Math. H90 1999 Putnam Exam Problems’ Solutions January 6, 2000 1:26 pm

The 1999 W.L. Putnam Competition Exam took place on Sat. 4 Dec. 1999 in two sessions:
Problems Al - A6 were to be solved during the morning session, 8- 11 am.;
Problems B1 - B6 were to be solved during the afternoon session, 1 - 4 pm.

Problem Al: Find polynomials f(x), g(x) and h(x), if they exist, suchthat, forall x,
[fCAl = 19()] + h(x) -1 if x<-1,

3Xx+2 if -1<x<0, or

—2X + 2 if x>0.

Solution Al: f(x) :=3(x+1)/2, g(x):=5x/2 and h(x) := (1 —-2x)/2 meet the requirements.
This particular solution can be determined most easily by solving three linear equations:
—f+g+h=-1, f+g+h=3x+2, f-g+h=-2x+2.

Problem A2: Let p(x) beapolynomial that is nonnegative for all x . Provethat, for some
k, therearepolynomias fi(x), fo(x), ..., fi(x) suchthat p(x) =¥ 14<k (fj(x))z.

Solution A2: Presumably “ for all x” means “ for all real scalar x” since otherwise, if x
could be complex, wewould find p(x) to be apositive constant; and if x could be areal
vector then rational functions f; might be needed. See pp. 55-57 and 300-304 in the book

Inequalities by G.H. Hardy, J.E. Littlewood & G. Pdlya, 2d. ed. (1952) for more about that.
Back to our problem: p(z) must have real coefficients because they can be determined by
solving areal system of linear equations with a number of values of p(z) at real argumentsin
the right-hand side. Therefore any zeros xy + 1y, of p(z) that are not real must comein

complex-conjugate pairs. Every real zero x; of p(z) must have even multiplicity lest p(z)
change sign there. (And the degree of p(z) must be even since otherwise it would take opposite
signsat z=zw ) Therefore p(z) = M (z-%)* Mk (z—x)? + yx?) . whereupon we may rewrite

Mk (Z%)% + Yid) = Mk (2% + -2 = 1Y) = (R@) +112)(R(@) —11(2)) = R(@)* +1(2)?
with the understanding that the factors (z—x;) and (z—x —1yy) need not be all distinct; here
polynomial R(z) + 11(2) = [k (z=Xk + 1yi) broken into real and imaginary parts. Consequently

k=2, f1(2) :==R(@)1j (zx) , and fx(2) :=1(2)-1; (z=X;) -

Problem A3: Consider the power seriesexpansion 1/(1 —2x — x2) =3 s0aX". Provefor
eachinteger n>0 that thereisaninteger m suchthat a, = a, + 12 -

Solution A3: m=2n+2. Why? Go from the partial fraction expansion to the power seriesthus:
VB/(1-2x-x2) = (1+V2)/(1 - (1+V2)x) — (1~2)/(1 - (1~V2)x)
= Trp0 ((1HV2)™ = (12 ) X"
Evidently a,= ((1+v2)™! - (1-2)"1)/V8. Aided by theidentity (V2-1)(vV2+1)=1, we
can confirm the formula a, = a, 1% + a,> With amodest amount of algebraic labor.
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Problem A4: Sumtheseries Y1 Y a1 3 m?n/(3™n +3™m) .

Solution A4: Let S denote thissum. It isunchanged by the exchangeof m and n, so
25= ¥ o1 Sre1 (320 + 3'2m)/(3™n + 3"m) = Y g S 3 IMn = T(1/3)2 where
T(X) := 3 g MX™ = xd(1/(1x))/dx = x/(1-x)?. Therefore T(1/3)=3/4 and S=9/32.

Problem A5: Provethat thereisaconstant C such that, if p(x) isapolynomia of degree
1999, then |p(0)| < CJ 41 |p(x)|dx .

Solution AS: For any integers n>20 and m>0 let &y, ,, bethe infimum (greatest lower
bound) of j_ll XM p(x)/p(0)| dx taken over al polynomials p(x) of degreeat most n with

p(0) #0. Any constant C = 1/@999 Will solve the given problem provided @1gg90>0, and
this proviso will follow from our proof, by inductionon n, that every &, ,,>0.

Let usrewrite p(x)/p(0) = [k (1 —x/z) where z,, 7, ..., Z, ..., Z, aredl n zerosof p(X);
every z,#0; if any z =oo it merely diminishesthe degreeof p below n. Theinfimum we
seekis Oy = infzj_ll(ﬂk|1—x/zk|)-|x|mdx over all n-tuples z:=(zy, 2, ..., Z, ..., Z,) Of
nonzero complex numbers. Actually, since |1—x/z| = |1 -x/(1/Re(l/z))|, the searchfor @,
can berestricted to n-tuples of real numbers z, . Therestriction z,2< 1 can beimposed too,
thusrestricting p to polynomialswith n zerosall real and nonzero between 1 inclusive,
because while zk2 > 1 thefactor |1-x/z|=1-x/z, renderstheintegral in question alinear
function of 1/z, minimized at either z, =1 or z =-1. Therestrictionsdon't change G, , -

Now define Fy, (21, 2o, -, Z, -0y Zp) ::I_11(|'|k |1 —x/z)-Ix|Mdx for integers n>0 and
m=0, sothat @, :=inf,F,(2) overalrea ntuples z=(z,2,, ..., %, ..., Z,) whichwe
might aswell constrainthus: 0<z2<1. This Fnm isacontinuous function of its n nonzero
arguments z, ; and sinceit isunaltered by their permutation they shall henceforth be assumed
sorted thus: 222 2,%2 ... 2222 ...22,°>0. And @, ,, isanonincreasing function of n
since @ g m=inf, Fogm(z1, 2o, ..., Zpg) = INf, Py (0, 29, 2, o000 1) 2B - (AlSO By
isanonincreasing function of m since F, 11 < Fy ) A tedious computation establishes that
Bom = Brm = Fim(ED) = 2(MH1) > By = Fp (272, 2720M9)) = 2129 —9)/(m1)
This validates the induction hypothesis from which we shall infer next that every @, ,,>0:

For some N>2 andevery m>0 wefind 0<@y_3 =min, Fy_ m(2) minimized over all

N—1-tuples z=(zy, Zp, ..., Zn_1) » @ndaminimizing z has 12222 2z,°> ... 22y 4°>0.

To propel this hypothesisfrom N to N+1 weobservethat @y ,, = inf, Fy m(2) isthelimit to
which Fy (z) descendsas z movesthrough an infinite sequence of constrained N-tuples at
each of which Fy (2) — 9\ m isatleast, say, twiceashigasat z's successor. We constrain

each N-tuple z=(zq, Z,, ..., zy) intheinfinite sequenceto satisfy 1>2,222,°2 ... 22>0,

Prof. W. Kahan Math. Dept., Univ. of Calif. @ Berkeley Page 2/7



Math. H90 1999 Putnam Exam Problems Solutions January 6, 2000 1:26 pm

aconstraint which has been shown above to be compatible with the infimum. This constraint
restricts the infinite sequence’s N-tuples z to a set whose closure, the N-cube inwhich
-1<z<1 elementwise, is compact (closed, bounded and finite-dimensional). Therefore the
infinite sequence contains an infinite subsequence convergent to some limit N-tuple z inthe
N-cube. Fym(2) - Dnm fromaboveas z - Z through the subsequence. The elements of

limit N-tuple Z = (21, Zp, ..., Z\) Satisfy the weakened constraint 1>7,2227,°> ... 27°20,
but in fact zy?> 0, asshall now be proved indirectly.

Were 7,?>=0, anonnegativeinteger L <N could be found with 1>7,°27,°>...27,2>0

but EL+1 :EL+2= :EN =0. Thiswould Imply that |I—IL<jSN Zjl -0asz- Z although

IML<jeN ZFFNm(Ze 220 0 20 Zists o0 Z0) = Jat (Msket 11 =X02) (ML <jn 25 — X)X (M
= L1 (Maskst 1-XZ) XM Hdx as z - 2

= FLmint (@122, -, 21) 2 B en >0,
which would imply that Fy (z) - +o as z - Z instead of Fy(2) - Dym<2. This

contradiction explainswhy L =N and EN2> 0, andtherefore Fy () iscontinuousin the
neighborhood of z=7; consequently Fym(z) -~ Fym(@) >0 as z — Z, which confirms that
0 <@\ m=min, Fy m(2) = Fy m(z) asclaimed. So endsarather long proof.

As Putnam problems go this seems excessively long, and we still don’t know the least value 1/@g99 Of C ..

Problem A6: Thesequence {a,}»1 isdefinedby & :=1, &:=2, ag:=24, and
6a2 -8 2
a, = a”_lanaf %an_lan_z for n>4. Show that every a, isaninteger multipleof n.
-2%-3

Solution A6: Substitute r,, := a/a,_4 into the given recurrenceto obtain r, =2, r3 =12 and

r,=6r,; —8r,3. Thisisalinear recurrence whose characteristic polynomial r>—6r + 8
factorsinto (r—2)(r—4) ; from this soon followsthat r, = 4%t —2"1= (2" _1)2™1 and then

3 = Macken ™ = Macken (@ =1)2T = 200727, (21 1) . Next we shall prove
that n dividesthis a, by showing that every prime power that divides n divides a, too.

If n isdivisbleby 2™ for some m>0 then m<n-1 (because 2">n+1), and therefore a,
isdivisibleby 2™ too. If n isdivisibleby p™ for some odd prime p andinteger m>0,

then again m< n-1 (because p">2">n+1), and each of the m integers k=p, p?, ..., p"
appears among the consecutive integers k =2, 3, ..., n. Now we appeal to Fermat’s “little”

theorem to the effect that LP~ —1 isdivisible by prime p whenever integer L isnot divisible
by p. Apply thisfor L = 2&D/P-1) whenever k isapower of p toinfer that then 2¢1—1

isdivisibleby p. Therefore, a,=2M™DV2.M, (21 =1) has n-1 odd factors (21 —1)

of which at least m aredivisibleby p, so p™ divides a, too. Since every prime power that

divides n divides a, too, n must divide a,. End of proof.
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Problem B1: Right triangle ABC hasitsright angleat C and IBAC =@ ; thepoint D is
chosenon AB sothat |AC|=]AD|=1; Thepoint E ischosenon BC sothat ICDE=@.
The perpendicular to BC at E meets AB at F. Evaluate Iim|EF| as @ - 0. [ Here
“|IPQ|” denotes the length of the line segment PQ ]

C

A9 B
F D

Solution B1: |EF| - 1/3. Toseewhy, observethat EF || CA, so AEFB ||| ACAB, whence

|EF| = |EFJ/|CA| = |[EBJ/|CB| = 1—|CEJ/|CB| = 1-|CE|/tan(J)
1 —(|CDJ-sin(@)/sin(CCED))/tan(®) from the sine law applied to ACED
1 - cos(@)-|CD|/sin(JDEB) .
Since ACAD isisosceles, |CD|=2-sin(@/2) and [ICDA = (1+4)/2, whereupon we find
ODEB = OADE - OABE = (1+@)/2 + @ — (172 — &) = 3@/2 and then

|EF| = 1-2-cos(d)-sin(@/2)/sin(3d/2) = 1—(sin(3@/2) —sin(d/2))/sin(3@/2)

= sin(@/2)/sin(3@/2) - 13 as @ - 0, asclamed.

An alternative proof, routine but tedious and error-prone, begins by identifying point A with
0 inthe complex plane and points B, C, ... with complex numbers b, c, ... respectively, so

that length |PQ|=|p—q|. Then c=€2 where 1=v=1 , and d=1, and b= 1/cos(D), etc.

Problem B2: Let P(x) beapolynomia of degree n suchthat P(x) = Q(x)P" (x) where Q(x)
isaquadratic polynomial and P (x) isthe second derivative of P(x) . Show that if P(x) hasat
least two distinct zeros then it must have n distinct zeros, each either real or complex.

Solution B2: Two proofs cometo mind. The first begins by supposing P(x) has at least one
multiple zero z of multiplicity m=2, and then trandatesthe x-origin to z to ssimplify the
Taylor series P(X) = 3 mejen @X/j! with apna, # 0. Then P'(X) = 3 mgjen ajxl‘zl(j—Z)! has at
z=0 azero of multiplicity m—2, implying first that z=0 isadouble zero of Q(x) and then
that Q(x) = x%/((n=1)n) in order to satisfy the identity P(x) = Q(x)-P" (x) first near x =0 and
secondly near X = . But then thisidentity implies the identity

0= (-)NP(X) —X°P" (X) = T mejen (DN = (-1))F¥! = T mejen (H) (415!
whence follows g =0 forall j<n, leaving P(x) withonezero O of revealed multiplicity

m =n= 2. Thus has the contrapositive of the desired result been proved: if P(x) hasfewer
than n distinct zeros, implying that at least one zero has multiplicity m= 2, then P(x) must
have just one zero of multiplicity m=n. Thisis merely another way to state the desired result.
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The second proof begins with the logarithmic derivative P (x)/P(x) = Y, m./(x—z) summed over
all distinct zeros z each of multiplicity m,>1; of course }, m,=n. Differentiate again to

get first P" (X)/P(x) — (P (x)/P(x))? = =3, m,/(x-z)?> and then aformula for the quadratic

QM) = PO)IP' () = U( (5, mJ(x-2)* - 5,m](x2)?).
We shall deduce from it the desired result, namely that either every m,=1 or else m,=n for
just one zero z, by considering the possibility that some zero t has multiplicity my>2. This

possibility and the formula together imply Q(x)/(x-t)? - 1/((m=1)m,) as x — t, implying
that the quadratic Q(x) = (x-t)%/((m—1)my) ; but because ¥, m, = n the formulaalso implies

QX)/(x-t)? - 1/((n-1)n) as x — o, whencethe quadratic Q(x) = (x-t)%/((n=1)n) . Theonly
way to reconcile these two expressionsfor Q istoinfer that m; =n whenever my>2, QED.

( Of course, itislegitimate to wonder whether there are any polynomials P(x) of degree n> 2
with quadratic P/P" and more than one distinct zero. There are lots of them; x3+x and
x*+6x°+5 and 7x°+ 10x° +3x arethe simplest examples)

ProblemB3: Let A:={(X,y): 0<sx,y<1}. For (x,y) in A let S(x,y):=5> xMy"
summed over all pairs (m, n) of positiveintegers satisfying 1/2<m/n< 2. Evauate

lim (1 —xy?)(1-x3%)S(x, y) as (x,y) approaches (1, 1) from within A .

Solution B3: Thedesired limitis 3 because S(x, y) = (1 +xy + x3y)/((1 —xy?)(1-x?%)) —1.
To justify this formula expand the right-hand side’ s quotient in a power series convergentin A :
(1+xy + X2y2)'Zi20 ijo Xi+2j .y2i+j = Sis0 ijo (Xi+2j _y2i+j + Xi+2j+1_y2i+j+1 +Xi+2j+2_y2i+j+2) _

Except for the one term xoy0 =1, al thetermsin this power series have the form x™y" with
m>0, n>0 and /2<m/n<2. What remainsto be seen is that every term of thisform does
appear just oncein the series. Terms of thisform fall into three digoint subsets:

0O: mtn=0mod 3. Let K:=(Mm+n)/3, i:=nk, j:=mK; then i+2)=m and 2i+j =n.

1. mtn=1mod 3. Let k:=(m+n-1)/3, i :=n-1-k, j:=m-1-Kk; i+2}+2=m, 2i+j+2=n.

22 mtn=2mod 3. Let k:=(m+tn-2)/3, i :=n-1-k, j:=m-1K; i+2j+1=m, 2i+j+1=n.
It seems necessary to check that i1 >0 and | = 0 for each subset separately:

0 i=nk=(2n-m)/3=0 because m/n<2. Similarly j=0.

1 i=n-1k=(2n-m-=2)/3=-2/3, sointeger i=0. Similarly j=0.

2. i=n-1-k=(2n—-m-1)/3=-1/3, sointeger i =0. Similarly j=0.
Thus the three subsets’ union provides a one-to-one association between all terms x™y" in the
givensum S(x, y), and all terms except the constant term in the power series expansion. This
justifiesthe formula alleged for S(x, y) and confirmsthat the limit was evaluated correctly.
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Problem B4: Let f beareal function with a continuous third derivative such that f(x) ,
'), f*x) and f'"(x) arepositivefor all x. Supposethat f'"(x) < f(x) foral x. Show
that f'(x) <2f(x) forall x.

Solution B4: Forany x and X, Taylor's formulafor f(X) with anintegral remainder is
FOX) = F(X) + (X=X)F(X) + (X=X)2f" ()2 + [ (X2 ()dt/2 ; and if X <x wefind, since
f" () >0, that f(X) < f(x)+(X=X)f'(x) +(X—x)2f" (x)/2. Set X =x—fX/f"(x)<x to
infer first 0< f(X) < () —f 0%/ f" (x) + (f (7" ())/2 and then f'(x)* < 2f(x)f" (X) .

Similarly f'(X) = f'(x) + (X=x)f" (X) +jxx (X f"™ (t)dt; now, since f'" <f and X—t has
thesamesignas X—x andaso dt, weinfer f'(X) < f'(x) + (X=x)f" (x) +IXX (X)) f(H)at .
Integration by parts turns this last inequality into

f1(X) < F(x) + (X" () + (X)F )12+ [ (X9 (Odt/2.
Again, if X <x wefind, since f'(t)>0, that f'(X) < f'(x) + (X=X)f" (X) +(X—x)2f(x)/2;
thistimeset X :=x —f" (X)/f(x) <x toinfer from 0< f'(X) that f" (x)2<2f'(x)f(x). This
combines with the inequality f'(x)% < 2f(x)f" (x) inferred aboveto prove f'(x) < 2f(x), QED.

( An example of such afunction f(x) is R+ exp(u-x) for any constants 3>0<u<1. The
example B+ (ux + V(u2Z+1))" for n=2, RB=0 and p < 3V((5/2)%%(n(n+1)>2(n+2))) is
less obvious.)

Problem B5: For any integer n>3 let @ :=21/n. Evaluate the determinant of the n-by-n
matrix | + A where | istheidentity matrix and A ={&} hasentries g := cos((j+k)&) for

alindices j and k.

Solution B5: det(I+A) = 1 —n2/4 . One neat way to prove this uses a determinantal identity
det(l + P-RT) =det(l + R"-P) inwhich P and R are matrices of the same dimensions, so that

both products P-RT and R-P are square though of perhaps different dimensions. Here R' is
the transpose of R ; and the two identity-matrices “ 1 ” may have different dimensionstoo. To
confirm the identity apply the formula det(X-Y) = det(X)-det(Y) to thetriangular

RO oy R o

Now set [ :=exp(iD) # +1 sothat pk = exp(ik@) = cos(k@) + I1-sin(k@) for every integer k ;
inparticular p" =1 and the complex conjugate | = exp(—@) = 1/u . Let row vector
wh:=[p, w2 13, ..., 1" and, for future reference, compute W'w=w'w=n and
whw=p2+p+p8+ L+ p? =1 -p2)/(1-pA) =0=w"w. All thisis relevant because,
asiseasily verified, A =Re(ww")=(ww' +ww')/2=[w, w]{w, w]"/2. Consequently
det(1+A) = det( | + [w, w]-[w, W]/2) = det( 1+ [w,w] [w,w]/2), from theidentity,

@+whw2)@+w"w/2) — (w'w)W'w)/4 = 1-n?4 asclaimed.
( Thisissurprising. Rarely doesaformulahold for all n-by-n matriceswith n>3 butnotfor n=2 nor n=1.)

e

R |

factorizations

T

{ + (PR O
R |
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Problem B6: Let S beafinite set of integers each greater than 1. Suppose that for each
integer n thereissome s in S suchthat GCD(s,n) =1 or GCD(s,n) =s. Showthat S
must contain some s and t for which GCD(s, t) isaprime. [ Here “GCD(x, y)” denotesthe
Greatest Common Divisor of x and y .]

Solution B6: ( Presumably s=t isallowed since S:={ 3} meetsthe specificationsfor S.)
This neat solution was suggested by David Blackston, agraduate student of Computer Science.

Let L betheleast positive integer suchthat GCD(s, L) > 1 forevery s in S; this L must
exist because it need not exceed the product of all primes each of which divides at least one
member of S. But L may be smaller than that product if there exist two primes both of which
divide every member of S divisible by either. Anyway, L isaproduct of primes none of
whose squares divides L ; otherwise L would not bethe least ... .

Some t in S must satisfy GCD(t,L) =t>1; choose any prime p that divides t. Since
L/p<L, theremustbesome s in S suchthat GCD(s, L/p) =1. David assertsthat
GCD(s, t) =p. Let'sseewhy hisassertion istrue.

This t = GCD(t, L) isaproduct of anonempty subset (containing p) selected from the prime
factorsof L. Since GCD(s, L/p) =1, no primefactor of L/p divides s, and therefore no

prime factor of t/p divides s; i.e. GCD(s,t/p)=1. But GCD(s,L)>1, so GCD(s,L)=p;
this means that some positive power of p divides s, and therefore GCD(s,t) = p asclamed.

The foregoing solutions have been posted on the class web-page:
http://cs. berkel ey. edu/ ~wkahan/ Mat hHO0/ Put nan9. pdf
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