Students were asked on Fri. 2 Oct. to work out some of these problems aided by their own notes and by any texts but by no other person, and to hand in solutions Mon. morning 5 Oct. 1998.

Problem 0: When we see our own images in a mirror, why does it swap Left and Right but not Up and Down?

It doesn’t swap Left and Right; it swaps Forward and Backward.

Problem 1: Exhibit two matrices P and Q such that $(PQ)^2 = O \neq (QP)^2$.

Try $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, for which $PQ = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \neq O$ and $QP = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

The necessity of $PQ \neq O$ comes from $O \neq (QP)^2 = Q(PQ)P$; but QP must satisfy $(QP)^3 = Q(PQ)^2P = O$.

Problem 2a: Obtain an explicit formula for $(I - cr^T)^{-1}$ given c and r^T and that $r^Tc \neq 1$.

$(I - cr^T)^{-1} = I + cr^T/(1-r^Tc)$.

Problem 2b: Obtain $(B - cr^T)^{-1}$ explicitly given B^{-1}, c, r^T, and that $r^TB^{-1}c \neq 1$.

$(B - cr^T)^{-1} = B^{-1} + B^{-1}cr^TB^{-1}/(1-r^TB^{-1}c)$.

Problem 3: Obtain the n-by-n matrix U from the identity by deleting its first row and appending a row of zeros after its last. Obtain R from $2I - (I-U)^{-1}$ by inserting the scalar μ into its lowest leftmost element. Express the value of μ for which R is not invertible as a function of n, assuming $n > 1$. Hint: Experiment with $n = 2, 3, 4, \ldots$ first.

$\mu = -2^{2-n}$. Here is why: $R = 2I - (I-U)^{-1} + \mu ef^T$ in which e is the column whose last element is 1 and the rest zeros, and f^T is the row whose first element is 1 and the rest zeros. R is not invertible just when $Rx = 0$ for some $x \neq o$. Then $x = -\mu(2I - (I-U)^{-1})ef^Tx \neq 0$, whence follows $f^Tx = -\mu e^T(2I - (I-U)^{-1})ef^Tx \neq 0$, and then $\mu = -1/f^T(2I - (I-U)^{-1})e$. Now, $(2I - (I-U)^{-1})^{-1} = (I-U)(I-2U)^{-1} = I + U + 2U^2 + 4U^3 + 8U^4 + \ldots + 2^{n-2}U^{n-1}$ since $U^n = O$. Consequently $\mu = -1/f^T(2^{n-2}U^{n-1})e = -2^{2-n}$. Determinantal manipulation gives the same result; $0 = \det(R) = \det(R(I-U)) = \det(I-2U+\mu ef^T(I-U)) = \det((I-2U+\mu ef^T(I-U))(I+ff^TU)) = 1 + 2^{n-2}\mu$.

Prof. W. Kahan

Page 1
Problem 4a: Given two different vectors \(x \) and \(y \) of the same Euclidean length (so \(x^T x = y^T y \neq 0 \)), exhibit an elementary orthogonal reflector \(W = I - (2/c^T c)c c^T \) that swaps them. Choose \(c = x-y \); then \(Wx = y \) and so \(Wy = x \). (Note that this kind of \(W = W^T = W^{-1} \).)

Problem 4b: Prove that every \(n \)-by-\(n \) orthogonal matrix \(Q = (Q^T)^{-1} \) can be expressed as a product of at most \(n \) elementary orthogonal reflectors like \(W \).

“\(Q^T Q = I \)” implies that every column of any orthogonal matrix \(Q \) has the same length 1 as every column of the identity \(I \). Choose reflector \(W_1 \) to swap the first column of \(Q \) with the first column of \(I \). Note that \(W_1 Q \) is still orthogonal, and its first column (and first row) must be the same as \(I \’s \). Choose reflector \(W_2 \) to swap the second column of \(W_1 Q \) with the second column of \(I \). \(W_2 \) leaves the first column of \(W_1 Q \) unchanged because it is orthogonal to the second columns of \(W_1 Q \) and of \(I \). Therefore the first two columns (and first two rows) of \(W_2 W_1 Q \), which is still orthogonal, must be the same as \(I \’s \). Choose reflector \(W_3 \) to swap the third column of \(W_2 W_1 Q \) with the third column of \(I \), and so on. Of course, if a column to be swapped with a column of \(I \) already matches it, a reflector can be skipped. So, premultiplying \(Q \) by at most \(n \) reflectors transforms it into \(I \). Therefore \(Q \) equals the inverse of that product, which is the product of the same reflectors in reverse order.

Problem 5: Two proper subspaces of a vector space are complementary just when their sum is the whole space and their intersection is \(\{ o \} \). Can either determine the other uniquely? Why?

No. Let \(E \) and \(F \) be bases for complementary subspaces of a vector space for which \([E, F]\) must therefore be a basis. Given any nonzero matrix \(G \) with as many columns as \(E \) has, and with as many rows as \(F \) has columns, we shall show that \([E+FG, F]\) is another basis for the vector space, but \(\text{Range}(E+FG) \neq \text{Range}(E) \); this will confirm that the subspace \(\text{Range}(F) \) cannot determine its complementary subspace uniquely. \([E+FG, F] = [E, F]\begin{bmatrix} 1 & O \\ G & 1 \end{bmatrix}\) is a basis because the last matrix in the product has an inverse obtained by reversing the sign of \(G \). To see why \(\text{Range}(E+FG) \neq \text{Range}(E) \) choose any column \(z \) for which \(Gz \neq o \) and verify that the equation \(Ex = (E+FG)z \) cannot be solved for \(x \) because otherwise \(FGz = E(x-z) \) would be a nonzero vector in the intersection of complementary subspaces \(\text{Range}(F) \) and \(\text{Range}(E) \).

Problem 6: \(S \) and \(T \) are two subspaces of a vector space \(V \), and \(f \) is a real scalar-valued function defined for every vector in \(V \). Moreover, \(f(s) < f(t) \) for every nonzero vector \(s \) in \(S \) and every nonzero vector \(t \) in \(T \). How must Dimension(\(S \)) + Dimension(\(T \)) compare with Dimension(\(V \))?

Subspaces \(S \) and \(T \) can have only the zero vector \(o \) in their intersection, so Dimension(\(S \)) + Dimension(\(T \)) = Dimension(\(\{ o \} \)) + Dimension(\(S + T \)) \(\leq \) Dimension(\(V \)).
Problem 7: Let the cubic polynomial whose value at ξ is
\[p(\xi) = \pi_0 + 3\pi_1\xi + 3\pi_2\xi^2 + \pi_3\xi^3 \]
be represented by a row-vector $p^T := [\pi_0, \pi_1, \pi_2, \pi_3]$ of its coefficients. For constant μ let cubic
\[b(\xi) := p(\xi + \mu) = \beta_0 + 3\beta_1\xi + 3\beta_2\xi^2 + \beta_3\xi^3 \]
be represented by $b^T := [\beta_0, \beta_1, \beta_2, \beta_3]$. Exhibit the matrix L that takes p^T to $b^T = p^T L$. This matrix can be factorized; L is the product of three matrices among whose elements only the numbers 0, 1 and μ appear. Find these factors and thus determine how few scalar multiplications suffice to compute $p^T L$ given p^T and μ.

\[
L = \begin{bmatrix}
1 & 0 & 0 & 0 \\
3\mu & 1 & 0 & 0 \\
3\mu^2 & 2\mu & 1 & 0 \\
\mu^3 & \mu^2 & \mu & 1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
\mu & 1 & 0 & 0 \\
0 & \mu & 1 & 0 \\
0 & 0 & \mu & 1
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & 0 \\
\mu & 1 & 0 & 0 \\
0 & \mu & 1 & 0 \\
0 & 0 & \mu & 1
\end{bmatrix},
\]
so six multiplications and additions suffice to compute $p^T L$ without first computing μ^2 and μ^3 which would cost two more multiplications.

Problem 8: Given matrices E and F with the same number of rows but any numbers of columns (and their columns need not be linearly independent), we seek a matrix S whose range is the intersection of Range(E) and Range(F). Show how and why S may be constructed if matrices J, L, P, Q and R are found to satisfy $EJ + FL = O$ and $E[JP–I, JQ] = R[E, F]$.

The range of $S := EJ = -FL$ is contained in both Range(E) and Range(F), and therefore in their intersection. Any vector $w := Eu = -Fv$ in that intersection can also be found as $w = S(Pu + Qv)$ in Range(S), implying that Range(S) contains that intersection, because
\[
S(Pu + Qv) - w = EJ(Pu + Qv) - Eu = E((JP–I)u + JQv) = R(Eu + Fv) = O.
\]
Therefore Range(S) is the intersection of Range(E) and Range(F), as required. (To find J, L, P, Q and R, which the problem did not request, see the lecture notes titled “Geometry of Elementary Operations and Subspaces” and set $R := EH[I, O]G^{-1}$.)

Problem 9: Given a matrix F whose target-space is Euclidean, and a vector g in that space but not in Range(F), explain how to find a vector r perpendicular to Range(F) such that $g – r$ lies in Range(F).

Solve the Least-Squares problem that chooses x to minimize $\|Fx - g\|$. Then $r := g - Fx$ because $F^TR = F^Tg - F^TFx = O$. The lecture notes on Least Squares explain why the last equation always has a solution x.