
 

Only Commutators Have Trace Zero

 

June 10, 1999 4:38 am                                                                                                                                   Page 1

 

Prof. W. Kahan
Mathematics Dept. #3840
University of California

Berkeley   CA 94720-3840

 

Abstract:

 

  This note proves an old theorem in an elementary,  succinct and perspicuous way 
derived from a similarity devised to equalize all the diagonal elements of a matrix.

 

Introduction:

 

  Square matrix  Z  is called a  “ Commutator ”  just when  Z = XY–YX  for some 
matrices  X  and  Y  ( not determined uniquely by  Z );  then  Trace(Z) := 

 

∑

 

i 

 

z

 

ii

 

 = 0  because  
Trace(XY) = Trace(YX)  for all matrices  X  and  Y  both of whose products  XY  and  YX  are 
square.  Conversely,  according to an unobvious old theorem,  if  Trace(Z) = 0  then  Z  must be a 
commutator.  This theorem has been proved in considerable generality;  for instance see proofs by  
K. Shoda (1936) 

 

Japan J. Math.

 

 

 

13

 

 361-5,  and by  A.A. Albert  and  B. Muckenhoupt (1957) 

 

Michigan Math. J.

 

 

 

4

 

 1-3.  Presented below is a shorter proof extracted from my lecture notes.

The shorter proof came to light during the investigation of another old theorem to the effect that,  
for each square matrix  Z ,  there exist invertible matrices  C  such that all the diagonal elements of  
C

 

–1

 

ZC  are the same.  They are all zeros if  Trace(Z) = 0  which,  in this context,  is easy to arrange 
by subtracting  Trace(Z)/Dimension(Z)  from every diagonal element of  Z .  The construction of 
the similarity  C

 

–1

 

ZC  was reduced to a finite sequence of steps each derived from a similarity  
B

 

–1

 

ZB  that injected another zero into the diagonal,  starting with the first diagonal element.  Thus 
the investigation swirled around two questions:

How easily can  B  be chosen to put zero into the first diagonal element of  B

 

–1

 

ZB ?
If this can be done easily,  what good does it accomplish?

 

Lemma 1:

 

  If  Z  is a commutator,  so is  Z =   for every row  r

 

T

 

  and column  c  of the same 

dimension as  Z .

 

Proof 1:

 

    Suppose  Z = XY–YX ;  this equation remains valid after  X  is replaced by  X + ßI  for 

any scalar  ß ,  so we might as well assume  X  is invertible.  Then  Z = X

 

 

 

Y – Y

 

 

 

X  wherein  

X :=   and  Y :=  .  End of  Proof 1.

( Later we’ll see why the converse of  Lemma 1  is true too:  For any  r

 

T

 

  and  c ,  if  Z  is a 
commutator so is  Z  because they have the same zero  Trace.)

 

Lemma 2:

 

  Suppose no matrix  B

 

–1

 

SB  similar to a given square matrix  S  can have  0  as its first 
diagonal element no matter how matrix  B  is chosen so long as it is invertible.  Then  S  must be a 
nonzero scalar multiple of the identity matrix  I .

0 r
T

c Z

0 o
T

o X

0 r
T
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–

X
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c Y
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Proof 2:

 

  Evidently  S 

 

≠

 

 O ,  so some nonzero row  w

 

T

 

  exists for which  w

 

T

 

S 

 

≠

 

 o

 

T

 

 .  Suppose now,  
for the sake of argument,  that a column  v  existed satisfying  w

 

T

 

v = 1  and  w

 

T

 

Sv= 0 .  Then an 
invertible matrix  B = [v, b

 

2

 

, b

 

3

 

, …]  could be chosen in which the latter columns  [b

 

2

 

, b

 

3

 

, …]  

constituted a basis for the subspace of columns annihilated by  w

 

T

 

 ;  every  w

 

T

 

b

 

j

 

 = 0 .  This  w

 

T

 

  

would be the first row in the inverse  B

 

–1

 

 ,  whereupon the matrix  B

 

–1

 

SB  would have  w

 

T

 

Sv= 0  
for its first diagonal element.  But this element can’t vanish,  according to the lemma’s hypothesis.  
Therefore no vector  v  can ever satisfy both  w

 

T

 

v = 1  and  w

 

T

 

Sv= 0 ;  therefore  w

 

T

 

S = 

 

µ

 

w

 

T

 

  for 
some scalar  

 

µ

 

 

 

≠

 

 0 .  This persists no matter how  w

 

T

 

  is chosen;  in fact  

 

every

 

  row  w

 

T

 

  must 
satisfy either  w

 

T

 

S = o

 

T

 

  or  w

 

T

 

S = 

 

µ

 

w

 

T

 

  for some scalar  

 

µ

 

 = 

 

µ

 

(w

 

T

 

) 

 

≠

 

 0 .  Therefore  B

 

–1

 

SB  is 
diagonal for  

 

every

 

 invertible matrix  B .  Moreover no two diagonal elements of  B

 

–1

 

SB  can 
differ without violating the equation  w

 

T

 

S = 

 

µ

 

w

 

T

 

  when  w

 

T

 

  is the difference between their 
corresponding rows in  B

 

–1

 

 .  This makes  S  a nonzero scalar multiple of the identity matrix  I .  
End of  Proof 2.   ( It may be the only novelty in this note.)

We shall apply  Lemma 2  in its  

 

contrapositive

 

  form:  Unless  S  is a nonzero scalar multiple of 
the identity,  invertible matrices  B  exist for which the first diagonal element of  B

 

–1

 

SB  is zero.  
( Don’t confuse this with the  

 

converse

 

  of  Lemma 2;  it says that if  S  is a nonzero scalar 
multiple of  I  then no diagonal element of  B

 

–1

 

SB  can vanish,  which is obviously true too.)

 

Theorem 3:

 

  If  Trace(Z) = 0  then  Z  is a commutator.

 

Proof 3:

 

  The theorem is obviously valid if  Z  is  1-by-1  or a bigger zero matrix.  Therefore 
assume that  Z  is a nonzero square matrix of dimension bigger than  1 .  Our proof goes by 
induction;  we assume the desired inference valid for all matrices of dimensions smaller than  Z ’s  
with  Trace  zero.  Because of that zero  Trace,  Z  cannot be a nonzero scalar multiple of  I ,  so  

Lemma 2  implies that some invertible  B  exists making  B

 

–1

 

ZB =   .  Observe next that  

Trace(K) = Trace(Z) = 0 .  The induction hypothesis implies that  K  is a commutator;  then  
Lemma 1  implies that  B

 

–1

 

ZB = XY – YX  is a commutator too for some  X  and  Y ,  whereupon  
Z = (BXB

 

–1

 

)(BYB

 

–1

 

) – (BYB

 

–1

 

)(BXB

 

–1

 

)  must be a commutator too.  End of  Proof 3.

 

Corollary 4:

 

  For each square matrix  Z  invertible matrices  C  exist that make every diagonal 
element of  C

 

–1

 

ZC  the same.

 

Proof 4:

 

  This is actually a corollary of  Lemma 2.  Let  S := Z – I·Trace(Z)/Dimension(Z)  to get  
Trace(S) = 0 .  Since  S  cannot be a nonzero scalar multiple of  I ,  some invertible  B  must exist 

to make  B

 

–1

 

SB =   .  Since  Trace(K) = Trace(B

 

–1

 

SB) = Trace(S) = 0 ,  this step can be 

repeated to replace  K  by a matrix whose every diagonal element is zero  ( thereby changing  c  
and  r

 

T

 

 )  thus constructing  C  so that every diagonal element of  C

 

–1

 

SC  is zero.  End of  Proof 4.
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Corollary 4  is too easy because too many matrices  C  meet its requirements.  Are any of these 
computationally convenient?  For instance,  triangular matrices  C  would be convenient because 
their inverses can be computed easily;  but no triangular matrix can serve as  C  in  Corollary 4  if  
Z  is diagonal and not a scalar multiple of  I .  Real orthogonal matrices  C  and complex unitary 
matrices  C  are computationally convenient partly because their inverses are obtained so easily 
and partly because they do not amplify rounding errors much.  Here we are in luck:

 

Corollary 5:

 

  For each square matrix  Z  unitary matrices  C = (C

 

H

 

)

 

–1

 

  exist that make every 
diagonal element of  C

 

–1

 

ZC  the same;  here  C

 

H

 

  is the complex conjugate transpose of  C .  And 
if  Z  is real  C = (C

 

T

 

)

 

–1

 

  can be real orthogonal.

 

Proof 5:

 

  Let  S := Z – I·Trace(Z)/Dimension(Z)  again.  The  

 

Numerical Range

 

  of  S  is the set of 
complex numbers swept out by the  

 

Rayleigh Quotient

 

  v

 

H

 

Sv/vHv  as  v  runs through all nonzero 
complex columns.  Digress to  Canad. Math. Bull. 14 (1971) pp. 245-6  for  Chandler Davis’  
short proof of the  Töplitz-Hausdorff  theorem which asserts that,  when plotted in the complex 
plane,  the numerical range of  S  constitutes a convex region containing,  among other things,  all 
the eigenvalues of  S .  Since their sum  Trace(S) = 0 ,  zero lies in that convex region.  Therefore 
a column  v  exists with  vHSv = 0  and  vHv = 1 .  Now set  wT := vH  in the proof of  Lemma 2  to 

determine  ( not uniquely )  a unitary matrix  B  that makes  B–1SB =   ;  and continue as in 

the proof of  Corollary 4  to build a unitary  C  that makes every diagonal element of  C–1SC  zero.  
If  Z  is real so is  S ,  and then the  Rayleigh Quotient  vTSv/vTv  runs through the numerical range 
of  (S+ST)/2  as  v  runs through all nonzero real columns;  then  B  is real orthogonal  etc.  End of  
Proof 5.

Knowing  C  exists is one thing;  finding  C  another.  To find a real orthogonal  C  is easy if  Z  is 
real,  as is  S ,  because when  Trace(S) = 0  a nonzero column  v  satisfying  vTSv = 0  can be 
found with two nonzero elements,  corresponding in location to two diagonal elements of  S  with 
opposite signs,  at scarcely more than the cost of solving a real quadratic equation;  this is the 
crucial step towards finding each of the orthogonal matrices  B  needed in the corollaries’ proofs.  
But finding a complex unitary  C  is not so easy when  Z  and  S  are complex;  a nonzero column  
v  satisfying  vHSv = 0  generally requires three nonzero elements.  In this complex case a simpler 
way to find  C  may be the  Jacobi-like  iteration described on  p. 77  of  R.A. Horn  and  C.R. 
Johnson’s  Matrix Analysis (1985/7,  Cambridge Univ. Press).

0 r
T

c K


