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The purpose of this document is to provide students with more examples of good mathematical 
exposition,  taking account of all necessary details,  with clarity given priority over brevity.  I 
have chosen some of the problems on the  2009 Putnam Exam  for that purpose.
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Problem A1
Let  ƒ  be a real-valued function on the plane such that for every square  ABCD  in the plane,  
ƒ(A) + ƒ(B) + ƒ(C) + ƒ(D) = 0 .  Does it follow that  ƒ(P) = 0  for all points  P  in the plane ?

Solution A1
As stated this problem has a trivial solution:  Allow  ABCD  to be a degenerate square with  
A = B = C = D = P  to discover that  4·ƒ(P) = 0 .  The intended problem should say  “ … such 
that,  for every nondegenerate square  ABCD  in the plane with distinct vertices,  ƒ(A) + … ”;  
and this problem’s solution is offered below.  In fact,  the solution works if this problem allows 
only nondegenerate squares  ABCD  restricted to have sides parallel to one given square’s.

To see why every  ƒ(P) = 0 ,   partition any chosen nondegenerate square  ABCD  into four 
similar squares with vertices also at the midpoints of the edges of  ABCD  and at its center thus:

Let’s abbreviate  ƒ(A) := a ,   ƒ(B) := b ,   … ,   ƒ(Y) := y   and   ƒ(Z) := z .    The problem gives 
us five equations,  one per square,  thus: 

a   +   b   +   c   +   d       =   0 [1]
a   +   v   +   w   +   x       =   0 [2]

b   +   v   +   x   +   y       =   0 [3]
c   +   x   +   y   +   z   =   0 [4]

d   +   w   +   x   +   z   =   0 [5]

From these we compute   [2] – [3] + [4] – [5]  to get simply

a   –   b   +   c   –   d       =   0 [6]

and then compute   [1] ± [6]  to reduce everything to these two equations

a   +   c   =  0        and       b   +   d   = 0 .

These tell us that,  at any two distinct points on a straight line parallel to a diagonal of the given 
square,  the two values of  ƒ  sum to zero.  Therefore  ƒ  is constant on every line parallel to a 
diagonal of the given square,  and the constant must be zero as the problem claimed.

Yes,  ƒ(P) = 0  at every point  P  in the plane,  even if the squares allowed are restricted to those 
with sides parallel to one given square’s sides.

Continued …
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Dan Wang’s  solution to  Problem A1  works if the allowed squares  ABCD  have sides parallel 
either to one given square’s sides,  or else to its diagonals.  He observed that  VWZY  is such a 
square,  so it provides this equation too:

v   +   w   +   y   +   z   =   0 [7]
Now compute   [2] + [3] + [4] + [5] – [1] – 2·[7]   to infer that   x = 0 .

Point  X  is the center of squares that could have been placed anywhere,  so  ƒ(X) = 0  at every 
point  X  in the plane,  answering  problem A1’s  question affirmatively.
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Problem A2
Functions  ƒ,  g,  h  are differentiable on some open interval around  0  and satisfy the equations 
and initial conditions 

     ƒ' = 2ƒ2gh + 1/(gh) ,    g' = fg2h + 4/(ƒh) ,    h' = 3ƒgh2 + 1/(fg) ,    ƒ(0) = g(0) = h(0) = 1 .

Find an explicit formula for  ƒ(x) ,  valid in some open interval around  0 .

Solution A2
Hereunder is why   ƒ(x)  =  ( √2·sin(6x + π/4)/(1 – sin(12·x)) )1/6   for all  |x|  small enough.

Set   p(x) := ƒ(x)·g(x)·h(x)  and take its  logarithmic derivative  to find
   p'/p  =  ƒ'/ƒ + g'/g + h'/h  =  6( p + 1/p ) ;    and   p(0) = 1 .

The solution of this differential equation for  p  is   p(x) = tan(6x + π/4) .  Substitution into the 
given differential equation for  ƒ  reduces it to  

  log(ƒ(x))' = ƒ'/f =  2p + 1/p  =  2·tan(6x + π/4) + cot(6x + π/4) .
A symbolic integration turns this into,  say, 

  6·log(ƒ(x))  =  log( √2·sin(6x + π/4)/(1 – sin(12·x)) ) 
after a tedious trigonometric simplification of expressions obtained from 

   ∫ tan(y) dy = log(sec(y))   and    ∫ cot(y) dy = log(sin(y)) .

However,  the tedious simplification is not required to satisfy the problem’s demand for  “ an 
explicit formula for  ƒ(x) ”,  so any one of infinitely many algebraically equivalent formulas,  no 
matter how complicated,  will serve as well.  I would hate to have to grade this problem’s 
submitted solutions without a computerized algebra system like  MAPLE  or  DERIVE  
competent enough to perform trigonometric simplifications.
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Problem A6
Let  ƒ : [0, 1]2 → RR  be a continuous function on the closed unit square such that  ∂ƒ/∂x  and  

∂ƒ/∂y  exist and are continuous on the interior  (0, 1)2
 .  Let  

 a = ∫01
 ƒ(0, y) dy ,     b = ∫01

 ƒ(1, y) dy ,    c = ∫01
 ƒ(x, 0) dx ,    and   d = ∫01

 ƒ(x, 1) dx .
Prove or disprove:  There must be a point  (xo, yo)  in  (0, 1)2  such that 

   = b – a    and    = d – c .

Solution A6
No such point  (xo, yo)  need exist though often it does.  A disproof of the problem’s allegation 
requires first that a suitable example  ƒ  be found,  and then that the last two equations be shown 

to have no solution  (xo, yo)  in the open square  (0, 1)2
 .  The process may become easier to 

understand,  or at least easier to appreciate,  after a change in notation:

Identify column-vector  v :=   with motions in the  (x, y)-plane and reinterpret  f(v) := ƒ(x, y)  

as a scalar-valued real function of a real vector argument.  f(v) ’s  derivative is the row-vector  
f'(v) = [∂ƒ/∂x, ∂ƒ/∂y]  because it satisfies the infinitesimal equation   df(v) = f'(v)·dv   (which 
merely abbreviates the  Chain Rule  df(v)/dτ = f'(v)·dv/dτ   valid for  every  differentiable vector-
valued function  v(τ)  of a real scalar variable  τ  while  v(τ)  runs in the domain of  f ).

The problem’s definition of  b – a  can be rewritten

  b – a =  ∫01
 (ƒ(1, y) – ƒ(0, y)) dy  =  ∫01

 ∫01
 ƒx(ξ, y) dξ dy   wherein  ƒx = ∂ƒ/∂x .

Similarly for  d – c =  ∫01
 ∫01

 ƒy(x, η) dη dx .  Therefore row vector  [b – a, d – c]  can be written
  [b – a,  d – c]  =  Average of  f'(v)  over the unit square in the  v-plane.

This turns  Problem A6  into a special case of a more general question:

Given a real scalar-valued differentiable function  f(v)  of a vector argument  v ,
and given a region  S  in the domain of  f ,   must a point  vo  exist in  S  where

f'(vo) = Average( f'(v)  over  v in S ) ?

With rare exceptions,  the answer is  “NO,  NOT IN GENERAL”.

One of those exceptions is so important it is taught in every introductory class in  Calculus:
The Mean Value Theorem of the Derivative  (a corollary of  Rolle’s Theorem):

Given an interval  S  in the domain of a differentiable real-valued function  ƒ 
of a real argument,  there is a point inside interval  S  where the derivative  ƒ' 
takes the same value as this derivative’s average over interval  S .

More generally,  a counter-example that justifies the unexceptional answer  “NO”  is the length  

function  f(v) := ||v|| := √(vT·v)  on a  Euclidean  vector-space of dimension  2  or more.  The 

derivative  f'(v) = vT/||v|| ,  and   ||f'(v)T|| = 1 ,  for all  v ≠ o ;  but unless  S  is a segment of a ray 

emanating from  o  the average of  f'(v)T  has length  ||Average|| < 1 ,  so there is no  vo  in  S .

x∂
∂ f xo yo( , )

y∂
∂ f xo yo( , )

x
y
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Problem B1
Show that every positive rational number can be written as a quotient of products of factorials 

of  (not necessarily distinct)  primes.  For example,  10/9 = 2!·5!/(3!)3 .

Solution B1
(This problem’s statement is slightly untidy because  1 = 1/1  is not here a quotient of products 
of factorials of primes since  1  is not a prime.  Either rewrite  1 = 2!/2! ,  or allow  “products”  
to include possibly empty products defined to be  1  by convention.  I have chosen the latter.)

Here is a proof:  Start with the prime factorization of each rational number into a product of 

powers  (some perhaps negative)  of primes.  For example,  10/9 = 21·51·3–2 .  The problem’s 
assertion is proved by induction on the biggest prime that appears in such a factorization.  The 
assertion is obviously true for every rational number  r  that is a power of  2 .  Now let  p > 2  be 
the biggest prime that appears in the prime factorization of any other rational number  r ,  and 

let  m ≠ 0  be its exponent.  Then  s := r·(p!)–m  is a rational number in whose prime factorization 
appear only primes  (if any)  smaller than  p .  The induction hypothesis supplies an expression 
for  s  as a quotient of products  (some perhaps empty)  of factorials of  (not necessarily distinct)  

primes.  And then  r = s·(p!)m  must also have the form demanded by the problem.  End of proof.
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Problem B2
A game involves jumping to the right on the real number line.  If  a  and  b  are real numbers 

and  b > a ,  the cost of jumping from  a  to  b  is  b3
 – a·b2

 .  For what real numbers  c  can one 
travel from  0  to  1  in a finite number of jumps with total cost exactly  c ?

Solution B2
The set of all total costs  c  constitute an interval  1/3 < c ≤ 1 .   Here is why:

The cost   b3
 – a·b2 = (b – a)·b2   is the area of a rectangle of height  b2  erected over the interval  

a ≤ x ≤ b  on the real axis.  The total cost  c  is the  Riemann Sum  of rectangular areas that 

overestimate the integral  ∫01 x2
 dx = 1/3 ,  which is the area under the parabolic graph of  y = x2  

over the interval  0 ≤ x ≤ 1 ,  as we shall see hereunder.

For any integer  n ≥ 1  partition the interval  0 ≤ x ≤ 1  into  n  subintervals  xj–1 ≤ x ≤ xj  where  
1 ≤ j ≤ n  and  0 = x0 < x1 < … < xn = 1 .  The total cost  c  of jumping from  x0 = 0  to  x1  to  

…  to  xn–1  to  xn = 1  is  c = Ç({x0, x1, …, xn–1, xn}) := ∑1≤j≤n (xj – xj–1)·xj
2 .  Observe that if  

n = 1  then  c = Ç({0, 1}) = 1  but otherwise,  when  n > 1 ,  then  c < ∑1≤j≤n (xj – xj–1)·12 = 1 .

Now set   ç({x0, x1, …, xn–1, xn}) := ∑1≤j≤n (xj – xj–1)·xj–1
2  <  Ç({x0, x1, …, xn–1, xn}) .   This  

ç  is the  Riemann Sum  that underestimates the area under the parabola because

  (b – a)·a2 <  ∫ab x2
 dx  = (b3

 – a3)/3 = (b – a)·(b2
 + b·a + a2)/3 < (b – a)·b2   while  0 ≤ a < b ,

and therefore   c = Ç({x0, x1, …, xn–1, xn})  >  ∫01 x2
 dx = 1/3  >  ç({x0, x1, …, xn–1, xn}) .

So far we have established that  1/3 < c ≤ 1 ,  among other things.

Next we shall see how to bring  c  down arbitrarily close to  1/3 .  Given any  n > 1  choose the 
uniform partition with every  xj := j/n  to find that

     0 < c – 1/3 = Ç – 1/3 < Ç – ç =  ∑1≤j≤n (xj – xj–1)·(xj
2

 – xj–1
2)  =  ∑1≤j≤n (2j – 1)/n3 = 1/n ,

which can be made arbitrarily tiny by choosing  n  big enough.

Our final task is to establish that  c  can take  every  real value in the interval  1/3 < c ≤ 1 .  To 
that end observe that  c = Ç({x0, x1, …, xn–1, xn})  is a continuous function of its arguments  
x0, x1, …, xn–1, xn  subject to the constraints   0 = x0 ≤ x1 ≤ … ≤ xn = 1 .  On this closed domain  
Ç  takes every value between any two that it takes.  One of its values is  Ç({0, 0, …, 0, 1}) = 1 ,  
its maximum value.  Another value,  between  1/3  and  1/3 + 1/n ,  comes arbitratily close to  
1/3  when  n  is big enough.  Therefore  c  ranges throughout  1/3 < c ≤ 1 ,  as claimed.
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Problem B5
Let  ƒ : (1, ∞) → RR  be a differentiable function such that   ƒ'(x) = ( x2 – ƒ(x)2

 )/( x2·(1 + ƒ(x)2) )  
for all  x > 1 .   Prove that  ƒ(x) → ∞  as  x → ∞ .

Solution  B5 
Let me replace  “ƒ”  by  “y”  because I shall have another use for  “ƒ”.  The problem becomes …

Suppose a real-valued differentiable  y(x)  satisfies   y'(x) = ( x2 – y(x)2
 )/( x2·(1 + y(x)2) )   for 

all  x > 1 .   Prove that  y(x) → ∞  as  x → ∞ .

The proof will invoke repeatedly a classical differential inequality for solutions  y(x)  and  Y(x)  
of differential equations   y' = ƒ(x, y)   and   Y' = F(x, Y)   respectively that says … 

If finite solutions  y(x)  and  Y(x)  both exist throughout an interval  ξ ≤ x ≤ Ξ  whereon
both  ƒ(x, u)  and  F(x, u)  are continuous functions of both arguments provided  u  stays
between  y  and  Y  inclusive,  and if thereon  EITHER OR BOTH

Y(ξ) ≥ y(ξ)   and   F(x, u) > ƒ(x, u)    OR   Y(ξ) > y(ξ)   and   F(x, u) ≥ ƒ(x, u) ,
then   Y(x) > y(x)   throughout  ξ < x ≤ Ξ .

( Why not simplify the two alternative hypotheses to one that requires just  Y(ξ) ≥ y(ξ)  and  F(x, u) ≥ ƒ(x, u) ?  We 
could do so here because our functions  ƒ  and  F  will be differentiable as well as continuous.  But,  in general,  if  
ƒ  and  F  are merely continuous then they need not determine their respective solutions  y(x)  and  Y(x)  uniquely,  
and then the desired conclusion  Y(x) ≥ y(x)  could be falsified.  See any text titled  “Differential Inequalities”.)

ƒ(x, y) := ( x2 – y2
 )/( x2·(1 + y2) )  throughout  Problem B5’s proof,  but it will choose  F(x, y)  

differently as needs arise.  The proof will trace the passage of trajectories of all solutions  y(x)  
through four regions into which we shall partition the half-plane  x > 1  of the  (x, y)-plane:

The proof’s first task is to infer that every trajectory  y(x)  ultimately enters region  [2]  as  x  
increases from  1  towards  +∞ .  To this end occasions will arise to notice that 

x

y

o

x = 1 y = x

y = –x

y = 0

[1]

[2]

[3]

[4]

In region  [1] ,   y > x > 1

In region  [2] ,   0 ≤ y ≤ x > 1 .

In region  [3] ,    0 > y > –x < –1 .

In region  [4] ,    y ≤ –x < –1 .

Little arrows like  

show the directions in which 
trajectories  y(x)  cross each
region’s boundaries.
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 ∂ƒ(x, y)/∂(y2) = –(1 + x2)/( x2·(1 + y2)2
 )  <  0  <  ∂ƒ(x, y)/∂(x2) = y2/( x4·(1 + y2) ) ;

this tells us that  ƒ(x, y)  is a decreasing function of  y2  but an increasing function of  x2 .

While  y(x)  passes through region  [1]  where  y > x > 1 ,  we find  y' = ƒ(x, y) < 0 ,  so  y(x)  
must descend as  x  increases until the trajectory escapes from region  [1]  into region  [2] . 

While  y(x)  passes through region  [3]  where   0 > y > –x < –1 ,  we find  y' = ƒ(x, y) > 0 ,  so  
y(x)  ascends as  x  increases.  If  y(x)  did not ultimately escape from region  [3]  across the  x-
axis into region  [2] ,  then  y(x)  would have to ascend to some limit  Ÿ < 0  as  x → +∞ ;  but 

then  y(x)2  would have to descend to  Ÿ2 > 0  forcing   y' = ƒ(x, y) = ( x2 – y2
 )/( x2·(1 + y2) )   to 

ascend through positive values to its limit   ƒ(+∞, Ÿ) = 1/(1 + Ÿ2) > 0  as  x  increased to  +∞ ,  
which is impossible to reconcile with the bounded ascent of  y(x)  to a limit  Ÿ < 0 .  Therefore,  
if the trajectory of  y(x)  passes through region  [3]  it ultimately escapes into region  [2] . 

While  y(x)  passes through region  [4]  where   y ≤ –x < –1 ,  we find  –1/x2 < y' = ƒ(x, y) ≤ 0 ,  
so  y(x)  descends as  x  increases.  However,  for any  ξ > 1  and for all  x > ξ  we find that  
y(x) > Y(x) := y(ξ) + 1/x – 1/ξ ;  and  Y(x) > –x  for all sufficiently big  x .  Consequently the 
trajectory of  y(x)  ultimately escapes from region  [4]  into region  [3]  and then into region  [2] .

Thus we have inferred that every trajectory  y(x)  ultimately enters region  [2]  as  x  increases 
from  1  towards  +∞ .  While  y(x)  passes through region  [2]  where  0 ≤ y ≤ x > 1 ,  we find  
0 ≤ y' = ƒ(x, y) ≤ 1 ,  so  y(x)  ascends without ever exiting region  [2]   as  x  increases. 

Can the ascent of  y(x)  be bounded?  No;  here is why:  Suppose for the sake of argument that  
y(x)  ascended to a finite limit  ÿ > 0  as  x → +∞ .  We would find that  y' = ƒ(x, y) > ƒ(x, ÿ) ;  

and  ƒ(x, ÿ)  ascends to its limit  ƒ(∞, ÿ) = 1/(1 + ÿ2) > 0  as  x → +∞ ,  which is impossible to 
reconcile with the bounded ascent of  y(x)  to a finite limit.  Therefore  y(x) → +∞  as  x → +∞  
just as  Problem B5  claims.  End of proof.


