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Problem 1:

 

   Our  

 

Omnipotent and Merciful Emperor

 

  is resolved to punish his advisors.  There 
are two dozen of them and,  according to our  

 

Mighty and Magnanimous Emperor

 

,  they all seem 
obsessed with advising him that he cannot or should not do whatever he intends to do.  Every one 
of them has been collected by military escorts and commanded to protect  National Security  by 
maintaining utter secrecy,  communicating nothing to anyone including each other.  Before being 
ushered into the  Hall of Heros,  each one of them passed through a dark antechamber where a hat 
was placed unseen upon his or her head.  Now standing together,  the advisors face a big sign:

Whoever violates the commands below dies immediately.
Do not touch nor remove the hat from your head.

Emit no sound nor sign nor signal until our 
 

 

Glorious and Gracious Emperor

 

  addresses you in turn.
Each of you will be asked the color of the hat on your head.

Reply only with one of the following three colors:
1: “Red”            2: “White”           3: “Blue”

Any other reply incurs your death immediately.
A correct reply earns you your freedom immediately.

An incorrect reply or none sends you to prison immediately.

Each advisor can see the colors of only all other advisors’ hats.  Their colors appear to have been 
chosen at random,  some red,  some white,  the rest blue.  If each advisor replies at random,  about 
two thirds of them will land in prison,  as our  

 

Supreme and Solicitous Emperor

 

  must expect.  But 
there is a strategy that will earn freedom for at least most of the advisors,  and they have found and 
adopted it unanimously with no need to discuss it.

Slowly our  

 

Magnificent and Beneficent Emperor

 

  is ascending the podium in the  Hall of Heros.  
What strategy must all advisors have adopted before being addressed?

 

Solution 1:

 

   They have adopted arithmetic  

 

modulo

 

 3  and have attached the big sign’s numbers 
to the colors:  1  for  Red,  2  for  White,  0 

 

≡

 

 3 

 

mod

 

 3  for  Blue.  The first advisor asked his or her 
hat’s color replies with the color attached to the sum  

 

mod

 

 3  of all the other advisors’ hats’ 
colors’ numbers.  Then this first advisor departs the  Hall of Heros  more likely for prison than to 
freedom.  

 

Each

 

  remaining advisor can now determine his or her hat’s color from the difference 
between the number of the color just announced and the sum  

 

mod

 

 3  of every  

 

other

 

  remaining 
advisor’s hat’s color’s number.

 

Problem  2:

 

   Suppose  H  is an  n-by-n  real symmetric  (

 

 

 

H = H

 

T

 

 

 

)  matrix,  

 

v

 

  is a real column   n-

vector,  and that  H

 

k+1

 

·

 

v

 

 = 

 

o

 

  for some unknown integer  k 

 

≥

 

 1

 

 

 

.  Prove that  H·

 

v

 

 = 

 

o

 

  too.

 

Proof  2:

 

  Define   ||

 

z

 

||

 

2

 

 := 

 

z

 

T

 

·

 

z

 

   for every real  n-vector  

 

z

 

  and observe that the  sum-of-squares  

||

 

z

 

||

 

2

 

 = 0  if and only if  

 

z

 

 = 

 

o

 

 

 

.  If  k = 2m+1 

 

≥

 

 1  is odd,  0 = 

 

v

 

T

 

·H

 

k+1

 

·

 

v

 

 = 

 

v

 

T

 

·H

 

2m+2

 

·

 

v

 

 = ||H

 

m+1

 

·

 

v

 

||

 

2

 

  

so  H

 

m+1

 

·

 

v

 

 = 

 

o

 

  and  m < k

 

 

 

.  If  k = 2m 

 

≥

 

 2  is even,  0 = 

 

v

 

T

 

·H·H

 

k+1

 

·

 

v

 

 = 

 

v

 

T

 

·H

 

2m+2

 

·

 

v

 

 = ||H

 

m+1

 

·

 

v

 

||

 

2

 

  

so  H

 

m+1

 

·

 

v

 

 = 

 

o

 

  and  m < k  again.  Replace  k  by  m  and repeat the process until  k = 0

 

 

 

.
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An alternative proof changes coordinates to an orthonormal basis consisting of the eigenvectors of  
H

 

 

 

.  Doing so replaces  H  by a diagonal matrix  

 

Λ

 

  of  H

 

 

 

’s  eigenvalues,  and turns  

 

v

 

  into some 

vector  

 

u

 

  that satisfies  

 

Λ

 

k+1

 

·

 

u

 

 = 

 

o

 

 

 

.  Now it is obvious that every element of  

 

Λ

 

·

 

u

 

  vanishes too,  
and after reverting to the original coordinates we find  H·

 

v

 

 = 

 

o

 

  too,  as claimed.

This alternative proof explains why the problem’s conclusion  H·

 

v

 

 = 

 

o

 

  might not follow from its 

hypothesis  H

 

k+1

 

·

 

v

 

 = 

 

o

 

  if  H  is an arbitrary nonsymmetric matrix;  it might be nondiagonalizable.

 

This  Problem 2  was generalized from the  Fall 2007 Prelim. Exam  for  Math. Grad Students.

 

Problem 3:

 

  Exhibit  

 

all

 

  infinitely differentiable real functions  ƒ(x)  that satisfy  ƒ

 

"

 

(x) = –ƒ(x)  
and  ƒ(2x) = 2·ƒ(x)·ƒ

 

'

 

(x)  for all real  x

 

 

 

.  How do you know that you have exhibited all of them?

 

Solution 3:

 

  There are two solutions  ƒ(x) = sin(x)  and  ƒ(x) = 0  for all real  x

 

 

 

.  What follows 
explains why no possibilities exist other than those two.

Consider first how  ƒ(x)  must behave in any open interval  

 

XX

 

  in which  ƒ(x)  never vanishes.  Let  

t(x) := ƒ'(x)/ƒ(x)  there and observe that  t'(x) = ƒ" (x)/ƒ(x) – t(x)2 = –(1 + t(x)2) .  An integration 

reveals that   arccot(t) – ß = –∫ dt/(1 + t2) = ∫ dx = x  for some constant  ß  not yet determined,  so  
ƒ'(x)/ƒ(x) = cot(x+ß) .   Integrate again:   log(ƒ) – const. = ∫ dƒ/ƒ = ∫ cot(x+ß)·dx = log(sin(x+ß))  
whence   ƒ(x) = µ·sin(x+ß)   for some constants  µ ≠ 0  and  ß  not yet determined and all  x  in  XX  .

Before concluding that  ƒ(x) := µ·sin(x+ß)  at all real  x  we must rule out the possibility that some 
other solution  F(x)  of the same differential equation  F"  = –F  agrees with  ƒ(x)  at all  x  in  XX   
but differs from this definition of  ƒ  elsewhere.  Let  h(x) := F(x) – ƒ(x) ;  this difference satisfies 
the same differential equation  h"  = – h  everywhere but  h(x) = 0  at all  x  in  XX  .  The differential 

equation implies that  (h(x)2 + h'(x)2)'  = 2·(h(x) + h" (x))·h'(x) = 0  everywhere and therefore that  

h(x)2 + h'(x)2  is the same constant everywhere;  this constant must be  0  as it is at  x  in  XX  .

Thus we conclude that  ƒ(x) = µ·sin(x+ß)  at all real  x  for some constants  µ ≠ 0  and  ß  not yet 
determined.  The same conclusion could have been drawn directly from the general theory of the 
existence and uniqueness of solutions of differential equations taught in some  Math.  courses.

What remains to be done is to determine the constants by applying the problem’s given constraint  

ƒ(2x) = 2·ƒ(x)·ƒ'(x) .  This implies that   µ·sin(2x + ß) = 2·µ2·sin(x+ß)·cos(x+ß) = µ2·sin(2x + 2ß) ,  
whence  sin(2x + ß) = µ·sin(2x + 2ß)  at all  x  if  µ ≠ 0 .  First set  x := π/4 – ß/2  to infer that  
1 = µ·cos(ß) ,  and then set  x := π/4 – ß  to infer that  cos(ß) = µ .  These inferences imply that  

cos2(ß) = 1 ,  so  ß = n·π  for some integer  n ,  and then  ƒ(x) = (–1)n·sin(x + n·π) = sin(x)  as 
claimed.

This  Problem 3  was derived from a complex version on the  Fall 2007 Prelim. Exam  for  Math. Grad Students.
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Problem  4:   Suppose real sequences  {an} n≥1  and  {bn} n≥1  satisfy  0 ≤ an+1 ≤ an + bn  for all  

n ≥ 1 ,  and that  ∑n≥1 bn  converges.  Prove that   limn→∞ an   exists and is finite.

Proof  4:  The sequence  {an} n≥1  will be proved  Bounded,  from which will follow the existence 
of at least one  Cluster-point  of the sequence.  Then this point will be proved unique.

But first some definitions for students who have not yet taken a course on  Real Variables  like  
Math. 104,  or for students who have forgotten it:

•  Most mathematicians exclude  ∞  from the set of  real  numbers;  we too will do so hereunder.
   All mathematicians exclude  0  from the set of  positive  numbers;  we too will do so hereunder.

•  The real sequence  {an} n≥1  is called  “Bounded”  just when numbers  L  and  U  exist satisfying 
    L ≤ an ≤ U  for all  n ≥ 1 ;  we need know only that  L  and  U  exist,  not their values.

•  A  Neighborhood  of a real number  r  is the set of all numbers  x  satisfying  –b < x – r < c  for
    some  positive  numbers  b  and  c .  Usually we care about only tiny numbers  b  and  c .

•  If  the Limit  L  of a real sequence  {an} n≥1  exists,  every neighborhood of  L  contains all but 
     at most finitely many of the members of the sequence.  Consequently  the  limit  L  is unique.

•  If a real sequence  {an} n≥1  “has”  Limit-points (plural)  or  Cluster-points  or  Points of 
      accumulation,  none need be a member of the sequence,  but every neighborhood of each 
      cluster-point must contain infinitely many members of the sequence.  The term  “Limit”  is so 
     easily confused with  “Limit-point”  that the latter term will not be used hereunder.

•  Every bounded sequence has at least one cluster-point  (do you see why?),  and if just one then
      it is the sequence’s limit.  Conversely,  a sequence convergent to its limit is bounded.

•  Do not confuse an infinite  Sequence {bn} n≥1  with the infinite  Series ∑n≥1 bn  that generates 

     an infinite sequence  {sn} n≥0  of  Partial Sums  sN := ∑1≤n≤N bn  whose limit,  if it exists,  is 
     the sum of the series.  Otherwise the series has no sum or  Diverges  to an infinite sum.

Back to the proof.  Let  s∞ := ∑n≥1 bn  be the sum of this given convergent series.  For any integers  
N > M ≥ 1  the problem’s hypotheses imply that  0 ≤ aN ≤ aM + sM – sN  because
  0 ≤ aN ≤ aN–1 + bN–1 ≤ aN–2 + bN–2 + bN–1 ≤ … ≤ aM + bM + bM+1 + … + bN–2 + bN–1 = aN ≤ aM + sM – sN .
In particular   0 ≤ aN ≤ a1 + s1 – sN → a1 + s1 – s∞  as  N → ∞ ,  so the sequence  {an} n≥1  must be 
bounded and consequently have at least one cluster-point.  How many of these are there?

Let each of  x  and  y > x  be such a cluster-point if there be more than one of them.  This would 
mean that for every  ε > 0  infinitely many sequence members  aM  satisfy   |aM – x| < ε  and 

infinitely many members  aK  satisfy  |aK – y| < ε .  Now choose any positive  ε < (y – x)/8 .  Next 
choose  M  big enough that  |aM – x| < ε  and  |sM – s∞| < ε ;   this would be feasible since  sN → s∞  
as  N → ∞ .  Next choose  K > M  and big enough that  |aK – y| < ε  and  |sK – s∞| < ε .  These 
choices would imply an impossible inequality

     0 < y – x  =  y – aK + aK – aM + aM – x  <  ε + sK – sM + ε  <  4ε  < (y–x)/2 .
The contradiction implies the sequence  {an} n≥1  has just one cluster-point,  its limit,  as claimed.

This  Problem 4  was taken from the  Fall 2007 Prelim. Exam  for  Math. Grad Students.
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Problem  5:  Given is an ellipse  E  neither a circle nor degenerate  (a straight line segment).  Let  
P  be the largest of the perimeters of triangles inscribed in  E .  How many inscribed triangles have 
maximal perimeter  P ?  At least two do since  E  is centrally symmetric.  Are there more?  Why?

The known solution for this problem requires algebra so onerous that it must be computerized.  Can you do better? 

Solution  5:  There are infinitely many;  every point of  E  is the vertex of an inscribed triangle 
with maximal perimeter  P .  This was surmised by  Paul Penning  on  p.219  of  Niew Archief voor 
Wiskunde 5/7 #3 (Sept. 2006),  but without saying how to prove it.  Subsequently his surmise was 
found to be a special case of  19th  century theorems by  Chasles  and by  Poncelet:

Let  E  and  Ë  be  Confocal Ellipses (they share the same two foci)  so situated that there is
an  n-sided polygon inscribed in  (with all vertices on)  E  and circumscribed around  (with
every edge touching)  Ë .  Then for each point  e  on  E  (or each tangent  t  to  Ë)  there
is an  n-sided polygon inscribed in  E  and circumscribed around  Ë  with one vertex at  e 
(or an edge lying on  t  resp.).  Every such  n-sided polygon  has the same perimeter,  and
this perimeter is  maximal  among  n-sided polygons inscribed in  E ,  and minimal among 
n-sided  polygons circumscribed about  Ê .  Any two edges incident at such a polygon’s 
vertex on  E  make equal angles with the tangent to  E  tat the vertex.

Long geometrical proofs of the foregoing can be found starting on  p. 243  in  M. Berger’s  book  
Geometry II (Springer Verlag, Berlin, 1987)  and in  George Lion’s  paper  “Variational Aspects of  
Poncelet’s Theorem”,  Geometriae Dedicata 52 (1994) pp. 105-118,  and references cited therein.

A shorter proof,  still too long,  of  Penning’s surmise was extracted from lengthy polynomial 
manipulations performed by  MAPLE,  a computerized algebra system:

With  t := tan(θ/2)  in mind,  define  C(t) := (1–t2)/(1+t2) = cos(θ)  and  S(t) := 2t/(1+t2) = sin(θ) .  

Then as  t  runs from  –∞  to  +∞  the ellipse whose equation is  x2 + y2/b2 = 1  is traversed by the 
point  [x, y] = E(t, b) := [C(t), b·S(t)] .  We assume  0 < b ≠ 1  to ensure that this ellipse is not a 
circle nor degenerate,  and then every ellipse’s shape is obtained from some such value of  b .  Of 
course,  the size and orientation of these ellipses is irrelevant to our problem.  Next,  for any real  s  
and  t  define  L(s,t, b) := || E(s, b) – E(t, b) || ≡ L(t,s, b) ≡ L(–s,–t, b) ≡ L(1/s,1/t, b)  to be the  
Euclidean  length of the line segment joining the points  E(s, b)  and  E(t, b) .  For any real distinct 
parameters  x, y, z  the expression  P(x,y,z, b) := L(x,y, b) + L(y,z, b) + L(z,x, b)  is the perimeter 
of a nondegenerate triangle whose vertices lie on the ellipse.  With a view to choosing parameters 

that maximize  P(x,y,z, b)  we define  L†(x,y, b) := (1/2)·(1+x2)·∂L(x,y, b)/∂x .  Every choice of 
parameters  {x, y, z}  that maximizes perimeter  P(x,y,z, b)  must satisfy 

     L†(x,y, b) + L†(x,z, b) = L†(y,z, b) + L†(y,x, b) = L†(z,x, b) + L†(z,y, b) = 0 .
Distinct roots  {x, y, z}  of these three equations provide locally maximized perimeters.

The equation   L†(x,y, b)+L†(x,z, b) = 0   implies   L†(x,y, b)2 – L†(x,z, b)2 = 0  which simplifies 
to a polynomial equation   Q(x,y,z, b) = 0   after irrelevant factors have been discarded.  This 
polynomial turns out to be

      Q(x,y,z, b) := x4·b2·(y+z) + (4 – 2b2·(y·z + 1))·x3 + (2b2·(y·z + 1) – 4y·z)·x – b2·(y+z) .
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When  P(x,y,z, b)  is maximized we must have   Q(x,y,z, b) = Q(y,z,x, b) = Q(z,x,y, b) = 0 .  As 
expected,  Q(x,y,z, b) ≡ Q(x,z,y, b) .  Unexpectedly,  Q(x,y,z, b)  is linear in  y  and in  z  
separately.  Therefore the equation   Q(x,y,z, b) = 0  is satisfied just when  y = G(x,z, b) ;

    G(x,z, b) := –(b2·z·x4 + (4 – 2b2)·x3 + 2b2·x – b2·z)/(b2·x4 –2b2·x3 + (2b2 – 4)·z·x – b2) .
As expected,  G(x, G(x,y, b), b) ≡ y   because   Q(x,y,z, b) ≡ Q(x,z,y, b) .

So,  when  P(x,y,z, b)  is maximized  {x,y,z}  must satisfy   y = G(x,z, b) = G(z,x, b)  as well as  
Q(y,z,x, b) = Q(G(x,z, b), z,x, b) = 0 .  We seem to require that  x  and  z  satisfy two equations  
( G(x,z, b) – G(z,x, b) )/(x–z) = 0  and  Q(G(x,z, b), z,x, b)/(x–z) = 0 .  However,  though derived 
independently these two equations are not independent.  The numerator of the rational expression  
( G(x,z, b) – G(z,x, b) )/(x–z)  is a polynomial  H(x,z, b)  too complicated to reproduce here,  and 
the same polynomial turns up as a factor of the numerator of   Q(G(x,z, b), z,x, b)/(x–z) ;  this 

numerator’s other factor   (b2·(x2 – 1)2 + 4x2)3   vanishes for no real  x .

Thus,  the three equations that must be satisfied when perimeter  P(x,y,z, b)  is maximized do not 
determine discrete values of  {x,y,z}  but a continuum of values instead.  For every real  x  some 
root(s)  z = Z(x)  satisfying  H(x,Z(x), b) ≡ 0  determine  y = Y(x) := G(x,Z(x), b)  such that 
perimeter  P = P(x,Y(x),Z(x), b)  is maximal and independent of  x .  Apparently every point of the 
ellipse is a vertex of an inscribed triangle of maximal perimeter  P .  This is astonishing.

 •  •  •  •  •

An alternative solution for this problem might begin with the observation that any inscribed triangle of maximal 
perimeter  P  must satisfy a  Reflection Condition  at each vertex:  The ellipse’s inward normal there bisects the angle 
between the triangle’s sides adjacent to this vertex because otherwise moving it along the ellipse to bring the normal 
towards bisection lengthens the triangle’s perimeter.  Therefore the three normals at the vertices must be concurrent.  
This concurrency can be translated into an algebraic constraint upon the vertices  E(x, b),  E(y, b)  and  E(z, b)  on the 

ellipse  E ,  namely that   (x+y+z)/(x·y·z)2 = 1/x + 1/y + 1/z ,  but this alone is not sufficient to ensure maximization of 
the perimeter.  We haven’t yet figured out where to go next towards a solution manageable without the computer’s aid.


