The "Monty Hall" Problem

Mr. Monty Hall was the master of ceremonies for a TV game show during which a contestant was offered a choice of one from three closed doors. Behind one door was a car the contestant would win if this door were chosen. Behind each of the other two doors was a goat. After the contestant had chosen a door but before it was opened, Monty Hall would open one of the other two doors to reveal a goat, and the contestant would then be allowed again to choose a door, now one from two closed doors. The contestant could adhere to the original choice, or reconsider and choose the other door. Which choice was more likely to win a car?

At first sight, most people think that the car was as likely to be behind either door as the other, so a change of choice did not alter the contestant's chances of winning the car. This is wrong. To see why, let us suppose that, out a very large number of contestants, K chose the car's door at first, M chose one goat's door at first, and N chose the other goat's door at first. If the doors seemed sufficiently indistinguishable that each was as likely as either of the others to be a contestant's first choice, we would expect $\mathrm{K} \approx \mathrm{M} \approx \mathrm{N}$. After Monty Hall opened one of the goats' doors, some contestants changed their choices; suppose k out of K, m out of M and n out of N changed their choices. Since every contestant belonged to one of the three groups of K, M or N but did not yet know which, we may reasonably expect roughly equal fraction(s) $k / K \approx m / M \approx n / N$.
$\gamma:=(0+\mathrm{m}+\mathrm{n}) /(\mathrm{k}+\mathrm{m}+\mathrm{n})$ is the fraction of contestants who changed their choice and won a car. The fraction of those who didn't change but won a car is $\pi:=(\mathrm{K}-\mathrm{k}) /(\mathrm{K}-\mathrm{k}+\mathrm{M}-\mathrm{m}+\mathrm{N}-\mathrm{n})$. If, as we expect, count(s) $K \approx M \approx N$ and fraction(s) $k / K \approx m / M \approx n / N$, regardless of what value the fraction(s) may have, we find that $\gamma \approx 2 / 3$ and $\pi \approx 1 / 3$. In other words, \ldots

Choosing the other door roughly doubled the likelihood of winning a car.
This seems counter-intuitive only to those who disregard Monty Hall's intervention in the game; he knew which door concealed a car. The contestant knew only that the door chosen first was twice as likely to be a goat's as a car's, and this ratio persisted after Monty Hall opened a goat's door. Of the two doors available for a second choice, the one not chosen first was twice as likely to conceal a car. These two doors would present equally attractive choices only to contestants who forgot their first choice. History deserves respect.

