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In a given  

 

Euclidean

 

  vector space,  regardless of its dimension,  the  

 

Scalar Product

 

  of vectors  

 

x

 

  
and  

 

y

 

  is  

 

x'y

 

 = 

 

y'x

 

 

 

,  and the length of a vector  

 

x

 

  is  ||

 

x

 

|| := 

 

√

 

(

 

x'x

 

)

 

 

 

.  Here  “ 

 

x'

 

 ”  stands for the 
transpose of  

 

x

 

  if it is a column of real numbers  

 

x

 

j

 

 ;  more generally  

 

x'

 

  is the  

 

Linear Functional

 

  

 

Dual

 

  to  

 

x

 

  in the vector space  

 

Dual

 

  to the given space.  Since both spaces are  Euclidean  they 
are  

 

Isomorphic

 

,  which means  “Indistinguishable”  by most eyes.  Still,  

 

x'

 

  is distinguishable 
from  

 

x

 

 

 

,  and the distinction will matter.  Other notations for  “

 

 

 

x'y

 

 

 

”  are  “

 

 

 

x

 

•

 

y

 

 

 

”,  “

 

 

 

(

 

y

 

, 

 

x

 

)

 

 

 

”  and  
“

 

 

 

<

 

y

 

| 

 

x

 

>

 

 

 

”;  other notations for  “

 

 

 

||

 

x

 

||

 

 

 

”  are  “

 

 

 

|

 

x

 

|

 

 

 

”  and just  “

 

 

 

x

 

 

 

”;  but none of these will be used 
here.  Our notation fails to distinguish a vector  

 

x

 

  from the point  

 

x

 

  reached via displacement by 
vector  

 

x

 

  from an origin  

 

o

 

  chosen arbitrarily.  Points cannot be added like vectors to get another 
point;  but adding a vector to a point translates it,  so the difference between two points is a vector.

The angle between nonzero vectors  

 

x

 

  and  

 

y

 

  is  

 

∠

 

(

 

x

 

, 

 

y

 

) := arccos( 

 

x'y

 

/(

 

||

 

x

 

||·||

 

y

 

||

 

)

 

 ) = 

 

∠

 

(

 

y

 

, 

 

x

 

)  and 

disregards their order,  so  0 

 

≤

 

 

 

∠

 

(

 

x

 

, 

 

y

 

) 

 

≤

 

 

 

π

 

  and  sin(

 

∠

 

(

 

x

 

, 

 

y

 

)) = +

 

√

 

(

 

 

 

1

 

 

 

–

 

 

 

(

 

x'y

 

)

 

2

 

/

 

(

 

x'x

 

·

 

y'y

 

)

 

 

 

)

 

 

 

.  The 
quantity under the last  

 

√

 

  sign is nonnegative because of  

 

Cauchy’s Inequality

 

  and  

 

Lagrange’s 

Identity

 

 :   0 

 

≤

 

  

 

x'x

 

·

 

y'y

 

 – (

 

x'y

 

)

 

2

 

  =  det( [

 

x

 

   

 

y

 

]

 

'

 

·[x   y] )  =  ∑i ∑j > i det( )2 .

The equation of a  (hyper)plane ∏  is  n'x  = µ  for some constant scalar  µ  and functional  n'  ≠ o' ;  
the vector  n  is called  “the normal to plane  ∏ ”.  The  Orthogonal Projection  of a point  y  onto 
plane  ∏  is the point  p := y – n·(n'y–µ)/n'n   because  p  lies in  ∏  and  y–p  is (anti)parallel to  
n .  The distance from point  y  to plane  ∏  is   ||y – ∏|| := minx in ∏ ||y–x|| = ||y–p|| = |n'y–µ|/||n||  

because every  x  in  ∏  satisfies  ||y–x||2 = ||y–p||2 + ||x–p||2 .  (Check this out after rewriting  
||y–x|| = ||(y–p) – (x–p)|| .)  Consequently  ||y – ∏|| = |cos(∠ (n, y–x))|·||y–x||  for every  x  in  ∏ .

Plane  ∏  divides the space of vectors  x  into two  Half-Spaces  according to the sign of  n'x  –µ .  
The direction of a vector  v ≠ o  points into one of these half-spaces according to the sign of  n'v   
if it is nonzero.  The angle  ∠ (v, ∏)  between  v  and  ∏  is  Complementary  to  ∠ (v, n) ,  so  
–π/2 ≤ ∠ (v, ∏) := π/2 – ∠ (v, n) = arcsin( n'v/(||n||·||v||) ) ≤ π/2 .  If nonzero the sign of  ∠ (v, ∏)  
matches the sign of  n'v   to indicate into which half-space  v  points.  The magnitude of  ∠ (v, ∏)  
solves a minimization problem:

   For any point  q  in  ∏ ,  the minimum of ∠ (v, r )  over all other points  q+r   in  ∏  is  |∠ (v, ∏)| .

To see why this is so,  first simplify the algebra by translating  q  to  o ,  thus setting  µ = 0  in  ∏ ’s  
equation  n'x  = 0 .  Now we have to prove   ∠ (v, r ) ≥ |∠ (v, ∏)|  whenever  n'r  = 0  but  r  ≠ o .  To 
this end let  p := v – n·n'v/n'n   be  v ’s  orthogonal projection onto  ∏ ,  so that  n'p  = 0  and  
||v – ∏|| = ||v–p|| = |n'v |/||n|| = ||v||·sin( |∠ (v, ∏)| ) .  Similarly let  s := r ·r'v /r'r   be the orthogonal 
projection of  v  onto the line  £  consisting of all scalar multiples of  r  ,  since  r' (v–s) = 0 .  And  
||v – £|| = ||v–s|| = … = ||v||·sin(∠ (v, £)) = ||v||·sin(∠ (v, r )) .  Now,  ||v–s|| ≥ ||v–∏||  since  s  lies in  
∏ ,  so  sin(∠ (v, r )) ≥ sin( |∠ (v, ∏)| ) ,  and therefore  ∠ (v, r ) ≥ |∠ (v, ∏)|  as claimed.

Angles exemplify the often close analogy between the geometries of three-dimensional and multidimensional  
Euclidean  spaces.  But sometimes the analogy fails,  as it does in problem  #3  issued on  27 Oct. 2003;  see  
http://www.cs.berkeley.edu/~wkahan/MathH90/S27Oct03.pdf .  Between two subspaces both of dimensions bigger 
than  1  there are as many  Principal Angles  as the lesser dimension.  They are described in articles by  C. Davis & W. 
Kahan in  Bull. Amer. Math. Soc. 75 #4 (1969) and  SIAM J. Numer. Anal. 7 #1 (1970);  their computation is discussed 
in  §12.4  of Matrix Computations by G.H. Golub & C.F. Van Loan (1989–1996, Johns Hopkins U.P.,  Baltimore).
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