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Students were asked on  Fri. 2 Oct.  to work out  

 

some

 

  of these problems aided by their own notes 
and by any texts but by no other person,  and to hand in solutions  Mon. morning 5 Oct. 1998.

 

Problem 0:

 

  When we see our own images in a mirror,  why does it swap  Left  and  Right  but not  
Up  and  Down?

It doesn’t swap  Left  and  Right;  it swaps  Forward  and  Backward.

 

Problem 1:

 

  Exhibit two matrices  P  and  Q  such that  (PQ)

 

2

 

 = O 

 

≠

 

 (QP)

 

2

 

 .

Try   P =    and   Q =  ,   for which   PQ =  

 

≠

 

 O   and   QP =  .  The necessity 

of  PQ 

 

≠

 

 O  comes from  O 

 

≠

 

 (QP)

 

2

 

 = Q(PQ)P ;  but  QP  must satisfy  (QP)

 

3

 

 = Q(PQ)

 

2

 

P = O .

 

Problem 2a:

 

  Obtain an explicit formula for  (

 

I

 

 – 

 

cr

 

T

 

)

 

–1

 

  given  

 

c

 

  and  

 

r

 

T

 

  and that  

 

r

 

T

 

c

 

 

 

≠

 

 1 .

(

 

I
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cr

 

T

 

)
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  =  

 

I

 

 + 

 

cr

 

T

 

/

 

(1–

 

r

 

T

 

c

 

) .

 

Problem 2b:

 

  Obtain  (

 

B

 

 – 

 

cr

 

T

 

)

 

–1

 

  explicitly given  

 

B

 

–1

 

 ,  

 

c

 

 ,  

 

r

 

T

 

 ,  and that  

 

r

 

T

 

B

 

–1

 

c
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 1 .

(

 

B
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cr

 

T

 

)
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  =  

 

B
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 + 

 

B

 

–1

 

cr

 

T

 

B

 

–1

 

/

 

(1 – 

 

r

 

T

 

B

 

–1

 

c

 

) .

 

Problem 3:

 

  Obtain the  n-by-n  matrix  U  from the identity by deleting its first row and 

appending a row of zeros after its last.  Obtain  R  from  2I – (I–U)

 

–1

 

  by inserting the scalar  

 

µ

 

  
into its lowest leftmost element.  Express the value of  

 

µ

 

  for which  R  is not invertible as a 
function of  n ,  assuming  n > 1 .  Hint:  Experiment with  n = 2, 3, 4, …  first.

 

µ

 

 = –2

 

2-n

 

 .  Here is why:  R = 2I – (I–U)

 

–1

 

 + 

 

µ

 

ef

 

T

 

  in which  e  is the column whose last element is  

1  and the rest zeros,  and  f

 

T

 

  is the row whose first element is  1  and the rest zeros.  R  is not 

invertible just when  Rx = o  for some  x 

 

≠

 

 o .  Then  x =  –

 

µ

 

(

 

2I – (I–U)

 

–1

 

)

 

–1

 

ef

 

T

 

x  

 

≠

 

 o ,  whence 

follows  f

 

T

 

x =  –

 

µ

 

f

 

T

 

(

 

2I – (I–U)

 

–1

 

)

 

–1

 

ef

 

T

 

x  

 

≠

 

 0 ,  and then  

 

µ

 

 = –1

 

/

 

f

 

T

 

(

 

2I – (I–U)

 

–1

 

)

 

–1

 

e .  Now,  

 

(

 

2I – (I–U)

 

–1

 

)

 

–1

 

 =  (I–U)(I–2U)

 

–1

 

  =  I + U + 2U

 

2

 

 + 4U

 

3

 

 + 8U

 

4

 

 + … + 2

 

n-2

 

U

 

n-1

 

  since  U

 

n

 

 = O .  

Consequently  

 

µ

 

 = –1

 

/

 

f

 

T

 

(

 

2

 

n-2

 

Un-1)e = –22-n .  Determinantal manipulation gives the same result;  

0 = det(R) = det(R(I–U)) = det(I–2U+µefT(I–U)) = det((I–2U+µefT(I–U))(I+ffTU)) = 1 + 2n–2µ .
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Problem 4a:  Given two different vectors  x  and  y  of the same  Euclidean  length  ( so  

xTx = yTy ≠ 0 ),  exhibit an elementary orthogonal reflector  W = I – (2/cTc)ccT  that swaps them.

Choose  c = x–y ;  then  Wx = y  and so  Wy = x .  ( Note that this kind of  W = WT = W–1 .)

Problem 4b:  Prove that every  n-by-n  orthogonal matrix  Q = (QT)–1  can be expressed as a 
product of at most  n  elementary orthogonal reflectors like  W .

“ QTQ = I ”  implies that every column of  any orthogonal matrix  Q  has the same length  1  as 
every column of the identity  I .  Choose reflector  W1  to swap the first column of  Q  with the first 
column of  I .  Note that  W1Q  is still orthogonal,  and its first column  ( and first row )  must be 
the same as  I ’s .  Choose reflector  W2  to swap the second column of  W1Q  with the second 
column of  I .  W2  leaves the first column of  W1Q  unchanged because it is orthogonal to the 
second columns of  W1Q  and of  I .  Therefore the first two columns  ( and first two rows )  of  
W2W1Q ,  which is still orthogonal,  must be the same as  I ’s .  Choose reflector  W3  to swap the 
third column of  W2W1Q  with the third column of  I ,  and so on.  Of course,  if a column to be 
swapped with a column of  I  already matches it,  a reflector can be skipped.  So,  premultiplying  
Q  by at most  n  reflectors transforms it into  I .  Therefore  Q  equals the inverse of that product,  
which is the product of the same reflectors in reverse order.

Problem 5:  Two proper subspaces of a vector space are  complementary  just when their sum is 
the whole space and their intersection is  { o } .  Can either determine the other uniquely?  Why?

No.  Let  E  and  F  be bases for complementary subspaces of a vector space for which  [E, F]  
must therefore be a basis.  Given any nonzero matrix  G  with as many columns as  E  has,  and 
with as many rows as  F  has columns,  we shall show that  [E+FG, F]  is another basis for the 
vector space,  but  Range(E+FG) ≠ Range(E) ;  this will confirm that the subspace  Range(F)  

cannot determine its complementary subspace uniquely.  [E+FG, F] = [E, F]   is a basis 

because the last matrix in the product has an inverse obtained by reversing the sign of  G .  To see 
why  Range(E+FG) ≠ Range(E)  choose any column  z  for which  Gz ≠ o  and verify that the 
equation  Ex = (E+FG)z  cannot be solved for  x  because otherwise  FGz = E(x–z)  would be a 
nonzero vector in the intersection of complementary subspaces  Range(F)  and  Range(E) .

Problem 6:  S  and  T  are two subspaces of a vector space  V ,  and  ƒ  is a real scalar-valued 
function defined for every vector in  V .  Moreover,  ƒ(s) < ƒ(t)  for every nonzero vector  s  in  S  
and every nonzero vector  t  in  T .  How must   Dimension(S) + Dimension(T)   compare with  
Dimension(V) ?

Subspaces  S  and  T  can have only the zero vector  o  in their intersection,  so  
Dimension(S) + Dimension(T)  =  Dimension({o}) + Dimension(S + T)  ≤  Dimension(V) .

I O

G I



Math. H110                                     Take-Home Test’s Solutions                                 Mon. 5 Oct. 1998

Prof. W. Kahan                                                                                                                                             Page 3

Problem 7:  Let the cubic polynomial whose value at  ξ  is  p(ξ) = πo + 3π1ξ + 3π2ξ2 + π3ξ3  be 

represented by a row-vector  pT := [πo, π1, π2, π3]  of its coefficients.  For constant  µ  let cubic  

b(ξ) := p(ξ + µ) = ßo + 3ß1ξ + 3ß2ξ2 + ß3ξ3   be represented by  bT := [ßo, ß1, ß2, ß3] .  Exhibit 

the matrix  L  that takes  pT  to  bT = pTL .  This matrix can be factorized;  L  is the product of 
three matrices among whose elements only the numbers  0,  1  and  µ  appear.  Find these factors 

and thus determine how few scalar multiplications suffice to compute  pTL  given  pT  and  µ .

L =    ,   so six multiplications and additions suffice 

to compute  pTL  without first computing  µ2  and  µ3  which would cost two more multiplications.

Problem 8:  Given matrices  E  and  F  with the same number of rows but any numbers of 
columns  ( and their columns need not be linearly independent ),  we seek a matrix  S  whose 
range is the intersection of  Range(E)  and  Range(F) .  Show how and why  S  may be constructed 
if matrices  J,  L,  P,  Q  and  R  are found to satisfy  EJ + FL = O  and  E[JP–I, JQ] = R[E, F] .

The range of  S := EJ = -FL  is contained in both  Range(E)  and  Range(F) ,  and therefore in 
their intersection.  Any vector  w := Eu = –Fv  in that intersection can also be found as  
w = S(Pu + Qv)  in  Range(S) ,  implying that  Range(S)  contains that intersection,  because

S(Pu + Qv) – w  =  EJ(Pu + Qv) – Eu  =  E((JP–I)u + JQv)  =  R(Eu + Fv)  = o .
Therefore  Range(S)  is the intersection of  Range(E)  and  Range(F) ,  as required.  ( To find  J,  
L,  P,  Q  and  R,  which the problem did not request,  see the lecture notes titled  “Geometry of 

Elementary Operations and Subspaces”  and set  R := EH[I, O]G–1 .)

Problem 9:  Given a matrix  F  whose target-space is  Euclidean,  and a vector  g  in that space but 
not in  Range(F) ,  explain how to find a vector  r  perpendicular to  Range(F)  such that  g – r  lies 
in  Range(F) .

Solve the  Least-Squares  problem that chooses  x  to minimize  ||Fx - g|| .  Then  r := g – Fx  

because  FTr = FTg – FTFx = o .  The lecture notes on  Least Squares  explain why the last 
equation always has a solution  x .
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