  of 
positive integers,  and  vice-versa;  and the association is  bijective  because different sequences go 
with different rationals.  Next we associate every such finite sequence of positive integers with a 
finite strictly increasing sequence of nonnegative integers  (A, B, C, ..., I, J)  thus:

A := a – 1 ;   B := A + b ;   C := B + c ;   ... ;   J := I + j .
This association is bijective too because it is reversible:

j = J – I ;   ...;   c = C – B ;   b = B – A ;   a = A + 1 .
Therefore a bijection has been constructed between the positive rationals  r  and the finite strictly 
increasing sequences  (A, B, C, ..., J)  of nonnegative integers.  Now associate these sequences 
bijectively with the binary expansions of positive integer indices

k  :=  2A + 2B + 2C + ... + 2I + 2J .
Thus,  a way has been exhibited to compute quickly a positive integer label  k = £(r)  for every 
positive rational  r ,  and inversely to compute quickly a positive rational  r = R(k)  for every 
positive integer  k .  Evidently  £(R(k)) = k  and  R(£(r)) = r  for all rationals  r > 0  and integers  
k > 0 ,  so this is an explicit enumeration of the kind desired.  The time taken to compute those 
functions is roughly proportional to the number of nonzero bits in the binary expansion of  k ,  
which grows slowly  ( logarithmically )  with  k  as it tends to infinity.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A simpler alternative,  at first sight,  is to compute  k = £(r) := 2a–1·3b–1·5c–1·…  as a finite product of prime powers.  
However,  to compute  R(k)  then we would have to factor  k ;  but currently nobody knows how to factor gargantuan 

integers  k  faster than in a time proportional to at least  3√k  instead of  log(k) .
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Problem 3:  Linearizing Ordered Pairs of Real Numbers
“Linearizing”  is better than  “Enumerating”.  What is desired here is an explicit bijection between 

two uncountable sets:  One is the set  RR+  of all positive real numbers  r ;  the other is its set  RR+2  
of all ordered pairs  (s, t)  of positive reals.  ( “Ordered”  distinguishes  (s, t)  from  (t, s) .)  In 
other words,  the problem is to construct a bijection between the positive ray on the real axis and 
the positive orthant in the plane.

Solution 3:  Construct a bijection by interlacing digits.  Let decimal expansions of  r,  s  and  t  be   
r = …R3R2R1R0.r1r2r3… ,  s = …S3S2S1S0.s1s2s3…  and  t = …T3T2T1T0.t1t2t3…  respectively.
Setting   …R3R2R1R0.r1r2r3… := …S3T3S2T2S1T1S0T0.s1t1s2t2s3t3…  is too easy;  it fails to 
achieve the desired bijection for two reasons both illustrated by  r = 12/11 = 1.090909… ,  which 
maps to  (s, t) = (0, 1.999…) = (0, 2) ,  neither of them positive pairs,  while duplicating the map 
from  t = 2.0 .  To correct these failures let us institute two measures:

First,  we prevent infinite tails of zeros by choosing for each positive terminating decimal number 
its alternate representation with an infinite tail of nines;  for example,  for  2.6 = 2.5999…  we 
shall choose the latter decimal expansion.  Second,  instead of interleaving decimal digits after the 
decimal point,  we shall interleave  Digit-Blocks  consisting of some number  (perhaps none)  of 
consecutive zeros followed by a nonzero digit.  For example,  120.30400500067080999…  breaks 
into  |1|2|0|.|3|04|005|0006|7|08|09|9|9|…  when broken into digit-blocks.  Now let the expansion 
of  r  into digit-blocks be  r = …R3R2R1R0.r1r2r3… ,  and similarly for  s  and  t .  Then setting  
…R3R2R1R0.r1r2r3… := …S3T3S2T2S1T1S0T0.s1t1s2t2s3t3…  achieves the desired explicit  (and 
surprisingly simple)  bijection.

Problem:  Use the foregoing bijection between  RR+  and   RR+2  to construct an explicit bijection between the set   RR  

of all real numbers  (positive,  negative and zero)  and its set   RR2  of all pairs of real numbers.  Hint:  ln  and  exp .

Problem:  What about a bijection between the set  RRo  of all nonnegative real numbers and its set   RRo2  of pairs?  
Hint:  Zero is an integer.

Problem:  What about a bijection between the set  SS3  of all ordered triples from a set  SS  given a bijection  {£, IJ }  

between  SS  and its set   SS2  of ordered pairs?

Actually,  a bijection  exists  between any infinite set  SS  and its set   SS2  of ordered pairs,  but there may be no way to  
construct  the bijection because the proof of its existence depends upon the  Axiom of Choice.  We have no neat proof.

Problem 4:  Rearranging the Order of Summation of a Doubly-Summed Infinite Series
Suppose every  xm,n ≥ 0 .  Show why,  if either   ∑m≥1 ∑n≥1 xm,n   or   ∑n≥1 ∑m≥1 xm,n   converges,  
both converge to the same sum.

( Like a singly-summed series,  a doubly-summed series  ∑m≥1 ∑n≥1 qm,n  is said to converge  

Absolutely  if  ∑m≥1 ∑n≥1 |qm,n|  converges too.  Without absolute convergence,  rearranging the 
order of summation can change the sum of a doubly-summed series.  For example let  qk,n := 0  

unless  |k–n| = 1  and then  qk,n := k–n ;  now  ∑k≥1 ∑n≥1 qk,n = –1 ≠ 1 = ∑n≥1 ∑k≥1 qk,n .)
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Proof 4:  The proof converts each given doubly-summed series to a singly-summed series by 
using any  Enumeration  {£(i, j), IJ (k)}  of pairs;  this is a pair of functions that implement a 
bijection between the set of all positive integers  k  and the set of all ordered pairs  (i, j)  of them:   
Positive integer  k = £(i, j)  if and only if positive integer pair  (i, j) = IJ (k) .

Use the enumeration to set  X£(i, j) := xi,j .  Our task is to prove that …

 s := ∑m≥1 ∑n≥1 xm,n   converges if and only if  S := ∑k≥1 Xk  converges,  and then  s = S .

First suppose  s  converges.  Let  SK := ∑1≤k≤Κ Xk  and,  for any chosen large integer  K ,  choose  
M  and  N  big enough that  M ≥ m  and  N ≥ n  for every pair  (m, n) = IJ (k)  with  1 ≤ k ≤ K .  
Then   SK = ∑1≤k≤Κ Xk ≤ ∑1≤m≤M ∑1≤n N xm,n ≤ ∑m≥1 ∑n≥1 xk,n = s  regardless of  K ,  whence 
follows that  S  converges and  S ≤ s .

On the other hand suppose  S  converges.  Next,  each  sm := ∑n≥1 xm,n  will be proved convergent 
as follows:  For any chosen integers  m ≥ 1  and large  N  choose  K  so big that all pairs  (m, n)  
with  1 ≤ n ≤ N  appear among the pairs  (m, n) = IJ (k)  when  1 ≤ k ≤ K .  Then,  regardless of  N ,  
the sum  ∑1≤n≤N xm,n ≤ ∑1≤k≤Κ Xk ≤ S ,  so  sm  converges.  Finally,  for any chosen large integers  
M  and  N  choose  K  so big that all pairs  (m, n)  with  1 ≤ m ≤ M  and  1 ≤ n ≤ N  appear among 
the pairs  (m, n) = IJ (k)  for  1 ≤ k ≤ K .  Now  ∑1≤m≤M ∑1≤n N xm,n ≤ ∑1≤k≤Κ Xk ≤ S  regardless 

of  M  and  N .  Let  N → ∞  to deduce that   ∑1≤m≤M sm ≤ S  regardless of  M ,  whence follows 

that  s = ∑m≥1 sm  converges and  s ≤ S .  Therefore  s = S  if either of  s  and  S  converges.

The process that converted  s := ∑m≥1 ∑n≥1 xm,n  to  S := ∑k≥1 Xk  also converts  ∑n≥1 ∑m≥1 xm,n  
to  S ;  so all three sums converge and are equal if any one of them converges.

Swapping absolutely convergent doubly-summed series should be covered in  Math. 104  but usually isn’t.

Problem 5:  Suppose that every  cn ≥ 0  and that  ç := ∑n≥1 cn/n  converges.  Explain why  

Ç := ∑k≥1 ∑n≥1 cn/(n2 + k2)  must converge too.

Solution 5:  Swapping the order of summation in the doubly-summed series  Ç  has been justified 
in  Problem 4.  Swapping now produces the doubly-summed series 

 G :=  ∑n≥1 ∑k≥1 cn/(n2 + k2)  =  ∑n≥1 cn·∑k≥1 1/(n2 + k2)  = ∑n≥1 cn·gn , 

where   gn := ∑k≥1 1/(n2
 + k2) .  Because  1/(n2

 + k2)  decreases as  k  increases,  each

 gn <  ∫0∞ dk/(n2
 + k2) = ( arctan(∞) – arctan(0) )/n = π/(2n) .                  (Do you see why?)

Consequently  G < ç·π/2 ;  in short,  G  is an  Absolutely Convergent  doubly-summed series.  
Now  G ’s  absolute convergence implies that  Ç  converges to  Ç = G .
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Problem 6:  Assume positive real numbers  x1, x2, …, xn  are so big that   ∑1≤k≤n 1/(1 + xk
2) = 1 ,  

so  n ≥ 2 .  Prove  ∑1≤k≤n xk ≥ (n – 1)·∑1≤k≤n 1/xk  with equality only if  n = 2  or each  xk = √n–1 .

Hint:  ∑j 1/(1 + xj
2)·∑k xk – ∑j xj

2/(1 + xj
2)·∑k 1/xk  

Proof 6:  Since the problem’s assumption implies that  ∑k xk
2/(1 + xk

2) = n – 1 ,  we can write

 ∑k xk – (n – 1)·∑k 1/xk =  ∑j 1/(1 + xj
2)·∑k xk – ∑j xj

2/(1 + xj
2)·∑k 1/xk  = 

    =  ∑j ·∑k (xk – xj
2/xk)/(1 + xj

2)  =  ∑j ·∑k (xk
2 – xj

2)/((1 + xj
2)·xk)  = 

Now swap  j  with  k  and average the sums.

    =  ·∑j ·∑k (xk
2 – xj

2)·( 1/((1 + xj
2)·xk) – 1/((1 + xk

2)·xj) )  =  

    =  ·∑j ·∑k (xk
2

 – xj
2)·(xk – xj)·(xk·xj – 1)/( (1 + xj

2)·(1 + xk
2)·xj·xk )  =  

    =  ·∑j ·∑k (xk + xj)·(xk – xj)
2·(xk·xj – 1)/( (1 + xj

2)·(1 + xk
2)·xj·xk ) . 

Because every   1/(1 + xj
2) + 1/(1 + xk

2) ≤ 1  if  j ≠ k ,  so is   2 + xk
2

 + xj
2 ≤ 1 + xk

2
 + xj

2 + xk
2·xj

2 ,  

whence follows that every such   xk·xj ≥ 1 .  Therefore  ∑k xk – (n – 1)·∑k 1/xk ≥ 0  with equality 
only if  n = 2  (and then  x2·x1 = 1 )  or every  xk = xj = √n–1 ,  as claimed.

This problem is an exercise in double summation posed by  W. Janous  in  1991  and solved on  pp. 678-9 of The 
Amer. Math. Monthly 99 #7 (Aug.-Sept. 1992).
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