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Problem 1:

 

  Calculus is bunk!  Any silliness can be  “proved”  by calculus.  Here is an example:  

Choose any positive unteger  K
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.  The derivative of  K  is  1  repeated  K  
times on the right-hand side.  Equating derivatives yields  2K = 1
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,  and 
then dividing out the chosen positive integer  K  yields  2 = 1

 

 

 

.  Agreed?  If not,  why not?

 

Solution 1:

 

  The definition   ƒ

 

'

 

(x) := lim
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x

 

→
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(

 

 ƒ(x+
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x) – ƒ(x) 

 

)/

 

∆

 

x   of the derivative  ƒ

 

'

 

(x)  
makes sense only at points  x  inside or on the boundary of an open neighborhood in ƒ

 

 

 

’s  domain.  
This becomes relevant when  “

 

 

 

K+

 

∆

 

K

 

 

 

”  has to be repeated  K+

 

∆

 

K  times on the right-hand side.

 

Neither is  “…”  an operation allowed in algebraic expressions,  so purely algebraic derivatives are inapplicable too.

 

Problem 2:

 

  This problem responds to a classroom request for mathematical coincidences.  In 
each of four instances below,  two numbers  x  and  y  are defined that agree to at least ten sig. 
dec.,  as you may confirm with the aid of a calculator or computer.  Does  x = y ?  If you think so,  
prove it.  If you think not,  estimate roughly a positive lower bound for  |x – y|

 

 

 

.  You may use a 
computer provided you document your work as a scientist should.

 

Problem 2.1:

 

  x := 1 + 

 

√

 

3   and   y := 

 

√

 

(3 + 

 

√

 

(13 + 4

 

√

 

3)) .

 

Solution 2.1:

 

  x = y  because  x > 0

 

 

 

,  y > 0  and  x
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3)  = 0 .

 

Many computerized algebra systems simplify expression  y  to  x ;  

 

Maple V r5

 

  converts  y  to  x  upon input.  This 
version of  

 

Maple

 

  is obsolete but is the latest one that runs on my old  33 MHz. 68040-based  

 

Apple Quadra 950

 

.

 

Problem 2.2:
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Solution 2.2:

 

  x = y :  First  
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,  simplifying  y  

to  y = √5 + √(11 + 2√29) + √(11 – 2√29) ;  then  ( √(11 + 2√29) + √(11 – 2√29) )2 = 22 + 2√5 ,  so  
x = y .

Multiplying  (z–x)  by its three Conjugates  obtained by reversing signs of  √…  in  x  produces a polynomial  

ƒ(z) := z4 – 54z2 – 40z + 269 ;  now  Maple V r5  simplifies  ƒ(x)  to  0  but not  ƒ(y) ,  though it does simplify  
expand( ƒ(y)*ƒ(-y) )  to  0 .  Maple 7  on my  Power Mac  simplifies  x-y ,  ƒ(x)  and  ƒ(y)  to  0  promptly.

Problem 2.3:  x := √75025 + √121393 + √196418 + √317811   and  y := √514229 + √832040  .

Solution 2.3:  About  13  leading sig. dec.  cancel when  x – y = 2.953…/109  is computed 
carrying at least about  15  sig. dec.  as provided by,  say,  Matlab.

See  “When Close Enough is Close Enough”  by  E.R. Scheinerman,  pp. 489-499 in Amer. Math Monthly 107 #6 
(June-July 2000),  for a strategy that systematically  (though onerously)  solves problems like the foregoing three
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Problem 2.4:  x := ∑n≥1 exp(–(n/105)2)   and   y := 50000·√π – 1 .

Solution 2.4:  x ≠ y  though they agree to at least about  42  billion sig. dec.

See  “Strange Series and High Precision Fraud”  by  J.M. and P.B. Borwein,  pp. 622-640 in Amer. Math. Monthly 99 
#7 Aug.-Sept. 1992.

Problem 3:  Explain why any matrix  B  of rank  r > 0 ,  regardless of its other dimensions,  can be 

factored into a product  B = C·ET  in which each matrix  C  and  E  has  r  columns and rank  r ;  

and then explain why the  Kernel  (or  Nullspace)  of  ET  is the same as the  Kernel  of  B .

Solution 3:  The column-rank  r  of  B  is the dimension of its  Range,  the (sub)space  Spanned  
by its columns.  Choose  any  matrix  C  whose  r  columns constitute a  Basis  for  Range(B) .  The  
r  columns of  C  must be  Linearly Independent,  and each column  b  of  B  must be some linear 
combination  C·e = b  of the columns of  C .  All such columns  e  can be assembled to constitute 

the columns of a matrix  ET  satisfying  B = C·ET .  Evidently  rank(E) ≤ r = #(columns of E) .  
Actually  rank(E) = r ;  this can be proved in at least two ways.  The simplest way uses this …

Fact:  A matrix product’s rank cannot exceed the rank of any matrix factor of the product.

Therefore  r = rank(B) = rank(C·ET) ≤ rank(ET) ≤ r ,  whence  rank(E) = rank(ET) = r  as claimed.

If you don’t know the  Fact  you must proceed differently:  Suppose  rank(E) < r  for the sake of an 
argument by contradiction.  Then some one of the  r  columns of  E ,  say the last,  would have to 
be a linear combination of the others;  this would make  E = É·[I, h]  in which  É  consists of the 
first  r–1  columns of  E  and column  h  exhibits the  r–1  coefficients of the aforementioned linear 

combination.  Since  B = C·([I, h]T·ÉT) = (C·[I, h]T)·ÉT  implies  Range(C·[I, h]T) ⊇  Range(B) ,  

we would have to infer that  r–1 ≥ column-rank(C·[I, h]T) ≥ column-rank(B) = r .  Impossible! 

Next we see why  Kernel(ET) = Kernel(B) :  Evidently  Kernel(B) = Kernel(C·ET) ⊇  Kernel(ET) ,   

so suppose for the sake of an argument by contradiction that  B·z = o  but  ET·z ≠ o ;  then  

C·(ET·z) = o  would imply that the  r  columns of  C  are linearly dependent and consequently  

column-rank(C) < r  contrary to  C ’s  definition.  Instead  Kernel(ET) ⊇  Kernel(B) ⊇  Kernel(ET) .

This problem’s solution exhumes memories of crucial facts about matrix rank taught in  Math. 54  and  Math. 110.  
Three definitions of  r = rank(B)  are …

•  column-rank(B) := the maximum number  r  of linearly independent columns of  B 
  = the dimension  r  of  Range(B) .

•  row-rank(B) := the maximum number  r  of linearly independent rows of  B .
•  determinantal-rank(B) := the maximum size  r  of an  r-by-r  submatrix of  B  with nonzero determinant.

That these definitions coincide is an important  Theorem:  There is just one  r = rank(B) .  It connects closely to …
•  nullity(B) := the maximum number of linearly independent vectors  z  that satisfy  B·z = o 

       = the dimension of  Kernel(B)  (also called  Nullspace(B) ) .
•  Theorem:   nullity(B) + rank(B) = the number of columns  B  has.

The foregoing problem provides a fourth definition of  r = rank(B) :

•  tensor-rank(B) := the minimum number  r  of  Dyads  cn·en
T  whose sum  ∑1≤n≤r cn·en

T = C·ET = B .
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The proof that all four definitions of  rank(B)  coincide amounts to an algorithm that reduces  B  to an  Echelon  form 
at the cost of arithmetic operations and comparisons numbering at most a polynomial function of  B’s  dimensions,  at 
least if  B’s  elements are all rational numbers.  If there are transcendental numbers among  B’s  elements,  and if  
rank(B)  is possibly smaller than the lesser of the numbers of rows and columns that  B  has,  the computation of  
rank(B)  becomes problematical because we have no algorithm to decide whether any arbitrary arithmetic expression 
involving transcendental numbers vanishes exactly.  Also problematical is rank’s estimation in rounded arithmetic. 

Tensor-rank  can be defined also for multi-dimensional arrays that represent multi-linear operators.  Suppose array  
M := [µi,j,k]  is a three-dimensional array whose every element  µi,j,k  is tabulated for three indices  i,  j  and  k  each 
over some range.  Then  tensor-rank(M)  is the least number  r  of  Triads  with elements  ci,n·ej,n·gk,n  whose sum  

∑1≤n≤r ci,n·ej,n·gk,n = µi,j,k  for all indices  i,  j  and  k  in their allowed ranges.  Nobody knows how to compute  r .

Problem 4:  Given that  N  and  M := 2 + 2·√(1 + 28·N2)  must be a pair of positive integers,  
show why  M  is a perfect square in each such pair,  and show that some such pairs do exist.

Solution 4:  The given equation simplifies to   M·(M – 4) = 7·(4·N)2
 .  Evidently  M  cannot be 

odd;  in fact  M := 4·k  must be a multiple of  4  satisfying   k·(k – 1) = 7·N2
 .  Now only two 

mutually exclusive possibilities require consideration:

•  k := 7·j  is a multiple of  7  satisfying  j·(7·j – 1) = N2
 .  This equation would imply  j := x2  and

7·j – 1 = 7·x2 – 1 = y2  for some integers  x  and  y  because  GCD(j, 7·j – 1) = 1 ;  but this

possibility is impossible because,  by trial,  no integer  y  satisfies  y2 ≡ –1 mod 7 .

•  k–1 := 7·j  is a multiple of  7  satisfying  (7·j + 1)·j = N2
 .  This equation implies  j := y2  and  

7·j + 1 = 7·y2 + 1 = x2  for some positive integers  x  and  y  because  GCD(j, 7·j + 1) = 1 .

The equation  x2 – 7·y2 = 1  does have positive integer solutions  x = XL  and  y = YL  obtained 

from  XL ± YL·√7 := (8 ± 3·√7)L  for  L = 1, 2, 3, … .  These solutions provide infinitely many 

pairs  NL := XL·YL  and  ML := (2·XL)2  satisfying the problem’s requirements.  For example,

 X1 = 8 , Y1 = 3 , N1 = 24 , M1 = 162   =  2 + 2·√(1 + 28·N1
2) ;

 X2 = 127 , Y2 = 48 , N2 = 6096 , M2 = 2542  =  2 + 2·√(1 + 28·N2
2) ;

 X3 = 2024 , Y3 = 765 , N3 = 1548360 , M3 = 40482  =  2 + 2·√(1 + 28·N3
2) .

The  Diophantine  equation  x2 – K·y2 = 1  with a non-square integer  K > 0  is called  “Pell’s Equation”  and has a 
long history.  See  ch. 11.4  on  Pell’s Equation  in  K.H.Rosen’s  Elementary Number theory and its Applications 
(3rd. ed., 1993, Addison-Wesley).  More advanced are  Prof. H.W. Lenstra Jr.’s  articles  “Solving the Pell Equation”  
on  pp. 182-192  of the  Notices of the AMS 49 #2 (Feb. 2002),  http://www.ams.org/notices/200202/fea-lenstra.pdf ,  
and a later postscript version on his web page http://www.math.leidenuniv.nl/~hwl/pell/to.ps .  Prof. R.J. Fateman  
supplied  URLs  for computerized treatments:  Greg Fee’s  course on  Elementary Number Theory,  Math. 342 at 
Simon Fraser University (B.C.,  Canada)  includes  Lecture 24,  http://www.math.sfu.ca/~gfee/Math324/L241.html,  
on the continued fraction for √…  and application to  Pell’s Equation  worked out in  Maple.  Eric Weisstein’s  posting  
http://mathworld.wolfram.com/PellEquation.html  includes an extensive bibliography about  Pell’s Equation.
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Problem 5:  For which positive integers  n  is  n! ≥ nn·e1–n  ?  Why?   ( e := 2.718281828459…  is 
the base of natural logarithms.)

Solution 5:  n! ≥ nn·e1–n  for every integer  n > 0 .  To see why take the logarithm of both sides:  

log(n!) = ∑2≤k≤n log(k) ≥ ∑2≤k≤n ∫k–1
k log(x) dx = ∫1n log(x) dx = n·log(n) – n + 1 = log(nn·e1–n) .

Better estimates of  n!  appear in  §6  of the Handbook of Mathematical Functions …   ed. by M. Abramowitz & I.A. 
Stegun, reprinted by  Dover. 

Problem 6(a):  Prove that no equilateral triangle in the  Cartesian  plane can have vertices all of 
whose coordinates are pairs of integers.

Proof 6(a):  Suppose the contrary for the sake of an argument by contradiction.  No generality is 
lost by translating one of the triangle’s vertices to the origin  (0, 0) .  Let  (x, y)  and  (p, q)  be the 
other vertices’ coordinates.  We can presume that  GCD(x, y, p, q) = 1  since otherwise the  GCD  
could be divided out of all the coordinates.  If the triangle were equilateral we would find that   

x2
 + y2 = p2

 + q2 = (x – p)2 + (y – q)2 > 0 .  The equations imply  x2
 + y2 = p2

 + q2 = 2(x·p + y·q) ,  

whence follows that   x2 + y2 + p2
 + q2 = 4(x·p + y·q) ≡ 0 mod 4 .  This congruence,  combined 

with the presumption that  x,  y,  p  and  q  cannot all be even,  would imply that all of them must 
be odd since every odd square is congruent to  1 mod 4 .  But this is contradicted by the equation  

p2
 + q2 = (x – p)2 + (y – q)2 ≡ 0 mod 4 .  Therefore no equilateral triangle can have vertices all of 

whose coordinates are pairs of integers.

The foregoing proof was found by  E. Lucas  in  1878.  For a longer proof see  problem  6(b).  Roman Vaisberg’s  
shorter proof follows.

The area of any triangle whose coordinates are pairs of integers,  say  (0, 0) ,  (x, y)  and  (p, q) ,  is  

|det( )|/2 ,  which is an integer or half-integer.  The area of an equilateral triangle is  s2·√3/4  

where its squared edge-length would be  s2 = x2
 + y2 = p2

 + q2 = (x – p)2 + (y – q)2 ,  an integer,  if 
all this triangle’s vertices had the aforementioned pairs of integers as coordinates.  This is not 

possible;   s2·√3/4  would be irrational,  neither an integer nor a half-integer.

Problem 6(b):  A triangle in the  Cartesian  plane can have vertices all of whose coordinates are 
pairs of integers only if each angle’s tangent is a rational number or  ∞ .  Conversely,  if each 
angle’s tangent is rational or  ∞  then a  Similar  (a scalar multiple of a rotated and translated copy 
of the)  triangle has vertices all of whose coordinates are pairs of integers.  Prove these assertions.

x p

y q
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Proof 6(b):  The  “only if”  assertion is proved by supposing triangle  ABC  has each vertex at a 
point with integer coordinates.  If neither edge emanating from  A  is parallel to,  say,  the vertical 
axis draw a horizontal line segment  AP  and treat angle  ∠ A  as the difference between two angles  
BAP  and  CAP  each of which obviously has a finite rational tangent.  In this case the formula  
tan(α – ß) = ( tan(α) – tan(ß) )/( 1 + tan(α)·tan(ß) )   provides a rational tangent for  ∠ A .  If both 
edges emanating from  A  are parallel to coordinate axes then  ∠ A  is a right angle with  ∞  as its 
tangent,  and the other two angles obviously have rational tangents.  If just one edge emanating 
from  A  is either vertical or horizontal,  the edge joins two angles with rational tangents,  and the 
third angle has a rational tangent too because the three angles add up to  π .  End of  “only if” .

To prove the  “if”  assertion suppose every angle of  ABC  has a rational tangent;  the exceptional 
case of a right-angled triangle is dispatched by placing the right angle at  (0, 0)  and aligning its 
adjacent edges along the coordinate axes.  Thus we may presume henceforth that no angle of  
ABC  is a right angle.  Drop the altitude  AP  from vertex  A  perpendicular to edge  BC  or its 
extension so that  P  falls on line  BC .  Now both  tan(∠ B) = AP/BP  and  tan(∠ C) = AP/PC  are 
rational numbers that can be assigned a common denominator:  AP/BP = k/n  and  AP/PC = m/n ,  
perhaps with different signs in case point  P  does not lie between vertices  B  and  C .  Thus  ABC  
is  Similar  to triangle  A B C  with vertices  A := (0, k·m) ,  B := (–m·n, 0)  and  C := (k·n, 0)  
because  tan(∠ B) = tan(∠ B)  and  tan(∠ C) = tan(∠ C) ,  so  ∠ B = ∠ B  and  ∠ C = ∠ C .

This problem was attributed in the  1980s  to  Stanford’s  John McCarthy,  a pioneer in Artificial Intelligence.  See  
“Triangles with Vertices on Lattice Points” by M.J. Beeson, pp. 243-252 in Amer. Math. Monthly 99 #3 (Mar. 1992).

Problem 7:  For any collection  X  of students let  F(X)  be how many of them speak  French,  
G(X)  how many speak  German,  and  R(X)  how many speak  Russian.  Some students speak 
more than one of these languages.  Given a collection  S  satisfying  F(S) = G(S) = R(S) = 24 ,  
show how to choose a subset  W  of  S  satisfying  F(W) = G(W) = R(W) = 12 .         (Lengthy)

Solution 7:  The desired subset  W  will be constructed as the disjoint union of smaller subsets  
V1, V2, V3, …  each of which has either  F(Vj) = G(Vj) = R(Vj) = 1  or  F(Vj) = G(Vj) = R(Vj) = 2  
as follows:  Dismiss every student who speaks none of the three languages.  Any student who 
speaks all three languages constitutes a  Singleton  subset  U  satisfying  F(U) = G(U) = R(U) = 1 .  
Any three students of whom one speaks only  French,  one only  German  and one only  Russian  
constitute a  Trio  subset  T  that satisfies  F(T) = G(T) = R(T) = 1 .  Any three students of whom 
one speaks just  French and German,  one speaks just  German and Russian,  and the third speaks 
just  Russian and French  constitute a  Triad  ∆  that satisfies  F(∆) = G(∆) = R(∆) = 2 .  Segregate 
every subset like  U  or  T  or  ∆  from  S  until,  in the collection  Z  of students remaining,  each 
student speaks just one or two of the three languages,  and no three students in  Z  each speaks one 
of each language,  and no three students include just two speakers of each of the three languages.  
Note:    F(Z) = G(Z) = R(Z) =  F(S) – #(singletons like U ) – #(trios like T ) – 2·#(triads like ∆) .
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To better visualize the kinds of students remaining in  Z ,  represent each language by a dot  • ,  and 
represent each bilingual student by an  Edge,  a line segment joining the two dots of this student’s 
languages.  The edges cannot include a triangle because it would already have been segregated 
from  Z  as a triad like  ∆ .  Represent each monolingual student by a  Stub,  a short line segment 
emanating from the dot of this student’s language and connecting with nothing else.  At least one 
of the dots is connected to no stubs;  otherwise another trio like  T  would have been segregated 
from  Z .  Still,  from each dot emanates the same number,  namely  F(Z) = G(Z) = R(Z) ,  of line 
segments,  be they edges or stubs.  When this number is  4  the following pictures are possible:

•  If some dot is connected to no other by an edge,  as happens in picture #1,  then that dot has the 
same number of stubs as there are edges connecting the other two dots;  neither of these can have 
any stubs lest both have them,  contradicting the segregation of trios.  That number of  Pairs  can 
now be segregated from  Z :  Each pair  ∏  is a subset including one monolingual and one 
bilingual student,  so  F(∏) = G(∏) = R(∏) = 1 .  These pairs exhaust  Z .

•  If one dot,  say  French,  is connected by at least one edge to each of the other two dots,  these 
two cannot be joined by an edge since  Z  has no more triads like  ∆ .  The number of edges 
emanating from  French  must equal the sum of the numbers of edges emanating from the other 
two dots,  each of which has as many stubs as the other has edges.  French  can have no stubs.  
Segregate now a  Quad  Q  of four students from  Z  chosen thus:  One student  (stub)  speaks only  
German,  one  (stub)  speaks only  Russian,  one  (edge)  speaks  French and German,  and the 
fourth  (edge)  speaks  French and Russian,  so  F(Q) = G(Q) = R(Q) = 2 .  Keep on segregating 
quads from  Z  until either it is exhausted or one dot is connected to no other by an edge,  and then 
revert to the previous paragraph to exhaust  Z  by segregating pairs.

Finally,  24 = F(S) = 2·#(quads Q) + 2·#(triads ∆) + #(pairs ∏) + #(trios T) + #(singletons U) .

Now we can assemble the desired subset  W  satisfying  F(W) = G(W) = R(W) = 12  by uniting 
first some quads,  and then  (if needed)  some triads,  and then  (if needed)  some pairs,  and then  
(only if needed)  some trios and/or singletons until
    12 = F(W) = G(W) = R(W) = 2·#(quads) + 2·#(triads) + #(pairs) + #(trios) + #(singletons) ,
counting only the quads,  triads,  pairs,  trios and/or singletons united into  W .

•

•

• •

•

••

•

•

#1 #2 #3


