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The  1999 W.L. Putnam Competition Exam  took place on  Sat. 4 Dec. 1999  in two sessions:
Problems  A1 - A6  were to be solved during the morning session,  8 - 11 am.;
Problems  B1 - B6  were to be solved during the afternoon session,  1 - 4 pm.

 

Problem A1:

 

  Find polynomials  f(x) ,  g(x)  and  h(x) ,  if they exist,  such that,  for all  x ,
|f(x)| – |g(x)| + h(x) =  –1 if  x < –1 ,

=  3x + 2 if  –1 

 

≤

 

 x 

 

≤

 

 0 ,  or
=  –2x + 2 if  x > 0 .

 

Solution A1:

 

   f(x) := 3(x+1)/2 ,   g(x) := 5x/2   and  h(x) := (1 – 2x)/2   meet the requirements.  
This particular solution can be determined most easily by solving three linear equations:

–f + g + h = –1 ,    f + g + h = 3x + 2 ,    f – g + h = –2x + 2 .

 

Problem A2:

 

  Let  p(x)  be a polynomial that is nonnegative for all  x .  Prove that,  for some  

k ,  there are polynomials  f

 

1

 

(x) ,  f

 

2

 

(x) ,  … ,  f

 

k

 

(x)   such that  p(x) = 

 

∑

 

1

 

≤

 

j

 

≤

 

k 

 

(f

 

j

 

(x))

 

2

 

 .

 

Solution A2:

 

  Presumably  “ for all x ”  means  “ for all  

 

real scalar

 

  x ”  since otherwise,  if  x  
could be complex,  we would find  p(x)  to be a positive constant;  and if  x  could be a real 
vector then rational functions  f

 

j

 

  might be needed.  See  pp. 55-57  and  300-304  in the book  

 

Inequalities

 

  by  G.H. Hardy,  J.E. Littlewood  &  G. Pólya,  2d. ed. (1952)  for more about that.  
Back to our problem:  p(z)  must have real coefficients because they can be determined by 
solving a real system of linear equations with a number of values of  p(z)  at real arguments in 
the right-hand side.  Therefore any zeros  x

 

k

 

 

 

±

 

 

 

ı

 

y

 

k

 

  of  p(z)  that are not real must come in 
complex-conjugate pairs.  Every real zero  x

 

j

 

  of  p(z)  must have even multiplicity lest  p(z)  
change sign there.  (And the degree of  p(z)  must be even since otherwise it would take opposite 

signs at  z = 

 

±∞

 

 .)  Therefore   p(z) = 

 

∏

 

j 

 

(z–x

 

j

 

)

 

2

 

·

 

∏

 

k 

 

((z–x

 

k

 

)

 

2

 

 + y

 

k
2

 

) ,  whereupon we may rewrite  

 

∏

 

k 

 

((z–x

 

k

 

)

 

2

 

 + y

 

k
2

 

) = 

 

∏

 

k 

 

(z–x

 

k

 

 + 

 

ı

 

y

 

k

 

)·(z–x

 

k

 

 – 

 

ı

 

y

 

k

 

) = (R(z) + 

 

ı

 

I(z))·(R(z) – 

 

ı

 

I(z)) = R(z)

 

2

 

 + I(z)

 

2

 

  
with the understanding that the factors  (z–x

 

j

 

)  and  (z–x

 

k

 

 – 

 

ı

 

y

 

k

 

)  need not be all distinct;  here 
polynomial  R(z) + 

 

ı

 

I(z) = 

 

∏

 

k 

 

(z–x

 

k

 

 + 

 

ı

 

y

 

k

 

)  broken into real and imaginary parts.  Consequently  
k = 2 ,   f

 

1

 

(z) := R(z)·

 

∏

 

j 

 

(z–x

 

j

 

) ,  and  f

 

2

 

(z) := I(z)·

 

∏

 

j 

 

(z–x

 

j

 

) .

 

Problem A3:

 

  Consider the power series expansion   1/(1 – 2x – x

 

2

 

) = 

 

∑

 

n

 

≥

 

0 

 

a

 

n

 

x

 

n

 

 .  Prove for 

each integer  n 

 

≥

 

 0  that there is an integer  m  such that  a

 

m

 

 = a

 

n
2

 

 + a

 

n+1
2

 

 .

 

Solution A3:

 

  m = 2n+2 .  Why?  Go from the partial fraction expansion to the power series thus:

        

 

√

 

8

 

/

 

(1 – 2x – x

 

2

 

) = (1+

 

√

 

2)

 

/

 

(1 – (1+

 

√

 

2)x) – (1–

 

√

 

2)

 

/

 

(1 – (1–

 

√

 

2)x) 

= 

 

∑

 

n

 

≥

 

0 

 

(

 

 (1+

 

√

 

2)

 

n+1

 

 – (1–

 

√

 

2)

 

n+1

 

 

 

)

 

·x

 

n

 

 .

Evidently  a

 

n

 

 = 

 

(

 

 (1+

 

√

 

2)

 

n+1

 

 – (1–

 

√

 

2)

 

n+1

 

 

 

)/√8 .  Aided by the identity  (√2–1)(√2+1) = 1 ,  we 

can confirm the formula  a2n = an–1
2 + an

2  with a modest amount of algebraic labor.
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Problem A4:  Sum the series   ∑m≥1 ∑n≥1 3
–mm2n/(3mn + 3nm) .

Solution A4:  Let  S  denote this sum.  It is unchanged by the exchange of  m  and  n ,  so  

2S =  ∑m≥1 ∑n≥1 ( 3
–mm2n + 3–nn2m )/(3mn + 3nm)  =  ∑m≥1 ∑n≥1 3

–m–nmn  = T(1/3)2   where  

T(x) := ∑n≥1 m·xm  =  x·d(1/(1–x))/dx  =  x/(1–x)2 .   Therefore   T(1/3) = 3/4   and   S = 9/32 .

Problem A5:  Prove that there is a constant  C  such that,  if  p(x)  is a polynomial of degree  

1999,  then  |p(0)| ≤ C ∫–1
1 |p(x)|dx .

Solution A5:  For any integers  n ≥ 0  and  m ≥ 0  let  Øn,m  be the  infimum  (greatest lower 

bound)  of   ∫–1
1 |xm p(x)/p(0)| dx  taken over all polynomials  p(x)  of degree at most  n  with  

p(0) ≠ 0 .  Any constant  C ≥ 1/Ø1999,0  will solve the given problem provided  Ø1999,0 > 0 ,  and 
this proviso will follow from our proof,  by induction on  n ,  that  every  Øn,m > 0 .

Let us rewrite  p(x)/p(0) = ∏k (1 – x/zk)  where  z1, z2, …,  zk, …, zn  are all  n  zeros of  p(x) ;  
every  zk ≠ 0 ;  if any  zk = ∞  it merely diminishes the degree of  p  below  n .  The infimum we 

seek is   Øn,m := infz ∫–1
1 (∏k |1 – x/zk|)·|x|mdx  over all  n-tuples  z := (z1, z2, …, zk, …, zn)  of 

nonzero complex numbers.  Actually,  since  |1 – x/z| ≥ |1 – x/(1/Re(1/z))| ,  the search for  Øn,m  

can be restricted to  n-tuples of real numbers  zk .  The restriction  zk
2 ≤ 1  can be imposed too,  

thus restricting  p  to polynomials with  n  zeros all real and nonzero between  ±1  inclusive,  

because while  zk
2 ≥ 1  the factor  |1 – x/zk| = 1 – x/zk  renders the integral in question a linear 

function of  1/zk  minimized at either  zk = 1  or  zk = –1 .  The restrictions don’t change  Øn,m .

Now define   Fn,m(z1, z2, …, zk, …, zn) := ∫–1
1 (∏k |1 – x/zk|)·|x|mdx   for integers  n ≥ 0  and  

m ≥ 0 ,  so that  Øn,m := infz Fn,m(z)  over all real  n-tuples  z = (z1, z2, …, zk, …, zn)  which we 

might as well constrain thus:  0 < zk
2 ≤ 1 .  This  Fn,m  is a continuous function of its  n  nonzero 

arguments  zk ;  and since it is unaltered by their permutation they shall henceforth be assumed 

sorted thus:  z1
2 ≥ z2

2 ≥ … ≥ zk
2 ≥ … ≥ zn

2 > 0 .  And  Øn,m  is a nonincreasing function of  n  
since  Øn–1,m = infz Fn–1,m(z1, z2, …, zn–1) = infz Fn,m(∞, z1, z2, …, zn–1) ≥ Øn,m .  ( Also  Øn,m  
is a nonincreasing function of  m  since  Fn,m+1 ≤ Fn,m .)  A tedious computation establishes that

Ø0,m = Ø1,m = F1,m(±1) = 2/(m+1) > Ø2,m = F2,m(–2–2/(m+3), 2–2/(m+3)) = (21+2/(m+3) – 2)/(m+1) .
This validates the induction hypothesis from which we shall infer next that every  Øn,m > 0 :
   For some  N ≥ 2  and every  m ≥ 0  we find  0 < ØN–1,m = minz FN–1,m(z)  minimized over all

    N–1-tuples  z = (z1, z2, …, zN–1) ,  and a minimizing  z  has  1 ≥ z1
2 ≥ z2

2 ≥ … ≥ zN–1
2 > 0 .

To propel this hypothesis from  N  to  N+1  we observe that  ØN,m = infz FN,m(z)  is the limit to 
which  FN,m(z)  descends as  z  moves through an infinite sequence of constrained  N-tuples  at 
each of which  FN,m(z) – ØN,m  is at least,  say,  twice as big as at  z’s  successor.  We constrain 

each  N-tuple  z = (z1, z2, …, zN)  in the infinite sequence to satisfy  1 ≥ z1
2 ≥ z2

2 ≥ … ≥ zN
2 > 0 ,
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a constraint which has been shown above to be compatible with the infimum.  This constraint 
restricts the infinite sequence’s  N-tuples  z  to a set whose closure,  the  N-cube  in which  
–1 ≤ z ≤ 1  elementwise,  is  compact  (closed,  bounded and finite-dimensional).  Therefore the 
infinite sequence contains an infinite subsequence convergent to some limit  N-tuple  z  in the  
N-cube.  FN,m(z) → ØN,m  from above as  z → z  through the subsequence.  The elements of 

limit  N-tuple  z = (z1, z2, …, zN)  satisfy the weakened constraint  1 ≥ z1
2 ≥ z2

2 ≥ … ≥ zN
2 ≥ 0 ,  

but in fact  zN
2 > 0 ,  as shall now be proved indirectly.

Were  zN
2 = 0 ,  a nonnegative integer  L < N  could be found with  1 ≥ z1

2 ≥ z2
2 ≥ … ≥ zL

2 > 0  
but  zL+1 = zL+2 = … = zN = 0 .  This would imply that  |∏L<j≤N zj| → 0  as  z → z  although

 |∏L<j≤N zj|·FN,m(z1, z2, …, zL, zL+1, …, zN) =  ∫–1
1 (∏1≤k≤L |1 – x/zk|)·(∏L<j≤N |zj – x|)·|x|mdx

→ ∫–1
1 (∏1≤k≤L |1 – x/zk|)·|x|m+N–Ldx   as   z → z

=  FL,m+N–L(z1, z2, …, zL)  ≥  ØL,m+N–L  > 0 ,
which would imply that  FN,m(z) → +∞  as  z → z  instead of  FN,m(z) → ØN,m ≤ 2 .  This 

contradiction explains why  L = N  and  zN
2 > 0 ,  and therefore  FN,m(z)  is continuous in the 

neighborhood of  z = z ;  consequently  FN,m(z) → FN,m(z) > 0  as  z → z ,  which confirms that  
0 < ØN,m = minz FN,m(z) = FN,m(z)  as claimed.  So ends a rather long proof.

As  Putnam  problems go this seems excessively long,  and we still don’t know the least value  1/Ø1999,0  of  C ..

Problem A6:  The sequence  {an}n≥1  is defined by  a1 := 1 ,  a2 := 2 ,  a3 := 24 ,  and  

an :=    for  n ≥ 4 .  Show that every  an  is an integer multiple of  n .

Solution A6:  Substitute  rn := an/an–1  into the given recurrence to obtain  r2 = 2 ,  r3 = 12  and  

rn = 6rn–1 – 8rn–3 .  This is a linear recurrence whose characteristic polynomial  r2 – 6r + 8  

factors into  (r–2)(r–4) ;  from this soon follows that  rn = 4n–1 – 2n–1 = (2n–1 – 1)2n–1  and then  

an = ∏2≤k≤n r
k  =  ∏2≤k≤n (2

k–1 – 1)2k–1  =  2(n–1)n/2·∏2≤k≤n (2
k–1 – 1) .  Next we shall prove 

that  n  divides this  an  by showing that every prime power that divides  n  divides  an  too.

If  n  is divisible by  2m  for some  m > 0  then  m ≤ n–1  (because  2n ≥ n+1 ),  and therefore  an  

is divisible by  2m  too.  If  n  is divisible by  pm  for some odd prime  p  and integer  m > 0 ,  

then again  m ≤ n–1  (because  pn > 2n ≥ n+1 ),  and each of the  m  integers  k = p, p2, …, pm  
appears among the consecutive integers  k = 2, 3, …, n .  Now we appeal to  Fermat’s  “little” 

theorem to the effect that  Lp–1 – 1  is divisible by prime  p  whenever integer  L  is not divisible 

by  p .  Apply this for  L = 2(k–1)/(p–1)  whenever  k  is a power of  p  to infer that then  2k–1 – 1  

is divisible by  p .  Therefore,  an = 2(n–1)n/2·∏2≤k≤n (2
k–1 – 1)   has  n–1  odd factors  (2k–1 – 1)  

of which at least  m  are divisible by  p ,  so  pm  divides  an  too.  Since every prime power that 
divides  n  divides  an  too,  n  must divide  an .  End of proof.

6an 1–
2 an 3– 8an 1– an 2–

2–

an 2– an 3–
-------------------------------------------------------------
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Problem B1:  Right triangle  ABC  has its right angle at  C  and  ∠ BAC = Ø ;  the point  D  is 
chosen on  AB  so that  |AC| = |AD| = 1 ;  The point  E  is chosen on  BC  so that  ∠ CDE = Ø .  
The perpendicular to  BC  at  E  meets  AB  at  F .  Evaluate  lim |EF|  as  Ø → 0 .  [ Here  
“|PQ|”  denotes the length of the line segment  PQ .]

Solution B1:  |EF| → 1/3 .  To see why,  observe that  EF || CA ,  so  ∆EFB ||| ∆CAB ,  whence
   |EF| =  |EF|/|CA|  =  |EB|/|CB|  =  1 – |CE|/|CB|  =  1 – |CE|/tan(Ø)

=  1 – (|CD|·sin(Ø)/sin(∠ CED))/tan(Ø)    from the sine law applied to  ∆CED
=  1 – cos(Ø)·|CD|/sin(∠ DEB) .

Since  ∆CAD  is isosceles,  |CD| = 2·sin(Ø/2)  and  ∠ CDA = (π–Ø)/2 ,  whereupon we find  
∠ DEB = ∠ ADE – ∠ ABE = (π–Ø)/2 + Ø – (π/2 – Ø) = 3Ø/2   and then

   |EF| =  1 – 2·cos(Ø)·sin(Ø/2)/sin(3Ø/2)  =  1 – (sin(3Ø/2) – sin(Ø/2))/sin(3Ø/2)
=  sin(Ø/2)/sin(3Ø/2)  →  1/3   as   Ø → 0 ,  as claimed.

An alternative proof,  routine but tedious and error-prone,  begins by identifying point  A  with  
0  in the complex plane and points  B, C, …  with complex numbers  b, c, …  respectively,  so 

that length  |PQ| = |p–q| .  Then  c = eıØ  where  ı = √–1  ,  and  d = 1 ,  and  b = 1/cos(Ø) ,   etc.

Problem B2:  Let  P(x)  be a polynomial of degree  n  such that  P(x) = Q(x)P"(x)  where  Q(x)  
is a quadratic polynomial and  P"(x)  is the second derivative of  P(x) .  Show that if  P(x)  has at 
least two distinct zeros then it must have  n  distinct zeros,  each either real or complex.

Solution B2:  Two proofs come to mind.  The first begins by supposing  P(x)  has at least one 
multiple zero  z  of multiplicity  m ≥ 2 ,  and then translates the  x-origin  to  z  to simplify the  

Taylor  series  P(x) = ∑m≤j≤n ajx
j/j!  with  aman ≠ 0.  Then  P"(x) = ∑m≤j≤n ajx

j–2/(j–2)!  has at  
z = 0  a zero of multiplicity  m–2 ,  implying first that  z = 0  is a double zero of  Q(x)  and then 

that  Q(x) = x2/((n–1)n)  in order to satisfy the identity  P(x) = Q(x)·P"(x)  first near  x = 0  and 
secondly near  x = ∞ .  But then this identity implies the identity

0 = (n–1)nP(x) – x2P"(x) = ∑m≤j≤n ((n–1)n – (j–1)j)ajx
j/j! = ∑m≤j≤n (n–j)(n+j–1)ajx

j/j! ,
whence follows  aj = 0  for all  j < n ,  leaving  P(x)  with one zero  0  of revealed multiplicity  
m = n ≥ 2.  Thus has the contrapositive of the desired result been proved:  if  P(x)  has fewer 
than  n  distinct zeros,  implying that at least one zero has multiplicity  m ≥ 2 ,  then  P(x)  must 
have just one zero of multiplicity  m = n .  This is merely another way to state the desired result.

Ø
Ø

A B

C

D

E

F
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The second proof begins with the logarithmic derivative  P'(x)/P(x) = ∑z mz/(x–z)  summed over 
all distinct zeros  z  each of multiplicity  mz ≥ 1 ;  of course  ∑z mz = n .  Differentiate again to 

get first  P"(x)/P(x) – (P'(x)/P(x))2 = –∑z mz/(x–z)2  and then a formula for the quadratic

  Q(x) =  P(x)/P"(x)  =  1/( (∑z mz/(x–z))2  –  ∑z mz/(x–z)2 ) .
We shall deduce from it the desired result,  namely that either every  mz = 1  or else  mz = n  for 
just one zero  z ,  by considering the possibility that some zero  t  has multiplicity  mt ≥ 2 .  This 

possibility and the formula together imply  Q(x)/(x–t)2 → 1/((mt–1)mt)  as  x → t ,  implying 

that the quadratic  Q(x) = (x–t)2/((mt–1)mt) ;  but because  ∑z mz = n  the formula also implies  

Q(x)/(x–t)2 → 1/((n–1)n)  as  x → ∞ ,  whence the quadratic  Q(x) = (x–t)2/((n–1)n) .  The only 
way to reconcile these two expressions for  Q  is to infer that  mt = n  whenever  mt ≥ 2 ,  QED.

( Of course,  it is legitimate to wonder whether there are any polynomials  P(x)  of degree  n > 2  

with quadratic  P/P"  and more than one distinct zero.  There are lots of them;   x3 ± x   and  

x4 ± 6x2 + 5   and   7x5 ± 10x3 + 3x   are the simplest examples.)

Problem B3:  Let  A := { (x, y) :  0 ≤ x, y < 1 } .  For  (x, y)  in  A  let   S(x, y) := ∑∑ xm yn  
summed over all pairs  (m, n)  of positive integers satisfying  1/2 ≤ m/n ≤ 2 .  Evaluate  

lim (1 – xy2)(1 – x2y)S(x, y)  as  (x, y)  approaches  (1, 1)  from within  A .

Solution B3:  The desired limit is  3  because  S(x, y) = (1 + xy + x2y2)/((1 – xy2)(1 – x2y)) – 1 .
To justify this formula expand the right-hand side’s quotient in a power series convergent in  A :

    (1 + xy + x2y2)·∑i≥0 ∑j≥0 x
i+2j·y2i+j  =  ∑i≥0 ∑j≥0 (x

i+2j·y2i+j + xi+2j+1·y2i+j+1 +xi+2j+2·y2i+j+2) .

Except for the one term  x0y0 = 1 ,  all the terms in this power series have the form  xmyn  with  
m > 0 ,  n > 0   and  1/2 ≤ m/n ≤ 2 .  What remains to be seen is that every term of this form does 
appear just once in the series.  Terms of this form fall into three disjoint subsets:
  0:  m+n ≡ 0 mod 3 .  Let  k := (m+n)/3 ,  i := n–k ,  j := m–k ;  then  i+2j = m  and  2i+j = n .
  1:  m+n ≡ 1 mod 3 .  Let  k := (m+n–1)/3 ,  i := n–1–k ,  j := m–1–k ;  i+2j+2 = m ,  2i+j+2 = n .
  2:  m+n ≡ 2 mod 3 .  Let  k := (m+n–2)/3 ,  i := n–1–k ,  j := m–1–k ;  i+2j+1 = m ,  2i+j+1 = n .
It seems necessary to check that  i ≥ 0  and  j ≥ 0  for each subset separately:
  0:   i = n–k = (2n–m)/3 ≥ 0  because  m/n ≤ 2 .  Similarly  j ≥ 0 .
  1:   i = n–1–k = (2n–m–2)/3 ≥ –2/3 ,  so integer  i ≥ 0 .  Similarly  j ≥ 0 .
  2:   i = n–1–k = (2n–m–1)/3 ≥ –1/3 ,  so integer  i ≥ 0 .  Similarly  j ≥ 0 .

Thus the three subsets’ union provides a one-to-one association between all terms  xmyn  in the 
given sum  S(x, y),  and all terms except the constant term in the power series expansion.  This 
justifies the formula alleged for  S(x, y)  and confirms that the limit was evaluated correctly.
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Problem B4:  Let  ƒ  be a real function with a continuous third derivative such that  ƒ(x) ,  
ƒ'(x) ,  ƒ"(x)  and  ƒ'"(x)  are positive for all  x .  Suppose that  ƒ'"(x) ≤ ƒ(x)  for all  x .  Show 
that  ƒ'(x) < 2ƒ(x)  for all x .

Solution B4:  For any  x  and  X ,  Taylor’s  formula for  ƒ(X)  with an integral remainder is  

ƒ(X) = ƒ(x) + (X–x)ƒ'(x) + (X–x)2ƒ"(x)/2 + ∫xX (X–t)2ƒ'"(t)dt/2 ;  and if  X < x  we find,  since  

ƒ'"(t) > 0 ,  that  ƒ(X) < ƒ(x) + (X–x)ƒ'(x) + (X–x)2ƒ"(x)/2 .  Set  X := x – ƒ'(x)/ƒ"(x) < x  to 

infer first  0 < ƒ(X) < ƒ(x) – ƒ'(x)2/ƒ"(x) + (ƒ'(x)2/ƒ"(x))/2   and then  ƒ'(x)2 < 2ƒ(x)ƒ"(x) .

Similarly  ƒ'(X) = ƒ'(x) + (X–x)ƒ"(x) + ∫xX (X–t)ƒ'"(t)dt ;  now,  since  ƒ'" ≤ ƒ  and  X–t  has 

the same sign as  X–x  and also  dt ,  we infer   ƒ'(X) ≤ ƒ'(x) + (X–x)ƒ"(x) + ∫xX (X–t)ƒ(t)dt .  
Integration by parts turns this last inequality into

ƒ'(X) ≤ ƒ'(x) + (X–x)ƒ"(x) + (X–x)2ƒ(x)/2 + ∫xX (X–t)2ƒ'(t)dt/2 .

Again,  if  X < x  we find,  since  ƒ'(t) > 0 ,  that  ƒ'(X) ≤ ƒ'(x) + (X–x)ƒ"(x) + (X–x)2ƒ(x)/2 ;  

this time set  X := x – ƒ"(x)/ƒ(x) < x  to infer from  0 < ƒ'(X)  that  ƒ"(x)2 < 2ƒ'(x)ƒ(x) .  This 

combines with the inequality  ƒ'(x)2 < 2ƒ(x)ƒ"(x)  inferred above to prove  ƒ'(x) < 2ƒ(x) ,  QED.

( An example of such a function  ƒ(x)  is  ß + exp(µ·x)  for any constants  ß ≥ 0 < µ ≤ 1 .  The 

example   ß + (µx + √(µ2x2+1))n  for  n ≥ 2 ,    ß ≥ 0  and  µ ≤ 3√((5/2)5/2/(n(n+1)5/2(n+2)))   is 
less obvious.)

Problem B5:  For any integer  n ≥ 3  let  Ø := 2π/n .  Evaluate the determinant of the  n-by-n  
matrix  I + A  where  I  is the identity matrix and  A = {ajk}  has entries  ajk := cos((j+k)Ø)  for 
all indices  j  and  k .

Solution B5:  det(I+A) = 1 – n2/4 .  One neat way to prove this uses a determinantal identity  

det(I + P·RT) = det(I + RT·P)  in which  P  and  R  are matrices of the same dimensions,  so that 

both products  P·RT  and  RT·P  are square though of perhaps different dimensions.  Here  RT  is 
the transpose of  R ;  and the two identity-matrices  “ I ”  may have different dimensions too.  To 
confirm the identity apply the formula  det(X·Y) = det(X)·det(Y)  to the triangular 

factorizations    ·  =  = ·  .

Now set  µ := exp(ıØ) ≠ ±1  so that  µk = exp(ıkØ) = cos(kØ) + ı·sin(kØ)  for every integer  k ;  

in particular  µn = 1  and the complex conjugate  µ = exp(–ıØ) = 1/µ .  Let row vector  

wT := [µ, µ2, µ3, …, µn]   and,  for future reference,  compute   wT·w = wT·w = n   and  

wT·w = µ2 + µ4 + µ6 + … + µ2n = (1 – µ2n)/(1 – µ2) = 0 = wT·w .  All this is relevant because,  

as is easily verified,   A = Re(w·wT) = (w·wT + w·wT)/2 = [w, w]·[w, w]T/2 .   Consequently

det(I+A) =  det( I + [w, w]·[w, w]T/2 )  =  det( I + [w, w]T·[w, w]/2 ) ,    from the identity ,

   =  (1 + wT·w/2)(1 + wT·w/2) – (wT·w)(wT·w)/4  =  1 – n2/4  as claimed.
( This is surprising.  Rarely does a formula hold for all  n-by-n  matrices with  n ≥ 3  but not for  n = 2  nor  n = 1 .)
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Problem B6:  Let  S  be a finite set of integers each greater than  1 .  Suppose that for each 
integer  n  there is some  s  in  S  such that  GCD(s, n) = 1  or  GCD(s, n) = s .  Show that  S  
must contain some  s  and  t  for which  GCD(s, t)  is a prime.  [ Here  “GCD(x, y)”  denotes the  
Greatest Common Divisor  of  x  and  y .]

Solution B6:  ( Presumably  s = t  is allowed since  S := { 3 }  meets the specifications for  S .)  
This neat solution was suggested by  David Blackston,  a graduate student of  Computer Science.

Let  L  be the least positive integer such that  GCD(s, L) > 1  for every  s  in  S ;  this  L  must 
exist because it need not exceed the product of all primes each of which divides at least one 
member of  S .  But  L  may be smaller than that product if there exist two primes both of which 
divide every member of  S  divisible by either.  Anyway,  L  is a product of primes none of 
whose squares divides  L ;  otherwise  L  would not be the  least … .

Some  t  in  S  must satisfy  GCD(t, L) = t > 1 ;  choose any prime  p  that divides  t .  Since  
L/p < L ,  there must be some  s  in  S  such that  GCD(s, L/p) = 1 .  David  asserts that 
GCD(s, t) = p .  Let’s see why his assertion is true.

This  t = GCD(t, L)  is a product of a nonempty subset  (containing  p )  selected from the prime 
factors of  L .  Since  GCD(s, L/p) = 1 ,  no prime factor of  L/p  divides  s ,  and therefore no 
prime factor of  t/p  divides  s ;  i.e.  GCD(s, t/p) = 1 .  But  GCD(s, L) > 1 ,  so  GCD(s, L) = p ;  
this means that some positive power of  p  divides  s ,  and therefore  GCD(s, t) = p  as claimed.

The foregoing solutions have been posted on the class web-page:
http://cs.berkeley.edu/~wkahan/MathH90/Putnam99.pdf


