The 1999 W.L. Putnam Competition Exam took place on Sat. 4 Dec. 1999 in two sessions:
Problems A1-A6 were to be solved during the morning session, 8-11 am.;
Problems B1-B6 were to be solved during the afternoon session, 1-4 pm.

Problem A1: Find polynomials $f(x), g(x)$ and $h(x)$, if they exist, such that, for all x,

$$
\begin{aligned}
|f(x)|-|g(x)|+h(x) & =-1 \\
& \text { if } x<-1, \\
& =3 x+2 \\
& \\
& \text { if }-1 \leq x \leq 0, \text { or } \\
& \text { if } x>0 .
\end{aligned}
$$

Solution A1: $\mathrm{f}(\mathrm{x}):=3(\mathrm{x}+1) / 2, \mathrm{~g}(\mathrm{x}):=5 \mathrm{x} / 2$ and $\mathrm{h}(\mathrm{x}):=(1-2 \mathrm{x}) / 2$ meet the requirements. This particular solution can be determined most easily by solving three linear equations:

$$
-\mathrm{f}+\mathrm{g}+\mathrm{h}=-1, \quad \mathrm{f}+\mathrm{g}+\mathrm{h}=3 \mathrm{x}+2, \quad \mathrm{f}-\mathrm{g}+\mathrm{h}=-2 \mathrm{x}+2 .
$$

Problem A2: Let $p(x)$ be a polynomial that is nonnegative for all x. Prove that, for some k , there are polynomials $\mathrm{f}_{1}(\mathrm{x}), \mathrm{f}_{2}(\mathrm{x}), \ldots, \mathrm{f}_{\mathrm{k}}(\mathrm{x})$ such that $\mathrm{p}(\mathrm{x})=\sum_{1 \leq \mathrm{j} \leq \mathrm{k}}\left(\mathrm{f}_{\mathrm{j}}(\mathrm{x})\right)^{2}$.

Solution A2: Presumably " for all x" means " for all real scalar x" since otherwise, if x could be complex, we would find $\mathrm{p}(\mathrm{x})$ to be a positive constant; and if x could be a real vector then rational functions f_{j} might be needed. See pp. 55-57 and 300-304 in the book Inequalities by G.H. Hardy, J.E. Littlewood \& G. Pólya, 2d. ed. (1952) for more about that. Back to our problem: $p(z)$ must have real coefficients because they can be determined by solving a real system of linear equations with a number of values of $p(z)$ at real arguments in the right-hand side. Therefore any zeros $\mathrm{x}_{\mathrm{k}} \pm 1 \mathrm{y}_{\mathrm{k}}$ of $\mathrm{p}(\mathrm{z})$ that are not real must come in complex-conjugate pairs. Every real zero x_{j} of $p(z)$ must have even multiplicity lest $p(z)$ change sign there. (And the degree of $\mathrm{p}(\mathrm{z})$ must be even since otherwise it would take opposite signs at $\mathrm{z}= \pm \infty$.) Therefore $\mathrm{p}(\mathrm{z})=\prod_{\mathrm{j}}\left(\mathrm{z}-\mathrm{x}_{\mathrm{j}}\right)^{2} \cdot \Pi_{\mathrm{k}}\left(\left(\mathrm{z}-\mathrm{x}_{\mathrm{k}}\right)^{2}+\mathrm{y}_{\mathrm{k}}{ }^{2}\right)$, whereupon we may rewrite $\Pi_{\mathrm{k}}\left(\left(\mathrm{z}-\mathrm{x}_{\mathrm{k}}\right)^{2}+\mathrm{y}_{\mathrm{k}}{ }^{2}\right)=\prod_{\mathrm{k}}\left(\mathrm{z}-\mathrm{x}_{\mathrm{k}}+\mathbf{1} \mathrm{y}_{\mathrm{k}}\right) \cdot\left(\mathrm{z}-\mathrm{x}_{\mathrm{k}}-\mathrm{Iy}_{\mathrm{k}}\right)=(\mathrm{R}(\mathrm{z})+\mathbf{I}(\mathrm{z})) \cdot(\mathrm{R}(\mathrm{z})-\mathrm{II}(\mathrm{z}))=\mathrm{R}(\mathrm{z})^{2}+\mathrm{I}(\mathrm{z})^{2}$ with the understanding that the factors $\left(z-x_{j}\right)$ and $\left(z-x_{k}-\mathrm{Iy}_{\mathrm{k}}\right)$ need not be all distinct; here polynomial $\mathrm{R}(\mathrm{z})+\mathbf{I I}(\mathrm{z})=\prod_{\mathrm{k}}\left(\mathrm{z}-\mathrm{x}_{\mathrm{k}}+\mathrm{Iy}_{\mathrm{k}}\right)$ broken into real and imaginary parts. Consequently $\mathrm{k}=2, \mathrm{f}_{1}(\mathrm{z}):=\mathrm{R}(\mathrm{z}) \cdot \Pi_{\mathrm{j}}\left(\mathrm{z}-\mathrm{x}_{\mathrm{j}}\right)$, and $\mathrm{f}_{2}(\mathrm{z}):=\mathrm{I}(\mathrm{z}) \cdot \Pi_{\mathrm{j}}\left(\mathrm{z}-\mathrm{x}_{\mathrm{j}}\right)$.

Problem A3: Consider the power series expansion $1 /\left(1-2 x-x^{2}\right)=\sum_{n \geq 0} a_{n} x^{n}$. Prove for each integer $n \geq 0$ that there is an integer m such that $a_{m}=a_{n}^{2}+a_{n+1}^{2}$.

Solution A3: $\mathrm{m}=2 \mathrm{n}+2$. Why? Go from the partial fraction expansion to the power series thus:

$$
\begin{aligned}
\sqrt{8} /\left(1-2 \mathrm{x}-\mathrm{x}^{2}\right) & =(1+\sqrt{2}) /(1-(1+\sqrt{2}) \mathrm{x})-(1-\sqrt{2}) /(1-(1-\sqrt{2}) \mathrm{x}) \\
& =\sum_{\mathrm{n} \geq 0}\left((1+\sqrt{2})^{\mathrm{n}+1}-(1-\sqrt{2})^{\mathrm{n}+1}\right) \cdot \mathrm{x}^{\mathrm{n}}
\end{aligned}
$$

Evidently $\mathrm{a}_{\mathrm{n}}=\left((1+\sqrt{2})^{\mathrm{n}+1}-(1-\sqrt{2})^{\mathrm{n}+1}\right) / \sqrt{8}$. Aided by the identity $(\sqrt{2}-1)(\sqrt{2}+1)=1$, we can confirm the formula $a_{2 n}=a_{n-1}^{2}+a_{n}^{2}$ with a modest amount of algebraic labor.

Problem A4: Sum the series $\sum_{m \geq 1} \sum_{n \geq 1} 3^{-m} m^{2} n /\left(3^{m} n+3^{n} m\right)$.
Solution A4: Let S denote this sum. It is unchanged by the exchange of m and n, so $2 \mathrm{~S}=\sum_{\mathrm{m} \geq 1} \sum_{\mathrm{n} \geq 1}\left(3^{-\mathrm{m}} \mathrm{m}^{2} \mathrm{n}+3^{-\mathrm{n}} \mathrm{n}^{2} \mathrm{~m}\right) /\left(3^{m} \mathrm{n}+3^{\mathrm{n}} \mathrm{m}\right)=\sum_{\mathrm{m} \geq 1} \sum_{\mathrm{n} \geq 1} 3^{-\mathrm{m}-\mathrm{n}} \mathrm{mn}=\mathrm{T}(1 / 3)^{2}$ where $\mathrm{T}(\mathrm{x}):=\sum_{\mathrm{n} \geq 1} \mathrm{~m} \cdot \mathrm{x}^{\mathrm{m}}=\mathrm{x} \cdot \mathrm{d}(1 /(1-\mathrm{x})) / \mathrm{dx}=\mathrm{x} /(1-\mathrm{x})^{2}$. Therefore $\mathrm{T}(1 / 3)=3 / 4$ and $\mathrm{S}=9 / 32$.

Problem A5: Prove that there is a constant C such that, if $p(x)$ is a polynomial of degree 1999, then $|\mathrm{p}(0)| \leq \mathrm{C} \int_{-1}^{1}|\mathrm{p}(\mathrm{x})| \mathrm{dx}$.

Solution A5: For any integers $\mathrm{n} \geq 0$ and $\mathrm{m} \geq 0$ let $\emptyset_{\mathrm{n}, \mathrm{m}}$ be the infimum (greatest lower bound) of $\int_{-1}{ }^{1}\left|\mathrm{x}^{\mathrm{m}} \mathrm{p}(\mathrm{x}) / \mathrm{p}(0)\right| \mathrm{dx}$ taken over all polynomials $\mathrm{p}(\mathrm{x})$ of degree at most n with $\mathrm{p}(0) \neq 0$. Any constant $\mathrm{C} \geq 1 / \emptyset_{1999,0}$ will solve the given problem provided $\emptyset_{1999,0}>0$, and this proviso will follow from our proof, by induction on n, that every $\emptyset_{n, m}>0$.

Let us rewrite $\mathrm{p}(\mathrm{x}) / \mathrm{p}(0)=\prod_{\mathrm{k}}\left(1-\mathrm{x} / \mathrm{z}_{\mathrm{k}}\right)$ where $\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{k}}, \ldots, \mathrm{z}_{\mathrm{n}}$ are all n zeros of $\mathrm{p}(\mathrm{x})$; every $z_{k} \neq 0$; if any $z_{k}=\infty$ it merely diminishes the degree of p below n. The infimum we seek is $\emptyset_{n, m}:=\inf _{\mathbf{z}} \int_{-1}{ }^{1}\left(\prod_{k}\left|1-x / z_{k}\right|\right) \cdot|x|^{m} d x$ over all n-tuples $\mathbf{z}:=\left(z_{1}, z_{2}, \ldots, z_{k}, \ldots, z_{n}\right)$ of nonzero complex numbers. Actually, since $|1-x / z| \geq|1-x /(1 / \operatorname{Re}(1 / z))|$, the search for $\emptyset_{n, m}$ can be restricted to n-tuples of real numbers z_{k}. The restriction $\mathrm{z}_{\mathrm{k}}^{2} \leq 1$ can be imposed too, thus restricting p to polynomials with n zeros all real and nonzero between ± 1 inclusive, because while $z_{k}^{2} \geq 1$ the factor $\left|1-x / z_{k}\right|=1-x / z_{k}$ renders the integral in question a linear function of $1 / \mathrm{z}_{\mathrm{k}}$ minimized at either $\mathrm{z}_{\mathrm{k}}=1$ or $\mathrm{z}_{\mathrm{k}}=-1$. The restrictions don't change $\emptyset_{\mathrm{n}, \mathrm{m}}$.

Now define $F_{n, m}\left(z_{1}, z_{2}, \ldots, z_{k}, \ldots, z_{n}\right):=\int_{-1}^{1}\left(\prod_{k}\left|1-x / z_{k}\right|\right) \cdot|x|^{m} d x$ for integers $n \geq 0$ and $\mathrm{m} \geq 0$, so that $\emptyset_{\mathrm{n}, \mathrm{m}}:=\inf _{\mathbf{z}} \mathrm{F}_{\mathrm{n}, \mathrm{m}}(\mathbf{z})$ over all real n -tuples $\mathbf{z}=\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{k}}, \ldots, \mathrm{z}_{\mathrm{n}}\right)$ which we might as well constrain thus: $0<z_{k}^{2} \leq 1$. This $\mathrm{F}_{\mathrm{n}, \mathrm{m}}$ is a continuous function of its n nonzero arguments z_{k}; and since it is unaltered by their permutation they shall henceforth be assumed sorted thus: $\mathrm{z}_{1}^{2} \geq \mathrm{z}_{2}^{2} \geq \ldots \geq \mathrm{z}_{\mathrm{k}}^{2} \geq \ldots \geq \mathrm{z}_{\mathrm{n}}^{2}>0$. And $\emptyset_{\mathrm{n}, \mathrm{m}}$ is a nonincreasing function of n since $\emptyset_{n-1, m}=\inf _{\mathbf{z}} \mathrm{F}_{\mathrm{n}-1, \mathrm{~m}}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{n}-1}\right)=\inf _{\mathrm{z}} \mathrm{F}_{\mathrm{n}, \mathrm{m}}\left(\infty, \mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{n}-1}\right) \geq \emptyset_{\mathrm{n}, \mathrm{m}}$. (Also $\emptyset_{\mathrm{n}, \mathrm{m}}$ is a nonincreasing function of m since $\mathrm{F}_{\mathrm{n}, \mathrm{m}+1} \leq \mathrm{F}_{\mathrm{n}, \mathrm{m}}$.) A tedious computation establishes that $\emptyset_{0, \mathrm{~m}}=\emptyset_{1, \mathrm{~m}}=\mathrm{F}_{1, \mathrm{~m}}(\pm 1)=2 /(\mathrm{m}+1)>\emptyset_{2, \mathrm{~m}}=\mathrm{F}_{2, \mathrm{~m}}\left(-2^{-2 /(\mathrm{m}+3)}, 2^{-2 /(\mathrm{m}+3)}\right)=\left(2^{1+2 /(\mathrm{m}+3)}-2\right) /(\mathrm{m}+1)$. This validates the induction hypothesis from which we shall infer next that every $\emptyset_{n, m}>0$:

For some $N \geq 2$ and every $m \geq 0$ we find $0<\emptyset_{N-1, m}=\min _{\mathbf{z}} F_{N-1, m}(\mathbf{z})$ minimized over all $\mathrm{N}-1$-tuples $\mathbf{z}=\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{N}-1}\right)$, and a minimizing \mathbf{z} has $1 \geq \mathrm{z}_{1}^{2} \geq \mathrm{z}_{2}{ }^{2} \geq \ldots \geq \mathrm{z}_{\mathrm{N}-1}{ }^{2}>0$.

To propel this hypothesis from N to $\mathrm{N}+1$ we observe that $\emptyset_{\mathrm{N}, \mathrm{m}}=\inf _{\mathrm{z}} \mathrm{F}_{\mathrm{N}, \mathrm{m}}(\mathbf{z})$ is the limit to which $\mathrm{F}_{\mathrm{N}, \mathrm{m}}(\mathbf{z})$ descends as \mathbf{z} moves through an infinite sequence of constrained N -tuples at each of which $\mathrm{F}_{\mathrm{N}, \mathrm{m}}(\mathbf{z})-\emptyset_{\mathrm{N}, \mathrm{m}}$ is at least, say, twice as big as at \mathbf{z} 's successor. We constrain each N-tuple $\mathbf{z}=\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{N}}\right)$ in the infinite sequence to satisfy $1 \geq \mathrm{z}_{1}{ }^{2} \geq \mathrm{z}_{2}{ }^{2} \geq \ldots \geq \mathrm{z}_{\mathrm{N}}{ }^{2}>0$,
a constraint which has been shown above to be compatible with the infimum. This constraint restricts the infinite sequence's N -tuples \mathbf{z} to a set whose closure, the N -cube in which $-1 \leq \mathbf{z} \leq 1$ elementwise, is compact (closed, bounded and finite-dimensional). Therefore the infinite sequence contains an infinite subsequence convergent to some limit N -tuple $\overline{\mathbf{z}}$ in the N-cube. $\mathrm{F}_{\mathrm{N}, \mathrm{m}}(\mathbf{z}) \rightarrow \emptyset_{\mathrm{N}, \mathrm{m}}$ from above as $\mathbf{z} \rightarrow \overline{\mathbf{z}}$ through the subsequence. The elements of limit N-tuple $\overline{\mathbf{z}}=\left(\overline{\mathrm{z}}_{1}, \overline{\mathrm{z}}_{2}, \ldots, \overline{\mathrm{z}}_{\mathrm{N}}\right)$ satisfy the weakened constraint $1 \geq \overline{\mathrm{z}}_{1}^{2} \geq \overline{\mathrm{z}}_{2}^{2} \geq \ldots \geq \overline{\mathrm{z}}_{\mathrm{N}}{ }^{2} \geq 0$, but in fact $\overline{\mathrm{z}}_{\mathrm{N}}{ }^{2}>0$, as shall now be proved indirectly.

Were $\overline{\mathrm{Z}}_{\mathrm{N}}^{2}=0$, a nonnegative integer $\mathrm{L}<\mathrm{N}$ could be found with $1 \geq \overline{\mathrm{z}}_{1}^{2} \geq \overline{\mathrm{z}}_{2}^{2} \geq \ldots \geq \overline{\mathrm{z}}_{\mathrm{L}}{ }^{2}>0$ but $\bar{z}_{\mathrm{L}+1}=\overline{\mathrm{z}}_{\mathrm{L}+2}=\ldots=\overline{\mathrm{z}}_{\mathrm{N}}=0$. This would imply that $\left|\prod_{\mathrm{L}<\mathrm{j} \leq \mathrm{N}} \mathrm{z}_{\mathrm{j}}\right| \rightarrow 0$ as $\mathbf{z} \rightarrow \overline{\mathbf{z}}$ although

$$
\begin{aligned}
\left|\Pi_{\mathrm{L}<\mathrm{j} \leq \mathrm{N}} \mathrm{z}_{\mathrm{j}}\right| \cdot \mathrm{F}_{\mathrm{N}, \mathrm{~m}}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{L}}, \mathrm{z}_{\mathrm{L}+1}, \ldots, \mathrm{z}_{\mathrm{N}}\right) & =\int_{-1}^{1}\left(\prod_{1 \leq \mathrm{k} \leq \mathrm{L}}\left|1-\mathrm{x} / \mathrm{z}_{\mathrm{k}}\right|\right) \cdot\left(\prod_{\mathrm{L}<j \leq \mathrm{N}}\left|\mathrm{z}_{\mathrm{j}}-\mathrm{x}\right|\right) \cdot|\mathrm{x}|^{\mathrm{m}} \mathrm{dx} \\
& \rightarrow \int_{-1}^{1}\left(\prod_{1 \leq \mathrm{k} \leq \mathrm{L}} \mid 1-\mathrm{x} / \bar{z}_{\mathrm{k}}\right) \cdot|\mathrm{x}|^{\mathrm{m}+\mathrm{N}-\mathrm{L}} \mathrm{dx} \text { as } \mathbf{z} \rightarrow \overline{\mathrm{z}} \\
& =\mathrm{F}_{\mathrm{L}, \mathrm{~m}+\mathrm{N}-\mathrm{L}}\left(\bar{z}_{1}, \bar{z}_{2}, \ldots, \bar{z}_{\mathrm{L}}\right) \geq \emptyset_{\mathrm{L}, \mathrm{~m}+\mathrm{N}-\mathrm{L}}>0,
\end{aligned}
$$

which would imply that $\mathrm{F}_{\mathrm{N}, \mathrm{m}}(\mathbf{z}) \rightarrow+\infty$ as $\mathbf{z} \rightarrow \overline{\mathbf{z}}$ instead of $\mathrm{F}_{\mathrm{N}, \mathrm{m}}(\mathbf{z}) \rightarrow \emptyset_{\mathrm{N}, \mathrm{m}} \leq 2$. This contradiction explains why $\mathrm{L}=\mathrm{N}$ and $\overline{\mathrm{z}}_{\mathrm{N}}^{2}>0$, and therefore $\mathrm{F}_{\mathrm{N}, \mathrm{m}}(\mathbf{z})$ is continuous in the neighborhood of $\mathbf{z}=\overline{\mathbf{z}}$; consequently $\mathrm{F}_{\mathrm{N}, \mathrm{m}}(\mathbf{z}) \rightarrow \mathrm{F}_{\mathrm{N}, \mathrm{m}}(\overline{\mathbf{z}})>0$ as $\mathbf{z} \rightarrow \overline{\mathbf{z}}$, which confirms that $0<\emptyset_{\mathrm{N}, \mathrm{m}}=\min _{\mathrm{z}} \mathrm{F}_{\mathrm{N}, \mathrm{m}}(\mathbf{z})=\mathrm{F}_{\mathrm{N}, \mathrm{m}}(\overline{\mathbf{z}})$ as claimed. So ends a rather long proof.

As Putnam problems go this seems excessively long, and we still don't know the least value $1 / \emptyset_{1999,0}$ of C ..

Problem A6: The sequence $\left\{a_{n}\right\}_{n \geq 1}$ is defined by $a_{1}:=1, a_{2}:=2, a_{3}:=24$, and $a_{n}:=\frac{6 a_{n-1}^{2} a_{n-3}-8 a_{n-1} a_{n-2}^{2}}{a_{n-2} a_{n-3}}$ for $n \geq 4$. Show that every a_{n} is an integer multiple of n.

Solution A6: Substitute $r_{n}:=a_{n} / a_{n-1}$ into the given recurrence to obtain $r_{2}=2, r_{3}=12$ and $r_{n}=6 r_{n-1}-8 r_{n-3}$. This is a linear recurrence whose characteristic polynomial $r^{2}-6 r+8$ factors into $(r-2)(r-4)$; from this soon follows that $r_{n}=4^{n-1}-2^{n-1}=\left(2^{n-1}-1\right) 2^{n-1}$ and then $a_{n}=\Pi_{2 \leq k \leq n} r^{k}=\Pi_{2 \leq k \leq n}\left(2^{k-1}-1\right) 2^{k-1}=2^{(n-1) n / 2} \cdot \Pi_{2 \leq k \leq n}\left(2^{k-1}-1\right)$. Next we shall prove that n divides this a_{n} by showing that every prime power that divides n divides a_{n} too.

If n is divisible by 2^{m} for some $\mathrm{m}>0$ then $\mathrm{m} \leq \mathrm{n}-1$ (because $2^{\mathrm{n}} \geq \mathrm{n}+1$), and therefore a_{n} is divisible by 2^{m} too. If n is divisible by p^{m} for some odd prime p and integer $m>0$, then again $m \leq n-1$ (because $p^{n}>2^{n} \geq n+1$), and each of the m integers $k=p, p^{2}, \ldots, p^{m}$ appears among the consecutive integers $k=2,3, \ldots, n$. Now we appeal to Fermat's "little" theorem to the effect that $L^{p-1}-1$ is divisible by prime p whenever integer L is not divisible by p. Apply this for $L=2^{(k-1) /(p-1)}$ whenever k is a power of p to infer that then $2^{k-1}-1$ is divisible by p. Therefore, $a_{n}=2^{(n-1) n / 2} \cdot \Pi_{2 \leq k \leq n}\left(2^{k-1}-1\right)$ has $n-1$ odd factors $\left(2^{k-1}-1\right)$ of which at least m are divisible by p, so p^{m} divides a_{n} too. Since every prime power that divides n divides a_{n} too, n must divide a_{n}. End of proof.

Problem B1: Right triangle $A B C$ has its right angle at C and $\angle B A C=\varnothing$; the point D is chosen on AB so that $|\mathrm{AC}|=|\mathrm{AD}|=1$; The point E is chosen on BC so that $\angle \mathrm{CDE}=\varnothing$. The perpendicular to BC at E meets AB at F . Evaluate $\lim |\mathrm{EF}|$ as $\varnothing \rightarrow 0$. [Here " $|\mathrm{PQ}|$ " denotes the length of the line segment PQ .]

Solution B1: $|E F| \rightarrow 1 / 3$. To see why, observe that $\mathrm{EF} \| \mathrm{CA}$, so $\triangle \mathrm{EFB}||\mid \Delta \mathrm{CAB}$, whence $|\mathrm{EF}|=|\mathrm{EF}| / \mathrm{CA}|=|\mathrm{EB}| / \mathrm{CB}|=1-|\mathrm{CE}| / \mathrm{CB}|=1-|\mathrm{CE}| / \tan (Ø)$
$=1-(|\mathrm{CD}| \cdot \sin (\varnothing) / \sin (\angle \mathrm{CED})) / \tan (\varnothing) \quad$ from the sine law applied to $\Delta \mathrm{CED}$ $=1-\cos (\varnothing) \cdot|\mathrm{CD}| / \sin (\angle \mathrm{DEB})$.
Since $\triangle \mathrm{CAD}$ is isosceles, $|\mathrm{CD}|=2 \cdot \sin (\varnothing / 2)$ and $\angle \mathrm{CDA}=(\pi-\varnothing) / 2$, whereupon we find $\angle \mathrm{DEB}=\angle \mathrm{ADE}-\angle \mathrm{ABE}=(\pi-\emptyset) / 2+\emptyset-(\pi / 2-\emptyset)=3 Ø / 2$ and then
$|\mathrm{EF}|=1-2 \cdot \cos (\varnothing) \cdot \sin (\varnothing / 2) / \sin (3 \varnothing / 2)=1-(\sin (3 \varnothing / 2)-\sin (\varnothing / 2)) / \sin (3 \varnothing / 2)$ $=\sin (\varnothing / 2) / \sin (3 \varnothing / 2) \rightarrow 1 / 3$ as $\varnothing \rightarrow 0$, as claimed.

An alternative proof, routine but tedious and error-prone, begins by identifying point A with 0 in the complex plane and points $\mathrm{B}, \mathrm{C}, \ldots$ with complex numbers $\mathrm{b}, \mathrm{c}, \ldots$ respectively, so that length $|\mathrm{PQ}|=|\mathrm{p}-\mathrm{q}|$. Then $\mathrm{c}=e^{\mathbf{1} \varnothing}$ where $\mathbf{1}=\sqrt{-1}$, and $\mathrm{d}=1$, and $\mathrm{b}=1 / \cos (\emptyset)$, etc.

Problem B2: Let $P(x)$ be a polynomial of degree n such that $P(x)=Q(x) P^{\prime \prime}(x)$ where $Q(x)$ is a quadratic polynomial and $\mathrm{P}^{\prime \prime}(\mathrm{x})$ is the second derivative of $\mathrm{P}(\mathrm{x})$. Show that if $\mathrm{P}(\mathrm{x})$ has at least two distinct zeros then it must have n distinct zeros, each either real or complex.

Solution B2: Two proofs come to mind. The first begins by supposing $\mathrm{P}(\mathrm{x})$ has at least one multiple zero z of multiplicity $\mathrm{m} \geq 2$, and then translates the x -origin to z to simplify the Taylor series $P(x)=\sum_{m \leq j \leq n} a_{j} x^{j} / j$! with $a_{m} a_{n} \neq 0$. Then $P^{\prime \prime}(x)=\sum_{m \leq j \leq n} a_{j} \mathrm{x}^{j-2} /(j-2)$! has at $z=0$ a zero of multiplicity $m-2$, implying first that $z=0$ is a double zero of $Q(x)$ and then that $\mathrm{Q}(\mathrm{x})=\mathrm{x}^{2} /((\mathrm{n}-1) \mathrm{n})$ in order to satisfy the identity $\mathrm{P}(\mathrm{x})=\mathrm{Q}(\mathrm{x}) \cdot \mathrm{P}^{\prime \prime}(\mathrm{x})$ first near $\mathrm{x}=0$ and secondly near $x=\infty$. But then this identity implies the identity

$$
0=(n-1) n P(x)-x^{2} P^{\prime \prime}(x)=\sum_{m \leq j \leq n}((n-1) n-(j-1) j) a_{j} \mathrm{j}^{\mathrm{j}} / \mathrm{j}!=\sum_{m \leq j \leq n}(n-j)(n+j-1) a_{j} x^{j} / j!,
$$

whence follows $a_{j}=0$ for all $j<n$, leaving $P(x)$ with one zero 0 of revealed multiplicity $\mathrm{m}=\mathrm{n} \geq 2$. Thus has the contrapositive of the desired result been proved: if $\mathrm{P}(\mathrm{x})$ has fewer than n distinct zeros, implying that at least one zero has multiplicity $\mathrm{m} \geq 2$, then $\mathrm{P}(\mathrm{x})$ must have just one zero of multiplicity $\mathrm{m}=\mathrm{n}$. This is merely another way to state the desired result.

The second proof begins with the logarithmic derivative $\mathrm{P}^{\prime}(\mathrm{x}) / \mathrm{P}(\mathrm{x})=\sum_{\mathrm{z}} \mathrm{m}_{\mathrm{z}} /(\mathrm{x}-\mathrm{z})$ summed over all distinct zeros z each of multiplicity $\mathrm{m}_{\mathrm{z}} \geq 1$; of course $\sum_{\mathrm{z}} \mathrm{m}_{\mathrm{z}}=\mathrm{n}$. Differentiate again to get first $\mathrm{P}^{\prime \prime}(\mathrm{x}) / \mathrm{P}(\mathrm{x})-\left(\mathrm{P}^{\prime}(\mathrm{x}) / \mathrm{P}(\mathrm{x})\right)^{2}=-\sum_{\mathrm{z}} \mathrm{m}_{\mathrm{z}} /(\mathrm{x}-\mathrm{z})^{2}$ and then a formula for the quadratic

$$
\mathrm{Q}(\mathrm{x})=\mathrm{P}(\mathrm{x}) / \mathrm{P}^{\prime \prime}(\mathrm{x})=1 /\left(\left(\sum_{\mathrm{z}} \mathrm{~m}_{\mathrm{z}} /(\mathrm{x}-\mathrm{z})\right)^{2}-\sum_{\mathrm{z}} \mathrm{~m}_{\mathrm{z}} /(\mathrm{x}-\mathrm{z})^{2}\right) .
$$

We shall deduce from it the desired result, namely that either every $m_{z}=1$ or else $m_{z}=n$ for just one zero z , by considering the possibility that some zero t has multiplicity $\mathrm{m}_{\mathrm{t}} \geq 2$. This possibility and the formula together imply $\mathrm{Q}(\mathrm{x}) /(\mathrm{x}-\mathrm{t})^{2} \rightarrow 1 /\left(\left(\mathrm{m}_{\mathrm{t}}-1\right) \mathrm{m}_{\mathrm{t}}\right)$ as $\mathrm{x} \rightarrow \mathrm{t}$, implying that the quadratic $\mathrm{Q}(\mathrm{x})=(\mathrm{x}-\mathrm{t})^{2} /\left(\left(\mathrm{m}_{\mathrm{t}}-1\right) \mathrm{m}_{\mathrm{t}}\right)$; but because $\sum_{\mathrm{z}} \mathrm{m}_{\mathrm{z}}=\mathrm{n}$ the formula also implies $\mathrm{Q}(\mathrm{x}) /(\mathrm{x}-\mathrm{t})^{2} \rightarrow 1 /((\mathrm{n}-1) \mathrm{n})$ as $\mathrm{x} \rightarrow \infty$, whence the quadratic $\mathrm{Q}(\mathrm{x})=(\mathrm{x}-\mathrm{t})^{2} /((\mathrm{n}-1) \mathrm{n})$. The only way to reconcile these two expressions for Q is to infer that $\mathrm{m}_{\mathrm{t}}=\mathrm{n}$ whenever $\mathrm{m}_{\mathrm{t}} \geq 2, Q E D$.
(Of course, it is legitimate to wonder whether there are any polynomials $\mathrm{P}(\mathrm{x})$ of degree $\mathrm{n}>2$ with quadratic $P / P^{\prime \prime}$ and more than one distinct zero. There are lots of them; $x^{3} \pm x$ and $x^{4} \pm 6 x^{2}+5$ and $7 x^{5} \pm 10 x^{3}+3 x$ are the simplest examples.)

Problem B3: Let $A:=\{(x, y): 0 \leq x, y<1\}$. For (x, y) in A let $S(x, y):=\sum \sum x^{m} y^{n}$ summed over all pairs (m, n) of positive integers satisfying $1 / 2 \leq m / n \leq 2$. Evaluate $\lim \left(1-x y^{2}\right)\left(1-x^{2} y\right) S(x, y)$ as (x, y) approaches $(1,1)$ from within A.

Solution B3: The desired limit is 3 because $S(x, y)=\left(1+x y+x^{2} y^{2}\right) /\left(\left(1-x y^{2}\right)\left(1-x^{2} y\right)\right)-1$. To justify this formula expand the right-hand side's quotient in a power series convergent in A:

$$
\left(1+x y+x^{2} y^{2}\right) \cdot \sum_{i \geq 0} \sum_{j \geq 0} x^{i+2 j} \cdot y^{2 i+j}=\sum_{i \geq 0} \sum_{j \geq 0}\left(x^{i+2 j} \cdot y^{2 i+j}+x^{i+2 j+1} \cdot y^{2 i+j+1}+x^{i+2 j+2} \cdot y^{2 i+j+2}\right) .
$$

Except for the one term $x^{0} y^{0}=1$, all the terms in this power series have the form $x^{m} y^{n}$ with $\mathrm{m}>0, \mathrm{n}>0$ and $1 / 2 \leq \mathrm{m} / \mathrm{n} \leq 2$. What remains to be seen is that every term of this form does appear just once in the series. Terms of this form fall into three disjoint subsets:
$0: \mathrm{m}+\mathrm{n} \equiv 0 \bmod 3$. Let $\mathrm{k}:=(\mathrm{m}+\mathrm{n}) / 3, \mathrm{i}:=\mathrm{n}-\mathrm{k}, \mathrm{j}:=\mathrm{m}-\mathrm{k}$; then $\mathrm{i}+2 \mathrm{j}=\mathrm{m}$ and $2 \mathrm{i}+\mathrm{j}=\mathrm{n}$.
$1: \mathrm{m}+\mathrm{n} \equiv 1 \bmod 3$. Let $\mathrm{k}:=(\mathrm{m}+\mathrm{n}-1) / 3, \mathrm{i}:=\mathrm{n}-1-\mathrm{k}, \mathrm{j}:=\mathrm{m}-1-\mathrm{k} ; \mathrm{i}+2 \mathrm{j}+2=\mathrm{m}, 2 \mathrm{i}+\mathrm{j}+2=\mathrm{n}$.
2: $\mathrm{m}+\mathrm{n} \equiv 2 \boldsymbol{\operatorname { m o d } 3 .}$. Let $\mathrm{k}:=(\mathrm{m}+\mathrm{n}-2) / 3, \mathrm{i}:=\mathrm{n}-1-\mathrm{k}, \mathrm{j}:=\mathrm{m}-1-\mathrm{k} ; \mathrm{i}+2 \mathrm{j}+1=\mathrm{m}, 2 \mathrm{i}+\mathrm{j}+1=\mathrm{n}$.
It seems necessary to check that $\mathrm{i} \geq 0$ and $\mathrm{j} \geq 0$ for each subset separately:
$0: \quad \mathrm{i}=\mathrm{n}-\mathrm{k}=(2 \mathrm{n}-\mathrm{m}) / 3 \geq 0$ because $\mathrm{m} / \mathrm{n} \leq 2$. Similarly $\mathrm{j} \geq 0$.
1: $\quad i=n-1-k=(2 n-m-2) / 3 \geq-2 / 3$, so integer $i \geq 0$. Similarly $j \geq 0$.
2: $i=n-1-k=(2 n-m-1) / 3 \geq-1 / 3$, so integer $i \geq 0$. Similarly $j \geq 0$.
Thus the three subsets' union provides a one-to-one association between all terms $x^{m} y^{n}$ in the given sum $S(x, y)$, and all terms except the constant term in the power series expansion. This justifies the formula alleged for $\mathrm{S}(\mathrm{x}, \mathrm{y})$ and confirms that the limit was evaluated correctly.

Problem B4: Let f be a real function with a continuous third derivative such that $f(\mathrm{x})$, $f^{\prime}(\mathrm{x}), f^{\prime \prime}(\mathrm{x})$ and $f^{\prime \prime \prime}(\mathrm{x})$ are positive for all x . Suppose that $f^{\prime \prime \prime}(\mathrm{x}) \leq f(\mathrm{x})$ for all x . Show that $f^{\prime}(x)<2 f(x)$ for all x.

Solution B4: For any x and X , Taylor's formula for $f(\mathrm{X})$ with an integral remainder is $f(\mathrm{X})=f(\mathrm{x})+(\mathrm{X}-\mathrm{x}) f^{\prime}(\mathrm{x})+(\mathrm{X}-\mathrm{x})^{2} f^{\prime \prime}(\mathrm{x}) / 2+\int_{\mathrm{x}}^{\mathrm{X}}(\mathrm{X}-\mathrm{t})^{2} f^{\prime \prime \prime}(\mathrm{t}) \mathrm{dt} / 2$; and if $\mathrm{X}<\mathrm{x}$ we find, since $f^{\prime \prime \prime}(\mathrm{t})>0$, that $f(\mathrm{X})<f(\mathrm{x})+(\mathrm{X}-\mathrm{x}) f^{\prime}(\mathrm{x})+(\mathrm{X}-\mathrm{x})^{2} f^{\prime \prime}(\mathrm{x}) / 2$. Set $\mathrm{X}:=\mathrm{x}-f^{\prime}(\mathrm{x}) / f^{\prime \prime}(\mathrm{x})<\mathrm{x}$ to infer first $0<f(\mathrm{X})<f(\mathrm{x})-f^{\prime}(\mathrm{x})^{2} / f^{\prime \prime}(\mathrm{x})+\left(f^{\prime}(\mathrm{x})^{2} / f^{\prime \prime}(\mathrm{x})\right) / 2$ and then $f^{\prime}(\mathrm{x})^{2}<2 f(\mathrm{x}) f^{\prime \prime}(\mathrm{x})$.

Similarly $f^{\prime}(\mathrm{X})=f^{\prime}(\mathrm{x})+(\mathrm{X}-\mathrm{x}) f^{\prime \prime}(\mathrm{x})+\int_{\mathrm{X}}^{\mathrm{X}}(\mathrm{X}-\mathrm{t}) f^{\prime \prime \prime}(\mathrm{t}) \mathrm{dt}$; now, since $f^{\prime \prime \prime} \leq f$ and $\mathrm{X}-\mathrm{t}$ has the same sign as $\mathrm{X}-\mathrm{x}$ and also dt , we infer $f^{\prime}(\mathrm{X}) \leq f^{\prime}(\mathrm{x})+(\mathrm{X}-\mathrm{x}) f^{\prime \prime}(\mathrm{x})+\int_{\mathrm{X}} \mathrm{X}(\mathrm{X}-\mathrm{t}) f(\mathrm{t}) \mathrm{dt}$. Integration by parts turns this last inequality into

$$
f^{\prime}(\mathrm{X}) \leq f^{\prime}(\mathrm{x})+(\mathrm{X}-\mathrm{x}) f^{\prime \prime}(\mathrm{x})+(\mathrm{X}-\mathrm{x})^{2} f(\mathrm{x}) / 2+\int_{\mathrm{x}}^{\mathrm{X}}(\mathrm{X}-\mathrm{t})^{2} f^{\prime}(\mathrm{t}) \mathrm{dt} / 2 .
$$

Again, if $X<x$ we find, since $f^{\prime}(t)>0$, that $f^{\prime}(X) \leq f^{\prime}(x)+(X-x) f^{\prime \prime}(x)+(X-x)^{2} f(x) / 2$; this time set $\mathrm{X}:=\mathrm{x}-f^{\prime \prime}(\mathrm{x}) / f(\mathrm{x})<\mathrm{x}$ to infer from $0<f^{\prime}(\mathrm{X})$ that $f^{\prime \prime}(\mathrm{x})^{2}<2 f^{\prime}(\mathrm{x}) f(\mathrm{x})$. This combines with the inequality $f^{\prime}(\mathrm{x})^{2}<2 f(\mathrm{x}) f^{\prime \prime}(\mathrm{x})$ inferred above to prove $f^{\prime}(\mathrm{x})<2 f(\mathrm{x}), Q E D$.
(An example of such a function $f(x)$ is $\beta+\exp (\mu \cdot x)$ for any constants $\beta \geq 0<\mu \leq 1$. The example $\beta+\left(\mu x+\sqrt{ }\left(\mu^{2} x^{2}+1\right)\right)^{n}$ for $n \geq 2, \quad \beta \geq 0$ and $\mu \leq 3 \sqrt{ }\left((5 / 2)^{5 / 2} /\left(n(n+1)^{5 / 2}(n+2)\right)\right)$ is less obvious.)

Problem B5: For any integer $n \geq 3$ let $\emptyset:=2 \pi / n$. Evaluate the determinant of the n-by-n matrix $I+A$ where I is the identity matrix and $A=\left\{a_{j k}\right\}$ has entries $a_{j k}:=\cos ((j+k) \emptyset)$ for all indices j and k .

Solution B5: $\operatorname{det}(\mathrm{I}+\mathrm{A})=1-\mathrm{n}^{2} / 4$. One neat way to prove this uses a determinantal identity $\operatorname{det}\left(\mathrm{I}+\mathrm{P} \cdot \mathrm{R}^{\mathrm{T}}\right)=\operatorname{det}\left(\mathrm{I}+\mathrm{R}^{\mathrm{T}} \cdot \mathrm{P}\right)$ in which P and R are matrices of the same dimensions, so that both products $\mathrm{P} \cdot \mathrm{R}^{\mathrm{T}}$ and $\mathrm{R}^{\mathrm{T}} \cdot \mathrm{P}$ are square though of perhaps different dimensions. Here R^{T} is the transpose of R ; and the two identity-matrices " I " may have different dimensions too. To confirm the identity apply the formula $\operatorname{det}(\mathrm{X} \cdot \mathrm{Y})=\operatorname{det}(\mathrm{X}) \cdot \operatorname{det}(\mathrm{Y})$ to the triangular
factorizations

$$
\left[\begin{array}{cc}
I & O \\
R^{T} & I
\end{array}\right] \cdot\left[\begin{array}{cc}
I & -P \\
O^{T} & I+\left(R^{T} \cdot P\right)
\end{array}\right]=\left[\begin{array}{cc}
I & -P \\
R^{T} & I
\end{array}\right]=\left[\begin{array}{cc}
I & -P \\
O^{T} & I
\end{array}\right] \cdot\left[\begin{array}{cc}
I+\left(P \cdot R^{T}\right) & O \\
R^{T} & I
\end{array}\right]
$$

Now set $\mu:=\exp (\mathbf{1} \varnothing) \neq \pm 1$ so that $\mu^{\mathrm{k}}=\exp (\mathbf{1} \emptyset \varnothing)=\cos (\mathrm{k} \varnothing)+\mathbf{1} \cdot \sin (\mathrm{k} \varnothing)$ for every integer k ; in particular $\mu^{\mathrm{n}}=1$ and the complex conjugate $\bar{\mu}=\exp (-\mathbf{1} \varnothing)=1 / \mu$. Let row vector $\mathrm{w}^{\mathrm{T}}:=\left[\mu, \mu^{2}, \mu^{3}, \ldots, \mu^{\mathrm{n}}\right]$ and, for future reference, compute $\overline{\mathrm{w}}^{\mathrm{T}} \cdot \mathrm{w}=\mathrm{w}^{\mathrm{T}} \cdot \overline{\mathrm{w}}=\mathrm{n}$ and $\mathrm{w}^{\mathrm{T}} \cdot \mathrm{w}=\mu^{2}+\mu^{4}+\mu^{6}+\ldots+\mu^{2 \mathrm{n}}=\left(1-\mu^{2 \mathrm{n}}\right) /\left(1-\mu^{2}\right)=0=\overline{\mathrm{w}}^{\mathrm{T}} \cdot \overline{\mathrm{w}}$. All this is relevant because, as is easily verified, $A=\operatorname{Re}\left(w \cdot w^{T}\right)=\left(w \cdot w^{T}+\bar{w} \cdot \bar{w}^{T}\right) / 2=[w, \bar{w}] \cdot[w, \bar{w}]^{T} / 2$. Consequently

$$
\begin{aligned}
\operatorname{det}(\mathrm{I}+\mathrm{A}) & =\operatorname{det}\left(\mathrm{I}+[\mathrm{w}, \overline{\mathrm{w}}] \cdot[\mathrm{w}, \overline{\mathrm{w}}]^{\mathrm{T}} / 2\right)=\operatorname{det}\left(\mathrm{I}+[\mathrm{w}, \overline{\mathrm{w}}]^{\mathrm{T}} \cdot[\mathrm{w}, \overline{\mathrm{w}}] / 2\right), \quad \text { from the identity }, \\
& =\left(1+\mathrm{w}^{\mathrm{T}} \cdot \mathrm{w} / 2\right)\left(1+\overline{\mathrm{w}}^{\mathrm{T}} \cdot \overline{\mathrm{w}} / 2\right)-\left(\mathrm{w}^{\mathrm{T}} \cdot \overline{\mathrm{w}}\right)\left(\overline{\mathrm{w}}^{\mathrm{T}} \cdot \mathrm{w}\right) / 4=1-\mathrm{n}^{2} / 4 \text { as claimed. }
\end{aligned}
$$

(This is surprising. Rarely does a formula hold for all n-by-n matrices with $n \geq 3$ but not for $n=2$ nor $n=1$.)

Problem B6: Let S be a finite set of integers each greater than 1. Suppose that for each integer n there is some s in S such that $\operatorname{GCD}(\mathrm{s}, \mathrm{n})=1$ or $\operatorname{GCD}(\mathrm{s}, \mathrm{n})=\mathrm{s}$. Show that S must contain some s and t for which $\operatorname{GCD}(\mathrm{s}, \mathrm{t})$ is a prime. [Here " $\operatorname{GCD}(\mathrm{x}, \mathrm{y})$ " denotes the Greatest Common Divisor of x and y.$]$

Solution B6: (Presumably $s=t$ is allowed since $S:=\{3\}$ meets the specifications for S.) This neat solution was suggested by David Blackston, a graduate student of Computer Science.

Let L be the least positive integer such that $\operatorname{GCD}(\mathrm{s}, \mathrm{L})>1$ for every s in S ; this L must exist because it need not exceed the product of all primes each of which divides at least one member of S. But L may be smaller than that product if there exist two primes both of which divide every member of S divisible by either. Anyway, L is a product of primes none of whose squares divides L ; otherwise L would not be the least

Some t in S must satisfy $G C D(t, L)=t>1$; choose any prime p that divides t. Since $\mathrm{L} / \mathrm{p}<\mathrm{L}$, there must be some s in S such that $\operatorname{GCD}(\mathrm{s}, \mathrm{L} / \mathrm{p})=1$. David asserts that $\operatorname{GCD}(\mathrm{s}, \mathrm{t})=\mathrm{p}$. Let's see why his assertion is true.

This $t=G C D(t, L)$ is a product of a nonempty subset (containing p) selected from the prime factors of L . Since $\operatorname{GCD}(\mathrm{s}, \mathrm{L} / \mathrm{p})=1$, no prime factor of L / p divides s , and therefore no prime factor of t / p divides s ; i.e. $\operatorname{GCD}(\mathrm{s}, \mathrm{t} / \mathrm{p})=1$. But $\operatorname{GCD}(\mathrm{s}, \mathrm{L})>1$, so $\operatorname{GCD}(\mathrm{s}, \mathrm{L})=\mathrm{p}$; this means that some positive power of p divides s , and therefore $\operatorname{GCD}(\mathrm{s}, \mathrm{t})=\mathrm{p}$ as claimed.

The foregoing solutions have been posted on the class web-page:
http://cs.berkeley.edu/~wkahan/MathH90/Putnam99.pdf

