Only Commutators Have Trace Zero

Prof. W. Kahan
Mathematics Dept. \#3840
University of California
Berkeley CA 94720-3840

Abstract

This note proves an old theorem in an elementary, succinct and perspicuous way derived from a similarity devised to equalize all the diagonal elements of a matrix.

Introduction: Square matrix Z is called a " Commutator " just when $\mathrm{Z}=\mathrm{XY}-\mathrm{YX}$ for some matrices X and Y (not determined uniquely by Z); then $\operatorname{Trace}(Z):=\sum_{i} z_{i i}=0$ because Trace $(X Y)=\operatorname{Trace}(Y X)$ for all matrices X and Y both of whose products $X Y$ and $Y X$ are square. Conversely, according to an unobvious old theorem, if Trace $(Z)=0$ then Z must be a commutator. This theorem has been proved in considerable generality; for instance see proofs by K. Shoda (1936) Japan J. Math. 13 361-5, and by A.A. Albert and B. Muckenhoupt (1957) Michigan Math. J. 41-3. Presented below is a shorter proof extracted from my lecture notes.

The shorter proof came to light during the investigation of another old theorem to the effect that, for each square matrix Z , there exist invertible matrices C such that all the diagonal elements of $\mathrm{C}^{-1} \mathrm{ZC}$ are the same. They are all zeros if $\operatorname{Trace}(\mathrm{Z})=0$ which, in this context, is easy to arrange by subtracting Trace(Z)/Dimension(Z) from every diagonal element of Z . The construction of the similarity $\mathrm{C}^{-1} \mathrm{ZC}$ was reduced to a finite sequence of steps each derived from a similarity $\mathrm{B}^{-1} \mathrm{ZB}$ that injected another zero into the diagonal, starting with the first diagonal element. Thus the investigation swirled around two questions:

How easily can B be chosen to put zero into the first diagonal element of $B^{-1} Z B$? If this can be done easily, what good does it accomplish?

Lemma 1: If Z is a commutator, so is $\bar{Z}=\left[\begin{array}{ll}0 & r^{T} \\ c & Z\end{array}\right]$ for every row r^{T} and column c of the same dimension as Z .

Proof 1: Suppose $Z=X Y-Y X$; this equation remains valid after X is replaced by $X+\beta I$ for any scalar β, so we might as well assume X is invertible. Then $\bar{Z}=\bar{X} \bar{Y}-\bar{Y} \bar{X}$ wherein
$\bar{X}:=\left[\begin{array}{ll}0 & 0^{T} \\ 0 & X\end{array}\right]$ and $\bar{Y}:=\left[\begin{array}{cc}0 & -r^{T} X^{-1} \\ X^{-1} c & Y\end{array}\right]$. End of Proof 1 .
(Later we'll see why the converse of Lemma 1 is true too: For any r^{T} and c, if \bar{Z} is a commutator so is Z because they have the same zero Trace.)

Lemma 2: Suppose no matrix $B^{-1} S B$ similar to a given square matrix S can have 0 as its first diagonal element no matter how matrix B is chosen so long as it is invertible. Then S must be a nonzero scalar multiple of the identity matrix I .

Proof 2: Evidently $S \neq O$, so some nonzero row w^{T} exists for which $w^{T} S \neq o^{T}$. Suppose now, for the sake of argument, that a column v existed satisfying $w^{T} v=1$ and $w^{T} S v=0$. Then an invertible matrix $B=\left[v, b_{2}, b_{3}, \ldots\right]$ could be chosen in which the latter columns $\left[b_{2}, b_{3}, \ldots\right]$ constituted a basis for the subspace of columns annihilated by w^{T}; every $w^{T} b_{j}=0$. This w^{T} would be the first row in the inverse B^{-1}, whereupon the matrix $B^{-1} S B$ would have $w^{T} S v=0$ for its first diagonal element. But this element can't vanish, according to the lemma's hypothesis. Therefore no vector v can ever satisfy both $w^{T} v=1$ and $w^{T} S v=0$; therefore $w^{T} S=\mu w^{T}$ for some scalar $\mu \neq 0$. This persists no matter how w^{T} is chosen; in fact every row w^{T} must satisfy either $w^{T} S=o^{T}$ or $w^{T} S=\mu w^{T}$ for some scalar $\mu=\mu\left(w^{T}\right) \neq 0$. Therefore $B^{-1} S B$ is diagonal for every invertible matrix B. Moreover no two diagonal elements of $\mathrm{B}^{-1} \mathrm{SB}$ can differ without violating the equation $w^{T} S=\mu w^{T}$ when w^{T} is the difference between their corresponding rows in B^{-1}. This makes S a nonzero scalar multiple of the identity matrix I . End of Proof 2. (It may be the only novelty in this note.)

We shall apply Lemma 2 in its contrapositive form: Unless S is a nonzero scalar multiple of the identity, invertible matrices B exist for which the first diagonal element of $\mathrm{B}^{-1} \mathrm{SB}$ is zero. (Don't confuse this with the converse of Lemma 2; it says that if S is a nonzero scalar multiple of I then no diagonal element of $\mathrm{B}^{-1} \mathrm{SB}$ can vanish, which is obviously true too.)

Theorem 3: If $\operatorname{Trace}(Z)=0$ then Z is a commutator.
Proof 3: The theorem is obviously valid if Z is 1-by-1 or a bigger zero matrix. Therefore assume that Z is a nonzero square matrix of dimension bigger than 1 . Our proof goes by induction; we assume the desired inference valid for all matrices of dimensions smaller than Z 's with Trace zero. Because of that zero Trace, Z cannot be a nonzero scalar multiple of I, so Lemma 2 implies that some invertible B exists making $B^{-1} Z B=\left[\begin{array}{ll}0 & r^{T} \\ c & K\end{array}\right]$. Observe next that $\operatorname{Trace}(\mathrm{K})=\operatorname{Trace}(\mathrm{Z})=0$. The induction hypothesis implies that K is a commutator; then Lemma 1 implies that $\mathrm{B}^{-1} \mathrm{ZB}=\mathrm{XY}-\mathrm{YX}$ is a commutator too for some X and Y , whereupon $\mathrm{Z}=\left(\mathrm{BXB}^{-1}\right)\left(\mathrm{BYB}^{-1}\right)-\left(\mathrm{BYB}^{-1}\right)\left(\mathrm{BXB}^{-1}\right)$ must be a commutator too. End of Proof 3.

Corollary 4: For each square matrix Z invertible matrices C exist that make every diagonal element of $\mathrm{C}^{-1} \mathrm{ZC}$ the same.

Proof 4: This is actually a corollary of Lemma 2. Let $S:=Z-I \cdot T r a c e(Z) / D i m e n s i o n(Z)$ to get Trace $(S)=0$. Since S cannot be a nonzero scalar multiple of I, some invertible B must exist to make $B^{-1} S B=\left[\begin{array}{ll}0 & r^{T} \\ c & K\end{array}\right]$. Since $\operatorname{Trace}(K)=\operatorname{Trace}\left(B^{-1} S B\right)=\operatorname{Trace}(S)=0$, this step can be repeated to replace K by a matrix whose every diagonal element is zero (thereby changing c and r^{T}) thus constructing C so that every diagonal element of $\mathrm{C}^{-1} \mathrm{SC}$ is zero. End of Proof 4.

Corollary 4 is too easy because too many matrices C meet its requirements. Are any of these computationally convenient? For instance, triangular matrices C would be convenient because their inverses can be computed easily; but no triangular matrix can serve as C in Corollary 4 if Z is diagonal and not a scalar multiple of I . Real orthogonal matrices C and complex unitary matrices C are computationally convenient partly because their inverses are obtained so easily and partly because they do not amplify rounding errors much. Here we are in luck:

Corollary 5: For each square matrix Z unitary matrices $C=\left(\mathrm{C}^{\mathrm{H}}\right)^{-1}$ exist that make every diagonal element of $\mathrm{C}^{-1} \mathrm{ZC}$ the same; here C^{H} is the complex conjugate transpose of C . And if Z is real $\mathrm{C}=\left(\mathrm{C}^{\mathrm{T}}\right)^{-1}$ can be real orthogonal.

Proof 5: Let $S:=\mathrm{Z}-\mathrm{I}$-Trace(Z$) /$ Dimension(Z) again. The Numerical Range of S is the set of complex numbers swept out by the Rayleigh Quotient $\mathrm{v}^{\mathrm{H}} \mathrm{Sv} / \mathrm{v}^{\mathrm{H}} \mathrm{v}$ as v runs through all nonzero complex columns. Digress to Canad. Math. Bull. 14 (1971) pp. 245-6 for Chandler Davis’ short proof of the Töplitz-Hausdorff theorem which asserts that, when plotted in the complex plane, the numerical range of S constitutes a convex region containing, among other things, all the eigenvalues of S. Since their sum $\operatorname{Trace}(S)=0$, zero lies in that convex region. Therefore a column v exists with $\mathrm{v}^{\mathrm{H}} \mathrm{Sv}=0$ and $\mathrm{v}^{\mathrm{H}} \mathrm{v}=1$. Now set $\mathrm{w}^{\mathrm{T}}:=\mathrm{v}^{\mathrm{H}}$ in the proof of Lemma 2 to determine (not uniquely) a unitary matrix B that makes $B^{-1} S B=\left[\begin{array}{cc}0 & r^{T} \\ c & K\end{array}\right]$; and continue as in the proof of Corollary 4 to build a unitary C that makes every diagonal element of $\mathrm{C}^{-1} \mathrm{SC}$ zero. If Z is real so is S , and then the Rayleigh Quotient $\mathrm{v}^{\mathrm{T}} \mathrm{Sv} / \mathrm{v}^{\mathrm{T}} \mathrm{v}$ runs through the numerical range of $\left(\mathrm{S}+\mathrm{S}^{\mathrm{T}}\right) / 2$ as v runs through all nonzero real columns; then B is real orthogonal etc. End of Proof 5.

Knowing C exists is one thing; finding C another. To find a real orthogonal C is easy if Z is real, as is S, because when $\operatorname{Trace}(S)=0$ a nonzero column v satisfying $\mathrm{v}^{\mathrm{T}} \mathrm{Sv}=0$ can be found with two nonzero elements, corresponding in location to two diagonal elements of S with opposite signs, at scarcely more than the cost of solving a real quadratic equation; this is the crucial step towards finding each of the orthogonal matrices B needed in the corollaries' proofs. But finding a complex unitary C is not so easy when Z and S are complex; a nonzero column v satisfying $\mathrm{v}^{\mathrm{H}} \mathrm{Sv}=0$ generally requires three nonzero elements. In this complex case a simpler way to find C may be the Jacobi-like iteration described on p. 77 of R.A. Horn and C.R. Johnson's Matrix Analysis (1985/7, Cambridge Univ. Press).

