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The purpose of this document is to provide students with more examples of good mathematical
exposition, taking account of all necessary details, with clarity given priority over brevity. |
have chosen some of the problems on the 2009 Putnam Exam for that purpose.
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Problem A1
Let f beareal-valued function on the plane such that for every square ABCD in the plane,
f(A) + f(B) + f(C) + f(D) =0. Doesitfollow that f(P) =0 for all points P inthe plane ?

Solution A1

As stated this problem has atrivial solution: Allow ABCD to be a degenerate square with

A =B=C=D =P todiscover that 4-f(P) =0. Theintended problem should say “ ... such
that, for every nondegenerate square ABCD inthe plane with distinct vertices, f(A) +...”;
and this problem’s solution is offered below. In fact, the solution worksif this problem allows
only nondegenerate squares ABCD restricted to have sides parallel to one given square’s.

Toseewhy every f(P) =0, partition any chosen nondegenerate square ABCD into four
similar squares with vertices also at the midpoints of the edgesof ABCD and at its center thus:

A V B
W X Y
D Z C
Let'sabbreviate f(A) :=a, f(B):=b, ..., f(Y):=y and f(Z2):=z. Theproblemgives

us five equations, one per square, thus:

a+ b+ c+ d
a + vV + w + X
b + v + X
X
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d + w + X
From these we compute [2] —[3] +[4] —[5] to get simply
c - d = 0 [6]
and then compute [1] £ [6] to reduce everything to these two equations
a+c=0 and b + d =0.

a—-— b+

Thesetell usthat, at any two distinct points on astraight line parallel to adiagonal of the given
square, thetwo valuesof f sumto zero. Therefore f isconstant on every line paralel to a
diagonal of the given square, and the constant must be zero as the problem claimed.

Yes, f(P)=0 atevery point P intheplane, evenif the squares alowed are restricted to those
with sides parallel to one given square’ s sides.

Continued ...
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Dan Wang's solutionto Problem A1 worksif the allowed squares ABCD have sides parall€l
either to one given square’ ssides, or elsetoitsdiagonals. He observed that VWZY issucha
square, so it provides this equation too:

v + w + y + z=0 [7]
Now compute [2] +[3] +[4] +[5] —[1] —2[7] toinferthat x=0.

Point X isthe center of squares that could have been placed anywhere, so f(X) =0 at every
point X inthe plane, answering problem A1l's question affirmatively.
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Problem A2
Functions f, g, h aredifferentiable on some open interval around O and satisfy the equations
and initial conditions

f'=2f2gh+1(gh), o =fg?h+4/(fh), h =3fgh®+1/(fg), f(0)=g(0)=h(0)=1.

Find an explicit formulafor f(x), validin some open interval around O.

Solution A2
Hereunder iswhy f(x) = ( (2-sin(6x + p/4)/(1—sin(12:x)) )Y® forall |x| small enough.

Set p(x) = f(X)-9(x)-h(x) andtakeits logarithmic derivative to find
p/p = f/f+g/g+h/h =6(p+LUp); and p(0)=1.
The solution of this differential equation for p is p(x) = tan(6x + p/4) . Substitution into the
given differential equation for f reducesitto
log(f(x))' = f'/f = 2p+ Up = 2tan(6x + p/4) + cot(6x + p/4) .
A symbolic integration turns thisinto, say,
61og(f(x)) = log( Q-sin(6x + p/4)/(1—sin(12x)) )
after atedious trigonometric simplification of expressions obtained from

Qan(y) dy = log(sec(y)) and Qeot(y) dy = log(sin(y)) .

However, thetedious simplification is not required to satisfy the problem’s demand for “ an
explicit formulafor f(x)”, soany one of infinitely many algebraically equivalent formulas, no
matter how complicated, will serveaswell. | would hate to have to grade this problem’s
submitted solutions without a computerized algebra system like MAPLE or DERIVE
competent enough to perform trigonometric simplifications.
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Problem A6
Let f:[0,1]°® R beacontinuous function on the closed unit square such that f/fx and
f/Mly exist and are continuous on the interior (0, 1)?. Let

a=Q'fO,y)dy, b=Q@'f(Ly)dy, c=q'f(x,0dx, and d=q" f(x, ).
Prove or disprove: There must be apoint (Xq, o) in (0, 1)2 such that

%f(xo,yo): b—a and ﬂlyf(xo,yo)z d—c.

Solution A6
No such point (X,, Yo) need exist though often it does. A disproof of the problem’s allegation

requiresfirst that a suitable example f befound, and then that the last two equations be shown
to have no solution (X, Yo) in the open square (O, 1)2. The process may become easier to
understand, or at least easier to appreciate, after a change in notation:

Identify column-vector v := ﬂ with motionsin the (x, y)-plane and reinterpret f(v) := f(X, y)
y

asascalar-valued real function of areal vector argument. f(v)'s derivative isthe row-vector
f'(v) = [Tf/1%, Tf/y] because it satisfiesthe infinitesmal equation df(v) =f'(v)-dv (which
merely abbreviatesthe Chain Rule df(v)/dt =f'(v)-dv/dt validfor every differentiable vector-
valued function v(t) of areal scalar variable t while v(t) runsinthedomainof f).

The problem’ s definition of b —a can be rewritten
b-a= @ (f(Ly)-f(O,y)dy = G @' fx(x,y)dxdy wherein fy=1f/fx.
Similarly for d—c= @' @' fy(x, h)dh dx . Therefore row vector [b—a, d—c] can bewritten
[b—a d-c] = Averageof f'(v) over the unit squarein the v-plane.
Thisturns Problem A6 into aspecia case of amore general question:

Given areal scalar-valued differentiable function f(v) of avector argument v,
and given aregion S inthedomainof f, mustapoint v, existin S where

f'(vo) = Average(f'(v) over vinS) ?
With rare exceptions, the answer is “NO, NOT IN GENERAL".

One of those exceptionsis so important it istaught in every introductory classin Calculus:
The Mean Vaue Theorem of the Derivative (acorollary of Rolle's Theorem):
Givenaninterval S inthe domain of adifferentiable real-valued function f
of areal argument, thereisapointinsideinterval S where the derivative f'
takes the same value as this derivative' s average over interval S.

More generally, acounter-example that justifies the unexceptional answer “NO” isthe length
function f(v) := |jv|| := &v'-v) ona Euclidean vector-space of dimension 2 or more. The
derivative f'(v) =v'/|jv||, and |If'(v)T||=1, foral v o; butunless S isasegment of aray
emanating from o the average of f'(v)T haslength ||Average||<1, sothereisno v, in S.
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Problem B1
Show that every positive rational number can be written as a quotient of products of factorials

of (not necessarily distinct) primes. For example, 10/9 = 2!1-51/(31)3 .

Solution B1

(This problem’s statement is slightly untidy because 1 = 1/1 isnot here a quotient of products
of factorials of primessince 1 isnot aprime. Either rewrite 1 =2!/2!, or adlow “products’
to include possibly empty products defined to be 1 by convention. | have chosen the latter.)

Hereisaproof: Start with the prime factorization of each rational number into a product of
powers (some perhaps negative) of primes. For example, 10/9 = 21.51.32 | The problem’s
assertion is proved by induction on the biggest prime that appearsin such afactorization. The
assertion is obviously true for every rational number r that isapower of 2. Now let p>2 be
the biggest prime that appears in the prime factorization of any other rational number r, and

let m® O beitsexponent. Then s:=r-(p!)™ isarational number in whose prime factorization
appear only primes (if any) smaller than p. Theinduction hypothesis supplies an expression
for s asaquotient of products (some perhaps empty) of factorials of (not necessarily distinct)

primes. And then r=s(p")™ must also have the form demanded by the problem. End of proof.
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Problem B2
A game involves jumping to the right on the real number line. If a and b arerea numbers

and b>a, thecost of jumping from a to b is b3—a-b?. For what real numbers ¢ can one
travel from O to 1 inafinite number of jumps with total cost exactly ¢ ?

Solution B2
The set of al total costs ¢ constituteaninterval 1/3<c£ 1. Hereiswhy:

Thecost b®—ab?=(b—a)b® istheareaof arectangle of height b? erected over the interval
a£ X £b ontherea axis. Thetotal cost ¢ isthe Riemann Sum of rectangular areas that

overestimate the integral @' x?dx = 1/3, which isthe area under the parabolic graph of y = x?
over theinterval O£ x £ 1, aswe shall see hereunder.

For any integer n® 1 partitiontheinterval O£ X £1 into n subintervals X;_3 £ X £ X; where
1£j£n and 0=Xp<X;<...<X,=1. Thetotal cost ¢ of jumping from Xy=0 to x; to
o 10 Xpg 10 Xy =1 i €= C({Xg, Xq, -, X1, Xt) := & 1jgn (0§ —X_1)%;2 . Observe that if
n=1 then ¢=C({0, 1}) = 1 but otherwise, when n>1, then ¢ <& ygjgn (X—X_1)-1°=1.

Now set  ¢({Xo, X1, s Xn-1, Xn}) = & 15580 (% =Xj-0) Xj-1® < C{X0, X, --» X1, X}) . This
¢ isthe Riemann Sum that underestimates the area under the parabola because

(b—a)a?< QPx?dx = (b3—ad)/3=(b—a)-(b®+b-a+ad)/3<(b—a)b® while 0£a<bh,
and therefore ¢ = C({Xg, X, ---» Xpp, Xn}) > QL X2dx = 1/3 > ¢({Xg) X1 - Xpgs X)) -

So far we have established that 1/3<c£ 1, among other things.

Next we shall see how to bring ¢ down arbitrarily closeto 1/3. Givenany n>1 choosethe
uniform partition with every X; :=j/n to find that

0<Cc-1U3=C-13<C—¢= &qgen (§—X_1)- 047 —X1) = A1gjen (@ —D/n®=1/n,
which can be made arbitrarily tiny by choosing n big enough.

Our final task isto establish that ¢ cantake every real valueintheinterval 1/3<c£1. To
that end observethat ¢ = C({xq, X1, .., Xn1, Xn}) IS@continuous function of its arguments

Xs X1, ++-» Xn—1» Xp Subject to the constraints 0=Xg£ X1 £ ... £X,=1. Onthisclosed domain

C takesevery value between any two that it takes. One of itsvaluesis C({0,0, ...,0,1}) =1,
its maximum value. Another value, between 1/3 and 1/3+ 1/n, comes arbitratily close to
1/3 when n ishig enough. Therefore ¢ rangesthroughout 1/3<c£ 1, asclamed.
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Problem B5
Let f:(1,¥)® R beadifferentiable function such that f'(x) = (x%— f(x)2)/(x2-(1 + f(X)?))
foral x>1. Provethat f(X)® ¥ as x® ¥ .

Solution B5
Let mereplace “f” by “y” becausel shall have another usefor “f”. The problem becomes ...

Suppose a real-valued differentiable y(x) satisfies y'(x) = (x*>—y(x)?)/(x2(1 +y(x)?)) for
al x>1. Provethat y(X) ® ¥ as x® ¥ .

The proof will invoke repeatedly a classical differential inequality for solutions y(x) and Y(x)
of differential equations y' = f(x,y) and Y'=F(x,Y) respectively that says...

If finite solutions y(x) and Y(x) both exist throughout an interval x £ x £ X whereon
both f(x,u) and F(x, u) are continuous functions of both arguments provided u stays
between y and Y inclusive, and if thereon EITHER OR BOTH
Y(X)2 y(x) and F(x,u)>f(x,u) OR Y(X)>y(x) and F(x,u)3 f(x,u),
then Y(x) >y(x) throughout x <x £ X.
(Why not simplify the two alternative hypotheses to one that requiresjust Y(x) 2 y(x) and F(x, u)3 f(x,u) ? We
could do so here because our functions f and F will be differentiable aswell as continuous. But, in general, if

f and F are merely continuous then they need not determine their respective solutions y(x) and Y(x) uniquely,
and then the desired conclusion Y(x) 2 y(x) could befalsified. Seeany text titled “Differential Inequalities’.)

f(x,y) := (x*=y?)/(x2-(1+y?)) throughout Problem B5's proof, but it will choose F(x, y)
differently as needs arise. The proof will trace the passage of trajectories of all solutions y(x)
through four regions into which we shall partition the half-plane x > 1 of the (x, y)-plane:

Y4
Inregion [1], y>x>1

Inregion [2], OEy£x>1.
Inregion [3], 0>y>-—x<-1.

b X Inregion [4], y£-—Xx<-1.

N Littlearrowslike Y_ 3
[3] show the directions in which
W trajectories y(x) crosseach

region’s boundaries.

M yZ—X

The proof’ sfirst task isto infer that every trajectory y(x) ultimately entersregion [2] as X
increases from 1 towards +¥ . To thisend occasions will arise to notice that
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TFO, YAY?) =1+ xD (X1 +y%)?) < 0 < f(x, YD) =yA (XML +y?)) ;
thistellsusthat f(x,y) isadecreasing function of y2 but an increasing function of X2

While y(x) passesthrough region [1] where y >x>1, wefind y' = f(x,y) <0, s0 y(x)
must descend as x increases until the trajectory escapes from region [1] into region [2] .

While y(x) passesthroughregion [3] where 0>y >-x<-1, wefind y' = f(X,y) >0, so
y(x) ascendsas x increases. If y(x) did not ultimately escape from region [3] acrossthe x-
axisinto region [2], then y(x) would haveto ascend to somelimit Y <0 as x ® +¥ ; but

then y(x)* would haveto descendto Y2>0 forcing y' = f(x,y) = (xX*—y>)/(x>(1+y?)) to

ascend through positive valuestoitslimit  f(+¥,Y)=1/(1+Y?) >0 as x increasedto +¥ ,
which isimpossible to reconcile with the bounded ascent of y(x) to alimit Y <0. Therefore,
if the trgjectory of y(x) passesthrough region [3] it ultimately escapesinto region [2] .

While y(x) passesthrough region [4] where y £ —x<-1, wefind —1x? < y' =f(x,y)£0,
so y(x) descendsas x increases. However, forany x> 1 andfor al x>x wefind that

y(x) > Y(X) :=y(x) + /x—1/x; and Y(x) >—x for al sufficiently big x . Consequently the
trajectory of y(x) ultimately escapesfromregion [4] intoregion [3] and theninto region [2] .

Thus we have inferred that every trgjectory y(x) ultimately entersregion [2] as X increases
from 1 towards +¥ . While y(x) passesthrough region [2] where O£y £x>1, wefind
OEyYy =f(x,y)£1, so y(x) ascendswithout ever exiting region [2] as X increases.

Can the ascent of y(x) bebounded? No; hereiswhy: Suppose for the sake of argument that
y(x) ascendedto afinitelimit y >0 as x® +¥ . Wewould findthat y' = f(x,y) > f(X,V);
and f(x, V) ascendstoitslimit f(¥,y)=1/(1+y%) >0 as x® +¥ , whichisimpossibleto
reconcile with the bounded ascent of y(x) to afinitelimit. Therefore y(X) ® +¥ as x® +¥
just as Problem B5 claims. End of proof.
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