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Problem 1:

 

  Four ghostly galleons  –  call them  E, F, G  and  H, –  sail at night on a ghostly sea so 
foggy that one side of a ship cannot be seen from the other.  Each ship pursues its course steadily,  
changing neither its speed nor heading.  G  collides with  H  amidships;  but since they are ghostly 
galleons they pass through each other with no damage nor change in course.  As they part,  H’s  
captain hears  G’s  say  “Damnation!  That’s our third collision this night!”  A little while later,  F  
runs into  H  amidships with the same effect  (none)  and  H’s  captain hears the same outburst 
from  F’s.  What should  H’s  captain do to reach her original destination,  whatever it may be,  
with no further collision;  and why will doing so succeed?

 

Solution 1:

 

  H  need only change speed while keeping to the same heading.  To see why this 
works,  choose a coordinate system centered upon  H  and moving with it.  As seen on a  RADAR  
screen in  H

 

 

 

,  the other galleons trace straight-line courses at constant speeds.  The courses traced 
by  F  and  G  are straight lines through  H

 

 

 

,  with which they have collided.  But  F  and  G  have 
also collided with each other;  therefore  F  and  G  trace the same straight line through  H

 

 

 

.  
Having both suffered three collisions,  not two,  F  and  G  must have collided with  E  at different 
times,  so  E’s  course must stay in that same straight line.  It cannot be aligned along  H’s  course 
because  H  suffered collisions amidships,  not by the bow or stern.  If  H  changes speed and  E  
does not,  their courses will no longer intersect.  E’s  captain has no reason to change speed since 
he cannot yet know anything about the course nor speed of  H

 

 

 

.

 

Problem 2:

 

  In an  n-dimensional  Euclidean  space,  the vertices of a triangle are at positions 
joined to the origin by vectors  

 

x

 

,  

 

y

 

  and  

 

z

 

 

 

.  Explain why the triangle’s unoriented area is  

A := 

 

√

 

(

 

det(M

 

T

 

·M)

 

)/

 

2   wherein   M :=    and   

 

m

 

 := (

 

x

 

+

 

y

 

+

 

z

 

)/3 .

 

Solution 2:

 

  If  n > 3  choose a new orthonormal basis whose first three vectors span the subspace 
containing  

 

x

 

,  

 

y

 

  and  

 

z

 

 

 

.  This reduces  n  to  1, 2  or  3

 

 

 

;  if  n = 1  then  A = 0  trivially.  Next,  
without changing the determinant,  subtract the column containing  

 

x

 

  from the others to get  

A =  

 

√

 

(

 

 

 

det(

 

 

 

·

 

 

 

)

 

 

 

)

 

/

 

2  wherein  

 

u

 

 := 

 

y

 

–

 

x

 

  and  w := 

 

z

 

–

 

x

 

 

 

.  Then add a third 

of each of the second and third columns to the first to get  A =  

 

√

 

(

 

 

 

det(

 

 

 

·

 

 

 

)

 

 

 

)

 

/

 

2

 

 

 

,  

which expands to  A = 

 

√

 

( 

 

u

 

T

 

u

 

·

 

w

 

T

 

w

 

 – (

 

u

 

T

 

w

 

)

 

2

 

 )

 

/

 

2 = ||

 

u

 

×

 

w

 

||

 

/

 

2  by  Lagrange’s  identity.  Since  
||

 

u

 

×

 

w

 

||

 

/

 

2  is the area of the triangle in question,  the formula for  A  is vindicated.

An alternative proof moves the origin to  

 

m

 

 

 

,  whereupon  

 

x

 

+

 

y

 

+

 

z

 

 = 

 

o

 

 

 

.  Next choose a new 
orthonormal basis whose first two vectors span the subspace containing  

 

x

 

, 

 

y

 

  and  

 

z

 

  to reduce  n  

to  2

 

 

 

.  Then invoke a well-known formula:  A = |det(M)|

 

/

 

2 = 

 

√

 

(

 

det(M

 

T

 

·M)

 

)/

 

2  now that  

 

m

 

 = 

 

o

 

 

 

.
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Problem 3:

 

  A skew-symmetric bilinear operator  

 

W

 

  is defined for any linear functional  

 

w

 

T

 

 

 

≠

 

 

 

o

 

T

 

  

thus:   

 

Wxy

 

 := 

 

xw

 

T

 

y

 

 – 

 

yw

 

T

 

x

 

 = –

 

Wyx

 

 

 

.   How does the  

 

Range  of  W  compare with the  Nullspace  

of  wT
 ,  and why?                      (If you think  x  and  y  are columns,  think of  wT  as a row.)

NOTE THAT  xy  IN  Wxy  IS NOT A VECTOR PRODUCT.  IT IS A PAIR OF VECTORS WRITTEN TO 
SUGGEST AN OBJECT THAT BEHAVES LIKE A PRODUCT LINEAR IN EACH FACTOR.   The bilinear form  
“  Wxy  ”  could be written  “ W(z, ßx + µy) = ßW(z, x) + µW(z, y) ”  to show its linearity,  and  “ W(x, y) = –W(y, x) ”  
to show its skew-symmetry but the extra commas and parentheses would clutter the page without clarifying anything.

Solution 3:  Range(W) = Nullspace(wT) ;  here is why:  Evidently  wTWxy = 0  for all  x  and  y ,  

so  Nullspace(wT) ⊇  Range(W) .  On the other hand,  for every  z  in  Nullspace(wT) ,  so that  

wTz = 0 ,  and for any  m  such that  wTm ≠ 0  ( such an  m  must exist because  wT ≠ oT ),  set  

u := m/wTm  to infer that  Wzu = z  and hence that  Range(W) ⊇  Nullspace(wT) .  Therefore  

Range(W) = Nullspace(wT) .

This conclusion is surprising because the ranges of bilinear operators are not all linear (sub)spaces.  For example,  Let  
∆  be a  4-by-4  matrix whose one nonzero element sits in the upper-left corner of  ∆  and define the bilinear operator  

SSXY := X·∆·YT – Y·∆·XT = –SSYX  to map  4-by-4  matrices  X  and  Y  each linearly into the  16-dimensional space 
of  4-by-4  matrices.  Range(SS)  consists of all skew-symmetric  4-by-4  matrices of rank  2 .  Some sums of these 
have rank  4  so they cannot constitute a linear subspace of  4-by-4  matrices.

The equation  Wxy = r   can be solved for  x  and  y  given any  r   in  Range(W)  as follows:  Choose any  m  and  

u := m/wTm  as in the solution above;  then  y := u  and  x := r   solves  Wxy = Wru  = r  ,  though not uniquely.

Problem 4:  Suppose an odd number  (at least three)  of coins have the property that,  if any one 
coin is removed,  the rest can be partitioned into two groups each with the same number of coins 
and also the same total weight.  Show that all the coins must have the same weight.

Proof 4:  Let the coins’ weights be  x1, x2, x3, …, x2N+1 .  Then for  i = 1, 2, 3, …, 2N+1  these 
weights must satisfy  ∑j hi,j·xj = 0  wherein every  hi,j = ±1  except  hii  = 0 ,  and for each  i  there 
are  N  coefficients  hi,j = +1  and  N  coefficients  hi,j = –1 .  Evidently a nontrivial solution for the 
homogeneous linear equations has  x1 = x2 = x3 = … = x2N+1 ≠ 0 .  Can there be any other kind of 
nontrivial solution?  To see why not,  we shall show that the deletion of the last row and column 
from the  (2N+1)-by-(2N+1)  matrix  H := [hi,j]  leaves a  2N-by-2N  matrix  H  with  det(H) ≠ 0 ,  
so the choice of a nonzero  x2N+1  determines uniquely all the other  xj’s  in a nontrivial solution.

What makes the problem interesting is that we do not know the signs of the nonzero  hi,j ’s .  Let’s 
perform our computation of  det(H) mod 2 .  Now every off-diagonal  hi,j ≡ 1 mod 2 ,  and we find 

that  H ≡ (uuT – I) mod 2  where  uT = [1, 1, 1, …, 1]  and  I  is the  Identity  matrix,  all with  2N  

columns.  Then  H2 ≡ I mod 2 ,  so  det(H) ≡ 1 mod 2 .  Consequently  det(H) ≠ 0 ,  as claimed.

(Adapted from problem  B5  of the  1988  Putnam Exam;  cf.  L-S. Hahn (1992) Math. Magazine 65 #2 pp. 111-2.)



Solutions to Problems for  Math. H90                                         Issued    2 Nov. 2007

Profs. Vera Serganova & W. Kahan            Version dated November 12, 2007 11:29 am                             Page 3 of 13

Problem 5:  Here is what is known about a linear operator  L   that maps a vector space to itself:  
No matrix  L ,  that represents  L   in any basis for the space,  can have  0  as its first diagonal 
element,  but this element is  3  in at least one such  L .  What operator is  L  ?  Justify your answer.

Solution 5:  We shall see why  L  = 3I   where  I   is the identity operator.  Evidently  L  ≠ O ,  so  

wTL  ≠ oT  for some functional  wT ≠ oT
 .  Suppose now that a vector  v  existed satisfying both  

wTv = 1  and  wTLv  = 0 .  Then a basis  B = [v, b2, b3, …]  could be chosen in which  [b2, b3, …]  

is a basis for the subspace annihilated by  wT  (so that every  wTbj = 0 ),  and then  wT  would be 

the first  “ row ”  in the inverse basis  B–1
 ,  whereupon the matrix  L = B–1LB   that represents  L   

in this basis would have  wTLv  = 0  for its first diagonal element.  This can’t happen,  according to 

the problem’s statement.  Therefore no vector  v  can ever satisfy both  wTv = 1  and  wTLv  = 0 ;  

consequently  every  wTL  = µwT  for some scalar  µ = µ(wT) ≠ 0 .  This implies  L = B–1LB   is 
diagonal for  every basis  B .  No two diagonal elements can differ without violating the equation  

wTL  = µwT  when  wT  is the difference between their corresponding  “ rows ”  in  B–1
 .  This 

makes  L  a scalar multiple of the identity matrix  I ,  and therefore  L   is a scalar multiple of the 
identity operator  I  .   The scalar  3  is the only scalar consistent with the problem’s data.

There is another way to show that  L  is diagonal:  Choose any vector  u ≠ o  and set  v := Lu  .  If  
v  were not a scalar multiple of  u  then  u  and  v  would be linearly independent and could be 

embedded in a basis  B = [u, v, b3, b4, …]  for the vector space;  then the matrix  L = B–1LB   that 
represents  L   in this basis would have  0  for its first diagonal element because the first  “column”  

of  BL = LB   would be  v = Lu  ,  making  [0, 1, 0, 0, 0, …, 0]T  the first column of  L .  Since the 
problem ruled that out,  Lu  = µ(u)u  for  every  vector  u  in the space,  etc.  as before.
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Problem 6:  You are given a large flat layer-cake in the shape of an equilateral triangle,  but you 
wanted a square flat layer-cake.  How few straight knife-strokes suffice to cut the triangle into 
pieces that can be reassembled into a square of the same area?  After reassembly the cake’s icing 
can be applied over the cuts and sides of the cake to conceal that it was not square originally.  But 
reassembly must turn no piece over lest mismatched layers reveal that the cake was manipulated.

Solution 6:  The minimum number is  2  or  3 .  One cut is too few since it creates at most two 
right-angled corners unless one piece is flipped over like a pancake to produce a rectangle.  Here 
is a way for three cuts to generate four pieces that can be reassembled into a square:  The triangle  
ABC  shown below has edges each of length  2 units,  and area  √3 square units.  Points  L  and  R  
are midpoints of  AB  and  AC  respectively.  First cut through  R  to  P  on  BC  at an angle  

∠ LRP = ∠ RPC = arcsin(4√3/2) ≈ 42.150335 ̊.  Lay point  Q  on  PC  at one unit distance from  P  
and put the second cut through  Q  perpendicular to  PR,  cutting it at point  D .  Put the third cut 
through  L  perpendicular to  PR  cutting it at point  E .  Cuts  LE  and  QD  have the same length,  
4√3/2 units.  With point  L  fixed,  rotate quadrilateral  LBPE  clockwise through a half-turn  
(180˚)  moving  B  onto  A .  With  R  fixed,  rotate triangle  RPC  counterclockwise through a half-
turn moving  C  onto  A .  Then,  with the moved point  Q  fixed,  turn the moved triangle  QDP  
counterclockwise through a half-turn putting the moved triangle’s point  P  to the moved 
quadrilateral’s point  P ;  do you see why points  P  rejoin?  The resulting figure is a rectangle two 

of whose opposite sides have lengths twice  LE ,  the same as twice  QD ,  namely  4√3 units.  
Since the rectangle’s area is the same as the original triangle’s,  namely  √3 square units,  its four 

sides must have the same length,  namely   4√3 units. 

Could two cuts work?  We think not,  but our  “proofs”  are too complicated to believe.  We hope 
someone reading this will show us a simple proof that two cuts are too few.

/
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Problem 7:  Suppose integers  m  and  n  satisfy  n ≥ m ≥ 3 ;  and suppose  n  line segments have 

nonnegative lengths  xj  satisfying  ( ∑1
n xj )

2 ≥ (n – (m–2)2/m)·∑1
n xj

2 .  Prove that any subset of  
m  of these segments in any order can be assembled head-to-tail to form a polygon with  m  edges.

Proof 7:  It so happens that  m  segments can be the edges of a polygon with  m  sides if and only 
if no segment’s length exceeds the sum of all the  m – 1  others’ lengths.  When this condition is 
satisfied by every subset of  m  lengths  xj ≥ 0  chosen from a set of  n  of them,  the vector  x  in  
Euclidean  n-space  whose coordinates are  x = [x1, x2, x3, …, xn]  will be deemed  O.K.  Our task 
is to prove that all nonnegative vectors  x  satisfying the inequality in question are  O.K.  though 
perhaps some  O.K.  vectors do not satisfy that inequality.  ( For example,  it is violated when  
n ≥ m = 3  and  n-vector  x = [1, 1, 1, …, 1, 1/3]  even though this  x  is  O.K.)

Let  K   be the set of  n-vectors  x  that are  O.K.  and let  n-vector  u := [1, 1, 1, …, 1] .  This  u  is  
O.K.,  so  u  lies in  K  ,  which lies in the positive orthant of  n-space.  We have to characterize  K   
algebraically,  and prove that it contains a cone-shaped region consisting of all nonnegative  n-

vectors  x  satisfying the inequality in question,  namely  “ (u•x)2 ≥ (n – (m–2)2/m)·x•x ”  .  To that 
end let  W  be the set of all  n-vectors  w  whose elements are all zeros except for  m–1  elements 
equal to  +1  and one element equal to  –1 .  These characterize  K   as the set of nonnegative 

vectors  x  that satisfy  w•x ≥ 0  for every  w  in  W  .  There are  m·nCm := n!/((m–1)!·(n–m)!)  
such vectors  w ,  each a  Normal  (perpendicular)  to a  Facet  (hyperplane)  bounding what turns 
out to be a  Polyhedral Cone  K  .

Between vector  u  and each facet of  K    is an angle  θ ,  the complement of the angle between  u  
and the normal  w  to that facet,  so   sin(θ) = w•u/(||w||·||u||) = (m–2)/√m·n .  Every nonnegative 
vector  x  making an angle less than  θ  with  u  lies inside  K  ;  do you see why?  Consequently,

     if  x ≥ o  and  u•x/(||u||·||x||) = cos(∠ (u,x)) ≥ cos(θ) = √(1 – (m–2)2/(m·n))  then  x  is  O.K.
Substituting  ||u|| = √n  and squaring the last inequality yields the inequality in question.

For rather more about this subject see  “Assembling r-gons Out of n Given Segments” by  B.V. Dekster,  pp. 44-8 of 
Mathematics Magazine 65 #1 (Feb. 1992).  About  θ  see  http://www.cs.berkeley.edu/~wkahan/MathH90/Angles.pdf.
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Problem 8:   For each  n > 1  exhibit two  n-by-n  matrices  B  and  C  that allow both equations   
B·F = F·B   and  C·F = F·C   to be satisfied simultaneously only if  F  is a scalar multiple of the  n-
by-n  identity  I ,  and prove your matrices  B  and  C  have the desired property.

Solution 8:  One such pair is  B = J  and  C = JT  where  J  is the  n-by-n  matrix whose every 
element is zero except for the  n–1  elements just above or to the right of the diagonal,  and every 

one of these is  1 ,  so  Jn = O ≠ Jn–1
 .  For example,  when  n = 6 , 

 J = .

The elements  φi,j  of any  F  satisfying  J·F = F·J  must satisfy  φi+1,j = φi,j–1  for  1 ≤ i < n  and  
1 < j ≤ n ,  and  φn,j–1 = φi+1,1 = 0 .  Consequently this  F  is upper-triangular with all its nonzero 

elements  φi,j  determined solely by  j – i ≥ 0 ;  in other words,  only if   F = ∑0≤k<n ßk·J
k   is some 

polynomial in  J  can  J·F = F·J .  But now  JT·F – F·JT = ∑0<k<n ßk·(J
T·Jk – Jk·JT)  can vanish only 

if every  ßk = 0  when  0 < k < n  because then the two nonzero elements of  JT·Jk – Jk·JT  fall in 
locations different for different indices  k .  Therefore only  F = ß0·I  can satisfy both  J·F = F·J  

and  JT·F = F·JT  simultaneously.

This problem was adapted from  P.M. Gibson’s  solved on  p. 63  of  The Amer. Math. Monthly 87 #1 (Jan. 1980).  

Instead of  B = J ,  any  n-by-n  matrix  B  satisfying  Bn = O ≠ Bn–1  will do as well;  then  B = E·J·E–1  for some  E  

from which   C := E·JT·E–1  is constructed.

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
0 0 0 0 0 0
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Problem 9:  Prove that if  Rank(A·B – B·A) ≤ 1  then matrices  A  and  B  have at least one 
eigenvector in common.  (Hard!)

Proof 9:  The hypothesis about rank implies that  A·B – B·A = c·dT  for some vectors  c  and  d ,  
possibly  o .  Since  A·B – B·A = (A – α·I)·B – B·(A – α·I)  for every scalar  α ,  we may replace  A  
by  A – α·I  for any eigenvalue  α  of  A ;  in other words,  no generality is lost by assuming that  0  
is one of the eigenvalues of  A .  Let  XX   be the vector space upon which  A  and  B  operate;  it 
contains   ZZ := Kernel(A) = Nullspace(A)  and  RR := AXX  = Range(A) ,  neither of which is just  o  
lest our problem be trivial.  Our proof will establish first that either  ZZ ⊇  B·ZZ  or else  RR ⊇  B·RR .

If  c·dT = O  then  ZZ ⊇  B·ZZ  because  A·ZZ = o = O·ZZ = (A·B – B·A)·ZZ = A·(B·ZZ) .  In this case  ZZ  
is an  Invariant Subspace  of  B  which must therefore contain at least one of its eigenvectors;  this 

is also an eigenvector of  A  belonging to its eigenvalue  0 .  Ditto if  c·dT ≠ O  and  ZZ ⊇  B·ZZ .

If  c·dT ≠ O  but not  ZZ ⊇  B·ZZ ,  some  z  in  ZZ  must satisfy   c·dT·z = (A·B – B·A)·z = A·B·z ≠ o ,  

which places  c  in  RR .  This implies that   RR ⊇  (A·B – c·dT)·XX  = B·A·XX  = B·RR .  In other words,  
RR  is an invariant subspace of  A  and of  B ,  so each of  A  and  B  has at least one eigenvector in  
RR .  Now replace  A  and  B  by their respective  Restrictions  to  RR ,  thus reducing our problem 
about linear operators acting upon  XX   to the same problem for linear operators acting upon a 
smaller space  RR .  

What does  “Restriction”  mean?  To simplify its explanation we suppose that the nullspace  ZZ  of  A  has dimension 
1 ,  and we change coordinates to a new basis of  XX   that begins with a basis of  RR  and appends one more vector.  (It 
cannot lie in  RR ;  it need not lie in  ZZ  and cannot if  RR ⊇  ZZ .)  In the new basis,  A ,  B ,  c ,  A·B – B·A  and vectors  r   
in  RR  are represented by matrices respectively

  ,     ,     ,          and     .

Restricting  A,  B,  c·dT  and  A·B – B·A  to act only upon vectors  r   in  RR ,  thus producing only vectors in  RR ,  

amounts to deleting the last row and column of each of  A,  B,  c·dT  and  A·B – B·A ,  thus reducing their dimensions.

This restriction process does not increase the rank of  A·B – B·A ,  so the reasoning above can be 
repeated until either the reduced  ZZ ⊇  B·ZZ  or else the reduced  RR ⊇  B·RR  and has dimension  1 .

A a

oT
0

B b

oT β

c
0

A B⋅ B A⋅( )– A b⋅ a β⋅ B a⋅( )–+

oT
0

r
0
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Problem 10:  Assume each diagonal element of a square matrix  B  exceeds in magnitude the sum 
of the magnitudes of the off-diagonal elements in the diagonal element’s row;  prove that  B  is 
invertible.

Proof 10:  This problem’s assertion has three proofs,  each illuminating a different approach to 
matrix theory.  One proof is explored in a one-page note on  Diagonal Prominence  posted at  
<www.cs.berkeley.edu/~wkahan/MathH110/diagprom.pdf> .  A second proof deduces from  
Gershgorin’s Circle Theorem  that zero cannot be an eigenvalue of  B ;   see  Problem 11.  A third 
proof comes after the following digression about a particular  Matrix Norm:

For column vectors  x  define  ||x||  to be the biggest of the magnitudes of the components of  x .  
That this norm satisfies the minimum requirements for a norm,  namely that  ||x|| > 0  except for  
||o|| = 0 ,  ||λ·x|| = |λ|·||x||  for every scalar  λ ,  and  ||x + y|| ≤ ||x|| + ||y|| ,  is left to the reader to 
confirm.  Distinguish  ||x||  from  |x| ,  which is the column vector whose every element is the 
magnitude of the corresponding element of  x ,  whence  ||x|| = || |x| || .  Similarly let  |E|  be the 
matrix whose every element is the magnitude of the corresponding element of matrix  E .  

Note that  |E|  here is a matrix,  not the scalar  det(E)  nor a scalar-valued norm of  E .

Now let  ||E|| := max||x||=1 ||E·x||  and confirm that  ||E|| = || |E|·u ||  in which  u  is the column vector 
whose every element is  1 .  Thus,  ||E||  is the biggest of the row-sums of  |E| .  Then confirm easily 
that  ||E|| > 0  except for  ||O|| = 0 ,  ||λ·E|| = |λ|·||E||  for every scalar  λ ,  and  ||E + F|| ≤ ||E|| + ||F|| .  
Finally,  ||E·F|| ≤ ||E||·||F||  because  ||E·F·x|| = (||E·(F·x)||/||F·x||)·||F·x|| ≤ ||E||·||F||·||x||  if  F·x ≠ o .

The norms  ||…||  above are often written  “ ||…||∞”  to distinguish them from  Euclidean  and other norms.

Back to the given problem:  Let  D := Diag(B)  be the diagonal matrix obtained from  B  by setting 

all its off-diagonal elements to zeros.  Then  E := I – D–1·B  has only zeros on its diagonal,  and 

||E|| < 1  because of the problem’s assumption.  Consequently the infinite series  ∑n≥0 E
n  must 

converge to  (I – E)–1  and therefore  B–1 = D–1·(I – E)–1  exists,  as the problem asserts.
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Problem 11:  With any  n-by-n  matrix  B  whose elements are  ßi,j  associate  n  closed disks  ∆k  

in the complex plane:  ∆k  is centered at  ßk,k  and has radius  ρk := ∑j≠k |ßk,j|  for  k = 1, 2, … and  
n .  Explain why each eigenvalue of  B  lies in at least one of the disks  ∆k .

Solution 11:  Each eigenvalue  λ  of  B  has an eigenvector  x ,  a nonzero column of elements  ξj  

satisfying  B·x = λ·x ;  i.e.,  ∑j ßi,j·ξj = λ·ξi  for  i = 1, 2, … and  n .  Let  ξk  be the element of  x  
with the biggest magnitude;  0 ≠ |ξk| ≥ |ξj|  for every  j .  Then  

     |λ – ßk,k|·|ξk| = |(λ – ßk,k)·ξk| = |∑j≠k ßk,j·ξj| ≤ ∑j≠k |ßk,j|·|ξj| ≤ (∑j≠k |ßk,j|)·|ξk| = ρk·|ξk| ,
which puts  λ  into  ∆k ,  as claimed,  after  |ξk|  is cancelled out.

Actually,  each  Connected Component  of  ∪ k ∆k  contains as many eigenvalues of  B  as the component has disks  
∆k .  This is  Gershgorin’s Circle Theorem,  and is proved by exploiting the continuity of  B’s  eigenvalues as 
functions of its elements.  Let  B(τ)  have the same diagonal elements  ßj,j  as  B  has but off-diagonal elements  τ·ßi,j .  
As  τ  increases from  0  to  1  the eigenvalues of  B(τ)  run continuously from the disks’ centers  ßk,k  to the 
eigenvalues of  B .  The radius  ρk(τ) of disk  ∆k(τ)  grows from  ρk(0) = 0  to  ρk(1) = ρk .  As a set of points,  the 

eigenvalues of  B(τ)  remain trapped in  ∪ k ∆k(τ) ,  and this proves  Gershgorin’s  theorem.  It depends upon the 
continuity of eigenvalues,  which is harder to prove because an eigenvalue may fail to be a differentiable function 
wherever its multiplicity changes.  All that is a story for another day.

Problem 12 :  The specification of a function is incomplete without a specification of its domain.  
This problem shows how an infinitesimal change in its domain can change a function  ƒ  utterly.  
In particular the  Open Interval  ] –1, 1[  consisting of all real numbers  x  strictly between  ±1  
(and often denoted elsewhere by the overworked notation  “ (–1, 1) ”  )  differs infinitesimally from 
the  Closed Interval  [–1, 1] ,  which includes its end-points  ±1  too.

…  Continued  …
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For any fixed positive constant  λ < 1 ,  and for any real variable  z  in  ] –1, 1[ ,  let 
 σ(z) := λ·(1 – |z|) > 0   and interval   J(z) := [z–σ(z),  z+σ(z)] ] –1, 1[ . 

If  ƒ(x)  is a continuous function that satisfies  ∫J(z) ƒ(ξ)·dξ = 0  for every  z  in  ] –1, 1[ ,  must  
ƒ(x) ≡ 0 ?   Why?   Your answers will depend upon the domain of  ƒ ,  so suppose each of …

12.0 :  The domain of  ƒ  is  ] –1, 1[ . 12.1 :  The domain of  ƒ  is  [–1, 1] .
separately and answer appropriately for each of these two cases.

Solution  12 :  If the domain of  ƒ  is the closed interval  [–1, 1]  then  ƒ(x) ≡ 0 ;  otherwise  ƒ  can 
take nonzero values in its open domain  ] –1, 1[ .  This problem’s solution requires a Half-Open 
subinterval  ] –1, X]  or  [X, 1[  of the domain to be covered by an infinite collection of end-to-end 
abutting intervals  J(zk)  for suitably chosen centers  zk  depending upon variable  X  in  ] –1, 1[ .

Here is how the centers  zk  are chosen when  X  lies in  ] –1, 0] :

  –1 < zk+1 <  zk := (1 – λ)k–1·(1 + X)/(1 + λ)k – 1  < 0   for  k = 1, 2, 3, …  in turn. 
Consequently only the left end-point of 

 J(zk) = [ (1 – λ)k·(1 + X)/(1 + λ)k – 1 ,   (1 – λ)k–1·(1 + X)/(1 + λ)k–1
 – 1 ]   

overlaps the right end-point of  J(zk+1) .  The interiors of different intervals  J(zk)  are disjoint,  and  

∪ k≥1 J(zk) = ] –1, X] ,  so  0 = ∑k≥1 ∫  ƒ(ξ)·dξ = ∫–1
X ƒ(ξ)·dξ  provided the last integral exists.

Similarly,  when  X  lies in  [0, 1[  the choices  zk := 1 – (1 – λ)k–1·(1 – X)/(1 + λ)k  yield both  

∪ k≥1 J(zk) = [X, 1[  and   0 = ∑k≥1 ∫  ƒ(ξ)·dξ = ∫X1 ƒ(ξ)·dξ  provided the last integral exists.

When  ƒ  is continuous on the closed interval  [–1, 1]  both of those last integrals exist,  and then 

the derivatives of the equations   ∫–1
X ƒ(ξ)·dξ = 0   and   ∫X1 ƒ(ξ)·dξ = 0   imply that  ƒ(x) ≡ 0  for 

all  x  in  ] –1, 1[  and thus throughout  [–1, 1]  too by continuity on this domain.

When  ƒ  is continuous on the open interval  ] –1, 1[  but not on the closed interval  [–1, 1] ,  
violently rapid and unbounded oscillations of  ƒ(x)  as  x  approaches the intervals’ ends may 
allow neither of those last integrals to exist though  ∫J(z) ƒ(ξ)·dξ = 0  for every  z  in  ] –1, 1[ .  This 
happens to the following example:

This example’s  ƒ  is the derivative  ƒ(x) := F'(x)  of an odd function  F(x) ≡ –F(–x)  constructed to 
be  Continuously Differentiable  at all  x  in  ] –1, 1[  and satisfy thereon

     ∫J(x) ƒ(ξ)·dξ  =  F(x + λ·(1 – |x|)) – F(x – λ·(1 – |x|))  ≡ 0  but not  ƒ(x) ≡ 0 .  
F(x)  will be constructed as a nontrivial solution of the functional equation  F(jr(x)) ≡ F(jl(x))  in 
which  jl(x) := x – λ·(1 – |x|)  and  jr(x) := x + λ·(1 – |x|) = –jl(–x)  are the left- and right-hand end-
points of interval  J(x) = [jl(x), jr(x) ] .  Functions  jl  and  jr  have inverses:  If  y  is in  [–1, 1] ,

   y = jl(x)   just when   x = lj(y) := (y + λ – λ·|y + λ|)/(1 – λ2) ; 

   y = jr(x)   just when   x = rj(y) := (y – λ + λ·|y – λ|)/(1 – λ2) = –lj(–y) . 

Then   lr(y) := jl(rj(y)) = (y·(λ2
 + 1) – 2λ + 2λ·|y – λ|)/(1 – λ2)  and  rl(y) := jr(lj(y)) = –lr(–y)  turn 

one functional equation  F(jr(x)) ≡ F(jl(x))  into two equations  F(y) ≡ F(lr(y))  and  F(rl(y)) ≡ F(y)  
for  F  that will amount to the same thing because  F(y) ≡ –F(–y) .  These functions  lr  and  rl  are 

  ⊂
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piecewise linear with fixed-points  lr(±1) = rl(±1) = ±1  resp.,  notches  lr(λ) = –λ  and  rl(–λ) = λ ,  
and elsewhere derivatives  lr'(y) = (1 + λ·signum(y – λ))/(1 – λ·signum(y – λ))  and  rl'(y) = lr'(–y)  
wherein  signum(z) := z/|z| = ±1  except  signum(0) := 0 .  And since  lr(rl(x)) ≡ rl(lr(x)) ≡ x  (after 
laborious algebraic simplification),  functions  lr  and  rl  are each the inverse of the other;  this 
fact is obvious from their graphs:

These functions will determine a sequence  {Hk} k≥1  of abutting subintervals  Hk := [hk–1, hk]  
that,  together with their reflections  –Hk := [–hk, –hk–1] ,  cover all of  ] –1, 1[ ,  and on which  
F(x)  will be defined by a recurrence.  The first endpoint  h0 := –λ  and then they continue with  

h1 = λ ≤ hk := rl(hk–1) = 1 – (1 – λ)k/(1 + λ)k–1 > hk–1  for  k ≥ 1 .  Thus every  Hk+1 = rl(Hk) .

Define  F(x) := x·(x2 – λ2)2/λ5 = –F(–x)  when  x  is in  ±H1 = [–λ, λ] ,  and  F(x) := F(lr(x))  
when  x  is in  Hk+1 ,  so  lr(x)  is in  Hk ,  for  k = 1, 2, 3, …  in turn.  And  F(x) := –F(–x)  when  x  
is in  –Hk+1 .  Note that  F  is continuously differentiable throughout  ] –1, 1[  because  F(±hk) = 0  

and  ƒ(±hk) = F'(±hk) = 0 .  Moreover  ƒ(±x) = F'(x) = F'(lr(x))·lr'(x) = ƒ(lr(x))·(1 + λ)/(1 – λ)  

when  x  is in  Hk+1 ,  just as   1 – Hk+1 = (1 – Hk)·(1 – λ)/(1 + λ) .

The phrase  “Continuously Differentiable”  is not quite redundant since derivatives can be only  Darboux Continuous.

But this  F(x)  oscillates rapidly between  ±16/√3125 ,  and infinitely rapidly as  x  approaches 
either end of  ] –1, 1[ ;  then the amplitudes of the oscillations of  ƒ(x) = F'(x)  tend to infinity as 
fast as  1/(λ·(1 – |x|)) .  Both  F(x)  and  ƒ(x)  are graphed on the next page.  Thus neither  

∫–1
X ƒ(ξ)·dξ  nor  ∫X1 ƒ(ξ)·dξ  exists though    ∫J(z) ƒ(ξ)·dξ = 0  for every  z  in  ] –1, 1[ .
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Incomplete Graph of  F(x)  for  λ = 1/2

Incomplete Graphs of   ƒ(x) = F'(x)   and   1/(λ·(1 – |x|))   for  λ = 1/2

This problem was adapted from  “A Problem of the Pompeiu Type”  by  K.W. Thompson & T. Schonbek,  pp. 32-36 
of The Amer. Math. Monthly 87 #1 (Jan. 1980).  A 2-dimensional generalization appeared on the  1977 Putnam exam.
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Problem 13:  Assume integers  N > K > 0 ,  and set column  N-vector  n := [1, 2, 3, …, N]T .  Let  
P  and  Q  be  N-by-N  Permutation Matrices,  so  P·n  just rearranges the order of the elements of  
n .  Determine column  K-vectors  r   and  c ,  and column  (N – K)-vectors  r   and  c ,  thus:

:= P·n   and   := Q·n .  Suppose  N-by-N  matrix  B  has an inverse  E := B–1
 ,  and define  K-

by-K submatrix  Br,c  by first selecting from  B  the rows with indices in  r   in its order,  and then 
keeping only the columns with indices in  c  in its order.  For example,  take  N := 5 ,  K := 2 ,  

r  := [3, 1]T  and  r  := [4, 5, 2]T ,  and  c := [2, 4]T  and  c := [5, 1, 3]T ,  so  Br,c =  .  Do 

similarly to obtain  Br,c  and  Ec,r   etc.  Now prove that   det(Br,c) = det(B)·det(Ec,r)·det(P)·det(Q) .

Proof 13:  This formula to be proved was first published in  1834  by  Jacobi  in a rather more 
complicated notation.  The following short proof partitions matrices thus:

  The inverse of   P·B·QT =    is    Q·E·PT =  .

Therefore

  ·  =  ,   and consequently   det(Ec,r)·det(P·B·QT) = det(Br,c) ,  whence

follows the claimed result.  Note that  det(P) = ±1  according to the parity of  P .  Likewise for  Q .
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