Math. H90 Angles between Vectors and Planes Mon. 17 Nov. 2003

In a given *Euclidean* vector space, regardless of its dimension, the *Scalar Product* of vectors \mathbf{x} and \mathbf{y} is $\mathbf{x'y} = \mathbf{y'x}$, and the length of a vector \mathbf{x} is $||\mathbf{x}|| := \sqrt{(\mathbf{x'x})}$. Here " $\mathbf{x'}$ " stands for the transpose of \mathbf{x} if it is a column of real numbers x_j ; more generally $\mathbf{x'}$ is the *Linear Functional Dual* to \mathbf{x} in the vector space *Dual* to the given space. Since both spaces are Euclidean they are *Isomorphic*, which means "Indistinguishable" by most eyes. Still, $\mathbf{x'}$ is distinguishable from \mathbf{x} , and the distinction will matter. Other notations for " $\mathbf{x'y}$ " are " $\mathbf{x} \cdot \mathbf{y}$ ", " (\mathbf{y}, \mathbf{x}) " and " $\langle \mathbf{y} | \mathbf{x} >$ "; other notations for " $||\mathbf{x}||$ " are " $|\mathbf{x}|$ " and just " \mathbf{x} "; but none of these will be used here. Our notation fails to distinguish a vector \mathbf{x} from the point \mathbf{x} reached via displacement by vector \mathbf{x} from an origin $\mathbf{0}$ chosen arbitrarily. Points cannot be added like vectors to get another point; but adding a vector to a point translates it, so the difference between two points is a vector.

The angle between nonzero vectors \mathbf{x} and \mathbf{y} is $\angle(\mathbf{x}, \mathbf{y}) := \arccos(\mathbf{x'y}/(||\mathbf{x}|| \cdot ||\mathbf{y}||)) = \angle(\mathbf{y}, \mathbf{x})$ and disregards their order, so $0 \le \angle(\mathbf{x}, \mathbf{y}) \le \pi$ and $\sin(\angle(\mathbf{x}, \mathbf{y})) = +\sqrt{(1 - (\mathbf{x'y})^2/(\mathbf{x'x \cdot y'y}))}$. The quantity under the last $\sqrt{}$ sign is nonnegative because of *Cauchy's Inequality* and *Lagrange's*

Identity: $0 \leq \mathbf{x'x \cdot y'y} - (\mathbf{x'y})^2 = \det(\begin{bmatrix} \mathbf{x} & \mathbf{y} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{x} & \mathbf{y} \end{bmatrix}) = \sum_i \sum_{j>i} \det(\begin{bmatrix} x_i & y_i \\ x_j & y_j \end{bmatrix})^2$.

The equation of a (hyper)plane Π is $\mathbf{n'x} = \mu$ for some constant scalar μ and functional $\mathbf{n'} \neq \mathbf{o'}$; the vector \mathbf{n} is called "the normal to plane Π ". The *Orthogonal Projection* of a point \mathbf{y} onto plane Π is the point $\mathbf{p} := \mathbf{y} - \mathbf{n} \cdot (\mathbf{n'y} - \mu)/\mathbf{n'n}$ because \mathbf{p} lies in Π and $\mathbf{y} - \mathbf{p}$ is (anti)parallel to \mathbf{n} . The distance from point \mathbf{y} to plane Π is $||\mathbf{y} - \Pi|| := \min_{\mathbf{x} \text{ in } \Pi} ||\mathbf{y} - \mathbf{x}|| = ||\mathbf{y} - \mathbf{p}|| = |\mathbf{n'y} - \mu|/||\mathbf{n}||$ because every \mathbf{x} in Π satisfies $||\mathbf{y} - \mathbf{x}||^2 = ||\mathbf{y} - \mathbf{p}||^2 + ||\mathbf{x} - \mathbf{p}||^2$. (Check this out after rewriting $||\mathbf{y} - \mathbf{x}|| = ||(\mathbf{y} - \mathbf{p}) - (\mathbf{x} - \mathbf{p})||$.) Consequently $||\mathbf{y} - \Pi|| = |\cos(\angle(\mathbf{n}, \mathbf{y} - \mathbf{x}))| \cdot ||\mathbf{y} - \mathbf{x}||$ for every \mathbf{x} in Π .

Plane \prod divides the space of vectors **x** into two *Half-Spaces* according to the sign of $\mathbf{n'x} - \mu$. The direction of a vector $\mathbf{v} \neq \mathbf{0}$ points into one of these half-spaces according to the sign of $\mathbf{n'v}$ if it is nonzero. The angle $\angle(\mathbf{v}, \Pi)$ between **v** and Π is *Complementary* to $\angle(\mathbf{v}, \mathbf{n})$, so $-\pi/2 \leq \angle(\mathbf{v}, \Pi) := \pi/2 - \angle(\mathbf{v}, \mathbf{n}) = \arcsin(\mathbf{n'v}/(||\mathbf{n}|| \cdot ||\mathbf{v}||)) \leq \pi/2$. If nonzero the sign of $\angle(\mathbf{v}, \Pi)$ matches the sign of $\mathbf{n'v}$ to indicate into which half-space **v** points. The magnitude of $\angle(\mathbf{v}, \Pi)$ solves a minimization problem:

For any point **q** in Π , the minimum of $\angle(\mathbf{v}, \mathbf{r})$ over all other points $\mathbf{q}+\mathbf{r}$ in Π is $|\angle(\mathbf{v}, \Pi)|$. To see why this is so, first simplify the algebra by translating **q** to **o**, thus setting $\mu = 0$ in Π 's equation $\mathbf{n'x} = 0$. Now we have to prove $\angle(\mathbf{v}, \mathbf{r}) \ge |\angle(\mathbf{v}, \Pi)|$ whenever $\mathbf{n'r} = 0$ but $\mathbf{r} \ne \mathbf{o}$. To this end let $\mathbf{p} := \mathbf{v} - \mathbf{n} \cdot \mathbf{n'v}/\mathbf{n'n}$ be **v**'s orthogonal projection onto Π , so that $\mathbf{n'p} = 0$ and $||\mathbf{v} - \Pi|| = ||\mathbf{v}-\mathbf{p}|| = |\mathbf{n'v}|/||\mathbf{n}|| = ||\mathbf{v}|| \cdot \sin(|\angle(\mathbf{v}, \Pi)|)$. Similarly let $\mathbf{s} := \mathbf{r} \cdot \mathbf{r'v}/\mathbf{r'r}$ be the orthogonal projection of **v** onto the line $\mathbf{\pounds}$ consisting of all scalar multiples of **r**, since $\mathbf{r'(v-s)} = 0$. And $||\mathbf{v} - \mathbf{\pounds}|| = ||\mathbf{v}-\mathbf{s}|| = \dots = ||\mathbf{v}|| \cdot \sin(\angle(\mathbf{v}, \mathbf{\pounds})) = ||\mathbf{v}|| \cdot \sin(\angle(\mathbf{v}, \mathbf{r}))$. Now, $||\mathbf{v}-\mathbf{s}|| \ge ||\mathbf{v}-\Pi||$ since **s** lies in Π , so $\sin(\angle(\mathbf{v}, \mathbf{r})) \ge \sin(|\angle(\mathbf{v}, \Pi)|)$, and therefore $\angle(\mathbf{v}, \mathbf{r}) \ge |\angle(\mathbf{v}, \Pi)|$ as claimed.

Angles exemplify the often close analogy between the geometries of three-dimensional and multidimensional Euclidean spaces. But sometimes the analogy fails, as it does in problem #3 issued on 27 Oct. 2003; see http://www.cs.berkeley.edu/~wkahan/MathH90/S27Oct03.pdf. Between two subspaces both of dimensions bigger than 1 there are as many *Principal Angles* as the lesser dimension. They are described in articles by C. Davis & W. Kahan in *Bull. Amer. Math. Soc.* **75** #4 (1969) and *SIAM J. Numer. Anal.* **7** #1 (1970); their computation is discussed in §12.4 of *Matrix Computations* by G.H. Golub & C.F. Van Loan (1989–1996, Johns Hopkins U.P., Baltimore).