Problem 1: Enumerating Ordered Pairs of Positive Integers

Supply fast arithmetical procedures to Enumerate provably all ordered pairs of positive integers. These procedures must achieve a Bijection (a 1-to-1 invertible map) between the set of all positive integers k and the set of all ordered pairs (i, j) of positive integers thus:
$\mathrm{k}:=£((\mathrm{i}, \mathrm{j}))$ is the Label of integer pair (i, j); and
$(i, j) \quad:=\mathbf{I} \mathbf{J}(\mathrm{k})$ is the pair of positive integers labelled by k .
Ideally, the correctness of these procedures will be confirmed by proofs that

$$
\mathfrak{£}(\mathbf{I} \mathbf{J}(\mathrm{k}))=\mathrm{k} \quad \text { and } \quad \mathbf{I} \mathbf{J}(£((\mathrm{i}, \mathrm{j})))=(\mathrm{i}, \mathrm{j})
$$

for all positive integers i, j and k . Moreover each procedure must be "fast" in the sense that the computation time is practically independent of k until it exceeds the biggest integer upon which your computer's or calculator's hardware performs arithmetic operations atomically.

Solution 1: Here are two fast simple procedures for all positive integers i, j and k :

$$
\begin{array}{rll}
£((\mathrm{i}, \mathrm{j})): & :=\mathrm{i}+(\mathrm{i}+\mathrm{j}-2) \cdot(\mathrm{i}+\mathrm{j}-1) / 2 & \text { maps ordered pair }(\mathrm{i}, \mathrm{j}) \text { to label } \mathrm{k} . \\
\mathrm{L}(\mathrm{k}):=\lfloor 1 / 2+\sqrt{2 \mathrm{k}-1}\rfloor ; & (\lfloor\mathrm{x}\rfloor \text { is the biggest integer no bigger than } \mathrm{x}) \\
\mathrm{M}(\mathrm{k}):=\mathrm{k}-(\mathrm{L}(\mathrm{k})-1) \cdot \mathrm{L}(\mathrm{k}) / 2 ; & \\
\mathbf{I J}(\mathrm{k}):=(\mathrm{M}(\mathrm{k}), \mathrm{L}(\mathrm{k})-\mathrm{M}(\mathrm{k})+1) & \text { maps label } \mathrm{k} \text { to ordered pair }(\mathrm{i}, \mathrm{j}) .
\end{array}
$$

Motivation for formula $£((\mathrm{i}, \mathrm{j})$) is best revealed by plotting its values at points (i, j) in the plane, but motivation is not proof. The proof below is based upon properties of Triangular Numbers :

$$
\mathrm{T}_{\mathrm{j}+1}:=(\mathrm{j}+1) \cdot \mathrm{j} / 2=1+2+3+\ldots+(\mathrm{j}-1)+\mathrm{j}=\mathrm{T}_{\mathrm{j}}+\mathrm{j} \quad \text { for } \mathrm{j}=0,1,2,3, \ldots
$$

$\left(\mathrm{T}_{0}=\mathrm{T}_{1}=0\right.$.) These numbers partition the set of all positive integers k into disjoint intervals

$$
\mathrm{T}_{\mathrm{j}}<\mathrm{k} \leq \mathrm{T}_{\mathrm{j}+1} \quad \text { for } \mathrm{j}=1,2,3, \ldots,
$$

into some one of which every positive integer k must fall. Given k we find $j=L(k)$ satisfies the last two inequalities because $L(k)$ is a monotone nondecreasing function of k that satisfies

$$
\mathrm{L}\left(\mathrm{~T}_{\mathrm{j}}+1\right)=\mathrm{j}=\mathrm{L}\left(\mathrm{~T}_{\mathrm{j}+1}\right) \quad \text { for all positive integers } \mathrm{j}
$$

as can be verified by substitution and the employment of elementary inequalities. Do so!
The formula for $\mathrm{L}(\mathrm{k})$ would still work if $\sqrt{2 \mathrm{k}-1}$ were replaced by $\sqrt{2 \mathrm{k}-7 / 4}$, and its verification would become simpler; but then rounding errors could spoil the formula for very big values k. As it is now, $L(k)$ is easily proved correct despite roundoff so long as 2 k is less than the smallest positive integer $1000 \ldots . .0001$ that the computer's floating-point arithmetic hardware cannot hold exactly.

Proof: Suppose $k=f((i, j))$; then $T_{i+j-1}<k=£((i, j))=i+T_{i+j-1} \leq T_{i+j}$, so $L(k)=i+j-1$ and then $\mathrm{M}(\mathrm{k})=\mathrm{k}-\mathrm{T}_{\mathrm{L}(\mathrm{k})}=\mathrm{i}$ and consequently $\mathbf{I J}(\mathrm{k})=(\mathrm{i}, \mathrm{j})$ as desired. On the other hand, suppose $(i, j)=\mathbf{I J}(k)$; then $i+j-1=L(k)$, and consequently $£((i, j))=M(k)+T_{L(k)}=k$ as desired. Thus the formulas' correctness is confirmed.

Another procedure obtains $k-1=\ldots i_{5} j_{5} i_{4} j_{4} i_{3} j_{3} i_{2} j_{2} i_{1} j_{1} i_{0} j_{0}$ by interleaving the digits of $i-1=\ldots i_{5} i_{4} i_{3} i_{2} i_{1} i_{0}$ and $j-1=\ldots j_{5} j_{4} j_{3} \mathrm{j}_{2} \mathrm{j}_{1} \mathrm{j}_{0}$, and conversely. Sub-procedures for extracting digits and reassembling them have to be proved correct; these are tedious to describe and slower on almost all modern computers than the procedures above.

Problem 2: Enumerating Positive Rational Numbers

The positive rational numbers $r=m / n$ could be identified just with the pairs (m, n) of positive integers were it not necessary to reduce m and n to "lowest terms" by cancelling out their common factors in order to represent every rational r uniquely. For that reason, enumerating pairs (m, n) proves that the rationals are countable but does not provide an enumeration of them.
Provide an explicit enumeration in the form of a pair of functions $£(\mathrm{r})$ and $\mathrm{R}(\mathrm{k})$ defined for all rationals $\mathrm{r}>0$ and integer indices $\mathrm{k}>0$, computable in a time short compared with the integer label $k=£(r)$ when it grows huge, and inverse in the sense that $r=R(£(r))$ and $k=£(R(k))$.

Can you see why interlacing the digits of a rational number's numerator and denominator (even if first decremented by 1) into one integer does not meet our requirements? Hint: 222222.

Solution 2: To obtain an explicit enumeration of the positive rationals r , we express $1+1 / \mathrm{r}$ as a Terminating Continued Fraction $1+1 / \mathrm{r}=\mathrm{a}+1 /(\mathrm{b}+1 /(\mathrm{c}+1 /(\ldots \mathrm{i}+1 /(\mathrm{j}+1) \ldots)))$ in which each of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{i}$ and j is a positive integer determined by a well-known repetitive process:
$\mathrm{a}:=\lfloor 1+1 / \mathrm{r}\rfloor ;$
$\mathrm{b}:=\lfloor 1 /(1+1 / \mathrm{r}-\mathrm{a})\rfloor$;
$\mathrm{c}:=\lfloor 1 /(1 /(1+1 / \mathrm{r}-\mathrm{a})-\mathrm{b})\rfloor ;$
Here the rational numbers of which integer parts are taken have numerators and denominators that shrink in the course of the process, so it must terminate; look up Euclid's GCD Algorithm in textbooks or <www.cs.berkeley.edu/~wkahan/MathH110/gcd5.pdf>. The last integer divisor $j+1$ exceeds 1 for the sake of the continued fraction's uniqueness.

Thus, every positive rational r can be associated with a finite sequence (a, b, c, \ldots, i, j) of positive integers, and vice-versa; and the association is bijective because different sequences go with different rationals. Next we associate every such finite sequence of positive integers with a finite strictly increasing sequence of nonnegative integers ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{I}, \mathrm{J}$) thus:

$$
\mathrm{A}:=\mathrm{a}-1 ; \quad \mathrm{B}:=\mathrm{A}+\mathrm{b} ; \mathrm{C}:=\mathrm{B}+\mathrm{c} ; \quad \ldots ; \mathrm{J}:=\mathrm{I}+\mathrm{j} .
$$

This association is bijective too because it is reversible:

$$
\mathrm{j}=\mathrm{J}-\mathrm{I} ; \quad \ldots ; \quad \mathrm{c}=\mathrm{C}-\mathrm{B} ; \quad \mathrm{b}=\mathrm{B}-\mathrm{A} ; \quad \mathrm{a}=\mathrm{A}+1
$$

Therefore a bijection has been constructed between the positive rationals r and the finite strictly increasing sequences ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{J}$) of nonnegative integers. Now associate these sequences bijectively with the binary expansions of positive integer indices

$$
\mathrm{k}:=2^{\mathrm{A}}+2^{\mathrm{B}}+2^{\mathrm{C}}+\ldots+2^{\mathrm{I}}+2^{\mathrm{J}} .
$$

Thus, a way has been exhibited to compute quickly a positive integer label $k=£(r)$ for every positive rational r, and inversely to compute quickly a positive rational $r=R(k)$ for every positive integer k. Evidently $£(\mathrm{R}(\mathrm{k}))=\mathrm{k}$ and $\mathrm{R}(£(\mathrm{r}))=\mathrm{r}$ for all rationals $\mathrm{r}>0$ and integers $\mathrm{k}>0$, so this is an explicit enumeration of the kind desired. The time taken to compute those functions is roughly proportional to the number of nonzero bits in the binary expansion of k , which grows slowly (logarithmically) with k as it tends to infinity.

A simpler alternative, at first sight, is to compute $\mathrm{k}=£(\mathrm{r}):=2^{\mathrm{a}-1} \cdot 3^{\mathrm{b}-1} \cdot 5^{\mathrm{c}-1} \cdot \ldots$ as a finite product of prime powers. However, to compute $\mathrm{R}(\mathrm{k})$ then we would have to factor k ; but currently nobody knows how to factor gargantuan integers k faster than in a time proportional to at least $\sqrt[3]{\overline{\mathrm{k}}}$ instead of $\log (\mathrm{k})$.

Problem 3: Linearizing Ordered Pairs of Real Numbers

"Linearizing" is better than "Enumerating". What is desired here is an explicit bijection between two uncountable sets: One is the set \mathbb{R}^{+}of all positive real numbers r; the other is its set \mathbb{R}^{+2} of all ordered pairs (s, t) of positive reals. ("Ordered" distinguishes (s, t) from (t, s) .) In other words, the problem is to construct a bijection between the positive ray on the real axis and the positive orthant in the plane.

Solution 3: Construct a bijection by interlacing digits. Let decimal expansions of r, s and t be $r=\ldots R_{3} R_{2} R_{1} R_{0} \cdot r_{1} r_{2} r_{3} \ldots, s=\ldots S_{3} S_{2} S_{1} S_{0} \cdot s_{1} s_{2} s_{3} \ldots$ and $t=\ldots T_{3} T_{2} T_{1} T_{0} \cdot t_{1} t_{2} t_{3} \ldots$ respectively. Setting $\ldots R_{3} R_{2} R_{1} R_{0} \cdot r_{1} r_{2} r_{3} \ldots:=\ldots S_{3} T_{3} S_{2} T_{2} S_{1} T_{1} S_{0} T_{0} \cdot s_{1} t_{1} \mathrm{~S}_{2} t_{2} \mathrm{~s}_{3} \mathrm{t}_{3} \ldots$ is too easy; it fails to achieve the desired bijection for two reasons both illustrated by $\mathrm{r}=12 / 11=1.090909 \ldots$, which maps to $(\mathrm{s}, \mathrm{t})=(0,1.999 \ldots)=(0,2)$, neither of them positive pairs, while duplicating the map from $t=2.0$. To correct these failures let us institute two measures:

First, we prevent infinite tails of zeros by choosing for each positive terminating decimal number its alternate representation with an infinite tail of nines; for example, for $2.6=2.5999 \ldots$ we shall choose the latter decimal expansion. Second, instead of interleaving decimal digits after the decimal point, we shall interleave Digit-Blocks consisting of some number (perhaps none) of consecutive zeros followed by a nonzero digit. For example, $120.30400500067080999 \ldots$ breaks into $|1| 2|0| \cdot|3| 04|005| 0006|7| 08|09| 9|9| \ldots$ when broken into digit-blocks. Now let the expansion of r into digit-blocks be $r=\ldots R_{3} R_{2} R_{1} R_{0} \cdot r_{1} r_{2} r_{3} \ldots$, and similarly for s and t. Then setting $\ldots \mathrm{R}_{3} \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0} \cdot \mathrm{r}_{1} \mathrm{r}_{2} \mathrm{r}_{3} \ldots:=\ldots \mathrm{S}_{3} \mathrm{~T}_{3} \mathrm{~S}_{2} \mathrm{~T}_{2} \mathrm{~S}_{1} \mathrm{~T}_{1} \mathrm{~S}_{0} \mathrm{~T}_{0} \cdot \mathrm{~s}_{1} \mathrm{t}_{1} \mathrm{~s}_{2} \mathrm{t}_{2} \mathrm{~s}_{3} \mathrm{t}_{3} \ldots$ achieves the desired explicit (and surprisingly simple) bijection.

Problem: Use the foregoing bijection between \mathbb{R}^{+}and \mathbb{R}^{+2} to construct an explicit bijection between the set \mathbb{R} of all real numbers (positive, negative and zero) and its set \mathbb{R}^{2} of all pairs of real numbers. Hint: ln and exp .

Problem: What about a bijection between the set \mathbb{R}^{o} of all nonnegative real numbers and its set $\mathbb{R}^{\mathrm{o} 2}$ of pairs? Hint: Zero is an integer.

Problem: What about a bijection between the set \mathbb{S}^{3} of all ordered triples from a set \mathbb{S} given a bijection $\{£, \mathbf{I J}\}$ between \mathbb{S} and its set \mathbb{S}^{2} of ordered pairs?

Actually, a bijection exists between any infinite set \mathbb{S} and its set \mathbb{S}^{2} of ordered pairs, but there may be no way to construct the bijection because the proof of its existence depends upon the Axiom of Choice. We have no neat proof.

Problem 4: Rearranging the Order of Summation of a Doubly-Summed Infinite Series

 Suppose every $\mathrm{x}_{\mathrm{m}, \mathrm{n}} \geq 0$. Show why, if either $\sum_{\mathrm{m} \geq 1} \sum_{\mathrm{n} \geq 1} \mathrm{x}_{\mathrm{m}, \mathrm{n}}$ or $\sum_{\mathrm{n} \geq 1} \sum_{\mathrm{m} \geq 1} \mathrm{x}_{\mathrm{m}, \mathrm{n}}$ converges, both converge to the same sum.(Like a singly-summed series, a doubly-summed series $\sum_{m \geq 1} \sum_{n \geq 1} q_{m, n}$ is said to converge Absolutely if $\sum_{\mathrm{m} \geq 1} \sum_{\mathrm{n} \geq 1}\left|\mathrm{q}_{\mathrm{m}, \mathrm{n}}\right|$ converges too. Without absolute convergence, rearranging the order of summation can change the sum of a doubly-summed series. For example let $\mathrm{q}_{\mathrm{k}, \mathrm{n}}:=0$ unless $|\mathrm{k}-\mathrm{n}|=1$ and then $\mathrm{q}_{\mathrm{k}, \mathrm{n}}:=\mathrm{k}-\mathrm{n}$; now $\sum_{\mathrm{k} \geq 1} \sum_{\mathrm{n} \geq 1} \mathrm{q}_{\mathrm{k}, \mathrm{n}}=-1 \neq 1=\sum_{\mathrm{n} \geq 1} \sum_{\mathrm{k} \geq 1} \mathrm{q}_{\mathrm{k}, \mathrm{n}}$.)

Proof 4: The proof converts each given doubly-summed series to a singly-summed series by using any Enumeration $\{£(\mathrm{i}, \mathbf{j}), \mathbf{I} \mathbf{J}(\mathrm{k})\}$ of pairs; this is a pair of functions that implement a bijection between the set of all positive integers k and the set of all ordered pairs (i, j) of them: Positive integer $k=£(i, j)$ if and only if positive integer pair (i, $j)=\mathbf{I J}(k)$.

Use the enumeration to set $X_{f(i, j)}:=x_{i, j}$. Our task is to prove that \ldots $\mathrm{s}:=\sum_{\mathrm{m} \geq 1} \sum_{\mathrm{n} \geq 1} \mathrm{x}_{\mathrm{m}, \mathrm{n}}$ converges if and only if $\mathrm{S}:=\sum_{\mathrm{k} \geq 1} \mathrm{X}_{\mathrm{k}}$ converges, and then $\mathrm{s}=\mathrm{S}$.

First suppose s converges. Let $\mathrm{S}_{\mathrm{K}}:=\sum_{1 \leq \mathrm{k} \leq \mathrm{K}} \mathrm{X}_{\mathrm{k}}$ and, for any chosen large integer K , choose M and N big enough that $\mathrm{M} \geq \mathrm{m}$ and $\mathrm{N} \geq \mathrm{n}$ for every pair ($\mathrm{m}, \mathrm{n})=\mathbf{I} \mathbf{J}(\mathrm{k})$ with $1 \leq \mathrm{k} \leq \mathrm{K}$. Then $S_{K}=\sum_{1 \leq k \leq K} X_{k} \leq \sum_{1 \leq m \leq M} \sum_{1 \leq n N} X_{m, n} \leq \sum_{m \geq 1} \sum_{n \geq 1} \mathrm{x}_{\mathrm{k}, \mathrm{n}}=\mathrm{s}$ regardless of K , whence follows that S converges and $\mathrm{S} \leq \mathrm{s}$.

On the other hand suppose S converges. Next, each $s_{m}:=\sum_{n \geq 1} x_{m, n}$ will be proved convergent as follows: For any chosen integers $m \geq 1$ and large N choose K so big that all pairs (m, n) with $1 \leq \mathrm{n} \leq \mathrm{N}$ appear among the pairs $(\mathrm{m}, \mathrm{n})=\mathbf{I J}(\mathrm{k})$ when $1 \leq \mathrm{k} \leq \mathrm{K}$. Then, regardless of N , the sum $\sum_{1 \leq n \leq N} x_{m, n} \leq \sum_{1 \leq k \leq K} X_{k} \leq S$, so s_{m} converges. Finally, for any chosen large integers M and N choose K so big that all pairs (m, n) with $1 \leq \mathrm{m} \leq \mathrm{M}$ and $1 \leq \mathrm{n} \leq \mathrm{N}$ appear among the pairs $(m, n)=\mathbf{I J}(k)$ for $1 \leq k \leq K$. Now $\sum_{1 \leq m \leq M} \sum_{1 \leq n N} X_{m, n} \leq \sum_{1 \leq k \leq K} X_{k} \leq S$ regardless of M and N. Let $N \rightarrow \infty$ to deduce that $\sum_{1 \leq m \leq M} s_{m} \leq S$ regardless of M, whence follows that $\mathrm{s}=\sum_{\mathrm{m} \geq 1} \mathrm{~s}_{\mathrm{m}}$ converges and $\mathrm{s} \leq \mathrm{S}$. Therefore $\mathrm{s}=\mathrm{S}$ if either of s and S converges.

The process that converted $\mathrm{s}:=\sum_{\mathrm{m} \geq 1} \sum_{\mathrm{n} \geq 1} \mathrm{x}_{\mathrm{m}, \mathrm{n}}$ to $\mathrm{S}:=\sum_{\mathrm{k} \geq 1} \mathrm{X}_{\mathrm{k}}$ also converts $\sum_{\mathrm{n} \geq 1} \sum_{\mathrm{m} \geq 1} \mathrm{x}_{\mathrm{m}, \mathrm{n}}$ to S ; so all three sums converge and are equal if any one of them converges.

Swapping absolutely convergent doubly-summed series should be covered in Math. 104 but usually isn't.

Problem 5: Suppose that every $\mathrm{c}_{\mathrm{n}} \geq 0$ and that $\mathrm{c}:=\sum_{\mathrm{n} \geq 1} \mathrm{c}_{\mathrm{n}} / \mathrm{n}$ converges. Explain why $C ̧:=\sum_{k \geq 1} \sum_{n \geq 1} c_{n} /\left(n^{2}+\mathrm{k}^{2}\right)$ must converge too.

Solution 5: Swapping the order of summation in the doubly-summed series Ç has been justified in Problem 4. Swapping now produces the doubly-summed series

$$
\mathrm{G}:=\sum_{\mathrm{n} \geq 1} \sum_{\mathrm{k} \geq 1} \mathrm{c}_{\mathrm{n}} /\left(\mathrm{n}^{2}+\mathrm{k}^{2}\right)=\sum_{\mathrm{n} \geq 1} \mathrm{c}_{\mathrm{n}} \cdot \sum_{\mathrm{k} \geq 1} 1 /\left(\mathrm{n}^{2}+\mathrm{k}^{2}\right)=\sum_{\mathrm{n} \geq 1} \mathrm{c}_{\mathrm{n}} \cdot \mathrm{~g}_{\mathrm{n}},
$$

where $g_{n}:=\sum_{k \geq 1} 1 /\left(n^{2}+k^{2}\right)$. Because $1 /\left(n^{2}+k^{2}\right)$ decreases as k increases, each
$\mathrm{g}_{\mathrm{n}}<\int_{0}^{\infty} \mathrm{dk} /\left(\mathrm{n}^{2}+\mathrm{k}^{2}\right)=(\arctan (\infty)-\arctan (0)) / \mathrm{n}=\pi /(2 \mathrm{n}) . \quad$ (Do you see why?)
Consequently $\mathrm{G}<\mathrm{c} \cdot \pi / 2$; in short, G is an Absolutely Convergent doubly-summed series. Now G's absolute convergence implies that Ç converges to $C ̧=G$.

Problem 6: Assume positive real numbers $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ are so big that $\sum_{1 \leq \mathrm{k} \leq \mathrm{n}} 1 /\left(1+\mathrm{x}_{\mathrm{k}}{ }^{2}\right)=1$, so $n \geq 2$. Prove $\sum_{1 \leq k \leq n} x_{k} \geq(n-1) \cdot \sum_{1 \leq k \leq n} 1 / x_{k}$ with equality only if $n=2$ or each $x_{k}=\sqrt{n-1}$. Hint: $\sum_{j} 1 /\left(1+x_{j}^{2}\right) \cdot \sum_{k} x_{k}-\sum_{j} x_{j}^{2} /\left(1+x_{j}^{2}\right) \cdot \sum_{k} 1 / x_{k}$

Proof 6: Since the problem's assumption implies that $\sum_{\mathrm{k}} \mathrm{x}_{\mathrm{k}}{ }^{2} /\left(1+\mathrm{x}_{\mathrm{k}}{ }^{2}\right)=\mathrm{n}-1$, we can write

$$
\begin{aligned}
& \sum_{\mathrm{k}} \mathrm{x}_{\mathrm{k}}-(\mathrm{n}-1) \cdot \sum_{\mathrm{k}} 1 / \mathrm{x}_{\mathrm{k}}=\sum_{\mathrm{j}} 1 /\left(1+\mathrm{x}_{\mathrm{j}}^{2}\right) \cdot \sum_{\mathrm{k}} \mathrm{x}_{\mathrm{k}}-\sum_{\mathrm{j}} \mathrm{x}_{\mathrm{j}}^{2} /\left(1+\mathrm{x}_{\mathrm{j}}^{2}\right) \cdot \sum_{\mathrm{k}} 1 / \mathrm{x}_{\mathrm{k}}= \\
&=\sum_{\mathrm{j}} \cdot \sum_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{k}}-\mathrm{x}_{\mathrm{j}}^{2} / \mathrm{x}_{\mathrm{k}}\right) /\left(1+\mathrm{x}_{\mathrm{j}}^{2}\right)=\sum_{\mathrm{j}} \cdot \sum_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{k}}^{2}-\mathrm{x}_{\mathrm{j}}^{2}\right) /\left(\left(1+\mathrm{x}_{\mathrm{j}}^{2}\right) \cdot \mathrm{x}_{\mathrm{k}}\right)= \\
& \text { Now swap } \mathrm{j} \text { with } \mathrm{k} \text { and average the sums. } \\
&=\frac{1}{2} \cdot \sum_{\mathrm{j}} \cdot \sum_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{k}}^{2}-\mathrm{x}_{\mathrm{j}}^{2}\right) \cdot\left(1 /\left(\left(1+\mathrm{x}_{\mathrm{j}}^{2}\right) \cdot \mathrm{x}_{\mathrm{k}}\right)-1 /\left(\left(1+\mathrm{x}_{\mathrm{k}}^{2}\right) \cdot \mathrm{x}_{\mathrm{j}}\right)\right)= \\
&=\frac{1}{2} \cdot \sum_{\mathrm{j}} \cdot \sum_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{k}}^{2}-\mathrm{x}_{\mathrm{j}}^{2}\right) \cdot\left(\mathrm{x}_{\mathrm{k}}-\mathrm{x}_{\mathrm{j}}\right) \cdot\left(\mathrm{x}_{\mathrm{k}} \cdot \mathrm{x}_{\mathrm{j}}-1\right) /\left(\left(1+\mathrm{x}_{\mathrm{j}}^{2}\right) \cdot\left(1+\mathrm{x}_{\mathrm{k}}^{2}\right) \cdot \mathrm{x}_{\mathrm{j}} \cdot \mathrm{x}_{\mathrm{k}}\right)= \\
&=\frac{1}{2} \cdot \sum_{\mathrm{j}} \cdot \sum_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{k}}+\mathrm{x}_{\mathrm{j}}\right) \cdot\left(\mathrm{x}_{\mathrm{k}}-\mathrm{x}_{\mathrm{j}}\right)^{2} \cdot\left(\mathrm{x}_{\mathrm{k}} \cdot \mathrm{x}_{\mathrm{j}}-1\right) /\left(\left(1+\mathrm{x}_{\mathrm{j}}^{2}\right) \cdot\left(1+\mathrm{x}_{\mathrm{k}}^{2}\right) \cdot \mathrm{x}_{\mathrm{j}} \cdot \mathrm{x}_{\mathrm{k}}\right) .
\end{aligned}
$$

Because every $1 /\left(1+x_{j}{ }^{2}\right)+1 /\left(1+x_{k}{ }^{2}\right) \leq 1$ if $j \neq k$, so is $2+x_{k}{ }^{2}+x_{j}{ }^{2} \leq 1+x_{k}{ }^{2}+x_{j}{ }^{2}+x_{k}{ }^{2} \cdot x_{j}{ }^{2}$, whence follows that every such $x_{k} \cdot x_{j} \geq 1$. Therefore $\sum_{k} x_{k}-(n-1) \cdot \sum_{k} 1 / x_{k} \geq 0$ with equality only if $n=2$ (and then $x_{2} \cdot x_{1}=1$) or every $x_{k}=x_{j}=\sqrt{n-1}$, as claimed.

This problem is an exercise in double summation posed by W. Janous in 1991 and solved on pp. 678-9 of The Amer. Math. Monthly 99 \#7 (Aug.-Sept. 1992).

