Students were asked on Fri. 2 Oct. to work out some of these problems aided by their own notes and by any texts but by no other person, and to hand in solutions Mon. morning 5 Oct. 1998.

Problem 0: When we see our own images in a mirror, why does it swap Left and Right but not Up and Down?

It doesn't swap Left and Right; it swaps Forward and Backward.

Problem 1: Exhibit two matrices P and Q such that $(\mathrm{PQ})^{2}=\mathrm{O} \neq(\mathrm{QP})^{2}$.

Try $\mathrm{P}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $\mathrm{Q}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$, for which $\mathrm{PQ}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \neq \mathrm{O}$ and $\mathrm{QP}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. The necessity of $\mathrm{PQ} \neq \mathrm{O}$ comes from $\mathrm{O} \neq(\mathrm{QP})^{2}=\mathrm{Q}(\mathrm{PQ}) \mathrm{P}$; but QP must satisfy $(\mathrm{QP})^{3}=\mathrm{Q}(\mathrm{PQ})^{2} \mathrm{P}=\mathrm{O}$.

Problem 2a: Obtain an explicit formula for $\left(\mathbf{I}-\mathbf{c r}^{\mathrm{T}}\right)^{-1}$ given \mathbf{c} and \mathbf{r}^{T} and that $\mathbf{r}^{\mathrm{T}} \mathbf{c} \neq 1$.
$\left(\mathbf{I}-\mathbf{c r}^{\mathrm{T}}\right)^{-1}=\mathbf{I}+\mathbf{c r}^{\mathrm{T}} /\left(1-\mathbf{r}^{\mathrm{T}} \mathbf{c}\right)$.

Problem 2b: Obtain $\left(\mathbf{B}-\mathbf{c r}^{\mathrm{T}}\right)^{-1}$ explicitly given $\mathbf{B}^{-1}, \mathbf{c}, \mathbf{r}^{\mathrm{T}}$, and that $\mathbf{r}^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{c} \neq 1$.
$\left(\mathbf{B}-\mathbf{c r}^{\mathrm{T}}\right)^{-1}=\mathbf{B}^{-1}+\mathbf{B}^{-1} \mathbf{c r}^{\mathrm{T}} \mathbf{B}^{-1} /\left(1-\mathbf{r}^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{c}\right)$.

Problem 3: Obtain the n-by-n matrix U from the identity by deleting its first row and appending a row of zeros after its last. Obtain R from $2 \mathrm{I}-(\mathrm{I}-\mathrm{U})^{-1}$ by inserting the scalar μ into its lowest leftmost element. Express the value of μ for which R is not invertible as a function of n, assuming $n>1$. Hint: Experiment with $n=2,3,4, \ldots$ first.
$\mu=-2^{2-n}$. Here is why: $\mathrm{R}=2 \mathrm{I}-(\mathrm{I}-\mathrm{U})^{-1}+\mu \mathrm{ef}^{\mathrm{T}}$ in which e is the column whose last element is 1 and the rest zeros, and f^{T} is the row whose first element is 1 and the rest zeros. R is not invertible just when $R x=0$ for some $x \neq 0$. Then $x=-\mu\left(2 I-(I-U)^{-1}\right)^{-1} e^{T} x \neq 0$, whence follows $\mathrm{f}^{\mathrm{T}} \mathrm{x}=-\mu \mathrm{f}^{\mathrm{T}}\left(2 \mathrm{I}-(\mathrm{I}-\mathrm{U})^{-1}\right)^{-1} \mathrm{ef}^{\mathrm{T}} \mathrm{x} \neq 0$, and then $\mu=-1 / \mathrm{f}^{\mathrm{T}}\left(2 \mathrm{I}-(\mathrm{I}-\mathrm{U})^{-1}\right)^{-1} \mathrm{e}$. Now, $\left(2 \mathrm{I}-(\mathrm{I}-\mathrm{U})^{-1}\right)^{-1}=(\mathrm{I}-\mathrm{U})(\mathrm{I}-2 \mathrm{U})^{-1}=\mathrm{I}+\mathrm{U}+2 \mathrm{U}^{2}+4 \mathrm{U}^{3}+8 \mathrm{U}^{4}+\ldots+2^{\mathrm{n}-2} \mathrm{U}^{\mathrm{n}-1}$ since $\mathrm{U}^{\mathrm{n}}=\mathrm{O}$. Consequently $\mu=-1 / \mathrm{f}^{\mathrm{T}}\left(2^{\mathrm{n}-2} \mathrm{U}^{\mathrm{n}-1}\right) \mathrm{e}=-2^{2-\mathrm{n}}$. Determinantal manipulation gives the same result; $0=\operatorname{det}(\mathrm{R})=\operatorname{det}(\mathrm{R}(\mathrm{I}-\mathrm{U}))=\operatorname{det}\left(\mathrm{I}-2 \mathrm{U}+\mu \mathrm{ef}^{\mathrm{T}}(\mathrm{I}-\mathrm{U})\right)=\operatorname{det}\left(\left(\mathrm{I}-2 \mathrm{U}+\mu \mathrm{ef}^{\mathrm{T}}(\mathrm{I}-\mathrm{U})\right)\left(\mathrm{I}+\mathrm{ff}^{\mathrm{T}} \mathrm{U}\right)\right)=1+2^{\mathrm{n}-2} \mu$.

Problem 4a: Given two different vectors x and y of the same Euclidean length (so $x^{T} x=y^{T} y \neq 0$), exhibit an elementary orthogonal reflector $W=I-\left(2 / c^{T} c\right) c c^{T}$ that swaps them.

Choose $\mathrm{c}=\mathrm{x}-\mathrm{y}$; then $\mathrm{Wx}=\mathrm{y}$ and so $\mathrm{Wy}=\mathrm{x} . \quad\left(\right.$ Note that this kind of $\left.\mathrm{W}=\mathrm{W}^{\mathrm{T}}=\mathrm{W}^{-1}.\right)$

Problem 4b: Prove that every n-by-n orthogonal matrix $\mathrm{Q}=\left(\mathrm{Q}^{\mathrm{T}}\right)^{-1}$ can be expressed as a product of at most n elementary orthogonal reflectors like W.
" $\mathrm{Q}^{\mathrm{T}} \mathrm{Q}=\mathrm{I}$ " implies that every column of any orthogonal matrix Q has the same length 1 as every column of the identity I. Choose reflector W_{1} to swap the first column of Q with the first column of I. Note that $W_{1} \mathrm{Q}$ is still orthogonal, and its first column (and first row) must be the same as I's. Choose reflector W_{2} to swap the second column of $\mathrm{W}_{1} \mathrm{Q}$ with the second column of $\mathrm{I} . \mathrm{W}_{2}$ leaves the first column of $\mathrm{W}_{1} \mathrm{Q}$ unchanged because it is orthogonal to the second columns of $W_{1} \mathrm{Q}$ and of I. Therefore the first two columns (and first two rows) of $\mathrm{W}_{2} \mathrm{~W}_{1} \mathrm{Q}$, which is still orthogonal, must be the same as I's. Choose reflector W_{3} to swap the third column of $\mathrm{W}_{2} \mathrm{~W}_{1} \mathrm{Q}$ with the third column of I , and so on. Of course, if a column to be swapped with a column of I already matches it, a reflector can be skipped. So, premultiplying Q by at most n reflectors transforms it into I. Therefore Q equals the inverse of that product, which is the product of the same reflectors in reverse order.

Problem 5: Two proper subspaces of a vector space are complementary just when their sum is the whole space and their intersection is $\{\mathbf{0}\}$. Can either determine the other uniquely? Why?

No. Let \mathbf{E} and \mathbf{F} be bases for complementary subspaces of a vector space for which $[\mathbf{E}, \mathbf{F}]$ must therefore be a basis. Given any nonzero matrix G with as many columns as \mathbf{E} has, and with as many rows as \mathbf{F} has columns, we shall show that $[\mathbf{E}+\mathbf{F G}, \mathbf{F}]$ is another basis for the vector space, but $\operatorname{Range}(\mathbf{E}+\mathbf{F G}) \neq \operatorname{Range}(\mathbf{E})$; this will confirm that the subspace Range (\mathbf{F})
 because the last matrix in the product has an inverse obtained by reversing the sign of G . To see why Range $(\mathbf{E}+\mathbf{F G}) \neq \operatorname{Range}(\mathbf{E})$ choose any column z for which $G z \neq 0$ and verify that the equation $\mathbf{E x}=(\mathbf{E}+\mathbf{F G}) \mathrm{z}$ cannot be solved for x because otherwise $\mathbf{F G z}=\mathbf{E}(\mathrm{x}-\mathrm{z})$ would be a nonzero vector in the intersection of complementary subspaces Range (\mathbf{F}) and Range (\mathbf{E}).

Problem 6: \boldsymbol{S} and \boldsymbol{T} are two subspaces of a vector space \boldsymbol{V}, and f is a real scalar-valued function defined for every vector in \boldsymbol{V}. Moreover, $f(\mathrm{~s})<f(\mathrm{t})$ for every nonzero vector \mathbf{s} in \boldsymbol{S} and every nonzero vector \mathbf{t} in \boldsymbol{T}. How must Dimension $(\boldsymbol{S})+\operatorname{Dimension}(\boldsymbol{T})$ compare with Dimension (\boldsymbol{V}) ?

Subspaces \boldsymbol{S} and \boldsymbol{T} can have only the zero vector \boldsymbol{o} in their intersection, so $\operatorname{Dimension}(\boldsymbol{S})+\operatorname{Dimension}(\boldsymbol{T})=\operatorname{Dimension}(\{\mathbf{o}\})+\operatorname{Dimension}(\boldsymbol{S}+\boldsymbol{T}) \leq \operatorname{Dimension}(\boldsymbol{V})$.

Problem 7: Let the cubic polynomial whose value at ξ is $p(\xi)=\pi_{\mathrm{o}}+3 \pi_{1} \xi+3 \pi_{2} \xi^{2}+\pi_{3} \xi^{3}$ be represented by a row-vector $\mathrm{p}^{\mathrm{T}}:=\left[\pi_{\mathrm{o}}, \pi_{1}, \pi_{2}, \pi_{3}\right]$ of its coefficients. For constant μ let cubic $b(\xi):=p(\xi+\mu)=\beta_{0}+3 \beta_{1} \xi+3 \beta_{2} \xi^{2}+\beta_{3} \xi^{3}$ be represented by $\mathrm{b}^{\mathrm{T}}:=\left[\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right]$. Exhibit the matrix L that takes p^{T} to $b^{T}=p^{T} L$. This matrix can be factorized; L is the product of three matrices among whose elements only the numbers 0,1 and μ appear. Find these factors and thus determine how few scalar multiplications suffice to compute $\mathrm{p}^{T} L$ given p^{T} and μ.
$\mathrm{L}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 3 \mu & 1 & 0 & 0 \\ 3 \mu^{2} & 2 \mu & 1 & 0 \\ \mu^{3} & \mu^{2} & \mu & 1\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ \mu & 1 & 0 & 0 \\ 0 & \mu & 1 & 0 \\ 0 & 0 & \mu & 1\end{array}\right] \cdot\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ \mu & 1 & 0 & 0 \\ 0 & \mu & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ \mu & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad$, so six multiplications and additions suffice to compute $\mathrm{p}^{\mathrm{T}} \mathrm{L}$ without first computing μ^{2} and μ^{3} which would cost two more multiplications.

Problem 8: Given matrices E and F with the same number of rows but any numbers of columns (and their columns need not be linearly independent), we seek a matrix S whose range is the intersection of Range(E) and Range(F). Show how and why S may be constructed if matrices $\mathrm{J}, \mathrm{L}, \mathrm{P}, \mathrm{Q}$ and R are found to satisfy $\mathrm{EJ}+\mathrm{FL}=\mathrm{O}$ and $\mathrm{E}[\mathrm{JP}-\mathrm{I}, \mathrm{JQ}]=\mathrm{R}[\mathrm{E}, \mathrm{F}]$.

The range of $\mathrm{S}:=\mathrm{EJ}=-\mathrm{FL}$ is contained in both Range(E) and Range (F), and therefore in their intersection. Any vector $\mathrm{w}:=\mathrm{Eu}=-\mathrm{Fv}$ in that intersection can also be found as $\mathrm{w}=\mathrm{S}(\mathrm{Pu}+\mathrm{Qv})$ in Range(S), implying that Range(S) contains that intersection, because

$$
\mathrm{S}(\mathrm{Pu}+\mathrm{Qv})-\mathrm{w}=\mathrm{EJ}(\mathrm{Pu}+\mathrm{Qv})-\mathrm{Eu}=\mathrm{E}((\mathrm{JP}-\mathrm{I}) \mathrm{u}+\mathrm{JQv})=\mathrm{R}(\mathrm{Eu}+\mathrm{Fv})=\mathrm{o} .
$$

Therefore Range(S) is the intersection of Range(E) and Range(F), as required. (To find J, $\mathrm{L}, \mathrm{P}, \mathrm{Q}$ and R , which the problem did not request, see the lecture notes titled "Geometry of Elementary Operations and Subspaces" and set $\mathrm{R}:=\mathrm{EH}[\mathrm{I}, \mathrm{O}] \mathrm{G}^{-1}$.)

Problem 9: Given a matrix F whose target-space is Euclidean, and a vector g in that space but not in Range(F), explain how to find a vector r perpendicular to Range(F) such that $\mathrm{g}-\mathrm{r}$ lies in Range(F).

Solve the Least-Squares problem that chooses x to minimize $\|\mathrm{Fx}-\mathrm{g}\|$. Then $\mathrm{r}:=\mathrm{g}-\mathrm{Fx}$ because $\mathrm{F}^{\mathrm{T}} \mathrm{r}=\mathrm{F}^{\mathrm{T}} \mathrm{g}-\mathrm{F}^{\mathrm{T}} \mathrm{Fx}=\mathrm{o}$. The lecture notes on Least Squares explain why the last equation always has a solution x .

