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Problem 0:

 

  What is  Jordan’s Canonical Form  of    ?

 

Solution  0:

 

      .

 

Problem 1:

 

  Here is what is known about a linear operator  

 

L

 

  that maps a vector space to itself:  
No matrix  L  that represents  

 

L

 

  in any basis can have  0  as its first diagonal element,  but this 
element is  3  in at least one such  L .  What operator is  

 

L

 

 ?  Justify your answer.

 

Solution 1:

 

  We shall see why  

 

L

 

 = 3

 

I

 

  where  

 

I

 

  is the identity operator.  Evidently  

 

L

 

 

 

≠

 

 

 

O

 

 ,  so  

 

w

 

T

 

L

 

 

 

≠

 

 

 

o

 

T

 

  for some functional  

 

w

 

T

 

 

 

≠

 

 

 

o

 

T

 

 .  Suppose now that a vector  

 

v

 

  existed satisfying  

 

w

 

T

 

v

 

 = 1  and  

 

w

 

T

 

Lv

 

 = 0 ;  then a basis  

 

B

 

 = [

 

v

 

, 

 

b

 

2

 

, 

 

b

 

3

 

, …]  could be chosen in which  [

 

b

 

2

 

, 

 

b

 

3

 

, …]  

is a basis for the subspace annihilated by  

 

w

 

T

 

 ,  so that every  

 

w

 

T

 

b

 

j

 

 = 0 ,  and then  

 

w

 

T

 

  would be 

the first  “ row ”  in the inverse basis  

 

B

 

–1

 

 ,  whereupon the matrix  L = 

 

B

 

–1

 

LB

 

  that represents  

 

L

 

  

in this basis would have  

 

w

 

T

 

Lv

 

 = 0  for its first diagonal element.  This can’t happen,  according to 

the problem’s statement.  Therefore no vector  

 

v

 

  can ever satisfy both  

 

w

 

T

 

v

 

 = 1  and  

 

w

 

T

 

Lv

 

 = 0 ;  

therefore  

 

every

 

  

 

w

 

T

 

L

 

 = 

 

µ

 

w

 

T

 

  for some scalar  

 

µ

 

 = 

 

µ

 

(

 

w

 

T

 

) 

 

≠

 

 0 .  This implies  L = 

 

B

 

–1

 

LB

 

  is 
diagonal for  

 

every

 

 basis  

 

B

 

 .  No two diagonal elements can differ without violating the equation  

 

w

 

T

 

L

 

 = 

 

µ

 

w

 

T

 

  when  

 

w

 

T

 

  is the difference between their corresponding  “ rows ”  in  

 

B

 

–1

 

 .  This 
makes  L  a scalar multiple of the identity matrix  I ,  and therefore  

 

L

 

  is a scalar multiple of the 
identity operator  

 

I

 

 ;   the scalar turns out to be  3 .

 

Problem 2:

 

  Z  is called a  “ Commutator ”  just when  Z = XY–YX  for some matrices  X  and  Y  

( not determined uniquely by  Z ).  Prove that if  Z  is a commutator,  so is  Z =   for any row  

r

 

T

 

  and column  c .

 

Solution 2:

 

  Suppose  Z = XY–YX ;  this equation remains valid if  X  is replaced by  X + ßI  for 

any scalar  ß ,  so we might as well assume  X  is invertible.  Then  Z = X

 

 

 

Y – Y

 

 

 

X  wherein  

X =   and  Y =  .

2 1 0

0 2 1

0 0 3

2 1 0

0 2 0

0 0 3

0 r
T

c Z

0 o
T

o X

0 r
T
X

1–
–

X
1–
c Y
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Bonus Problem  1/2:

 

  Prove that if  Trace(Z) = 0  then  Z  is a commutator.

 

Solution  1/2:

 

  The asserted inference is obviously valid if  Z  is  1-by-1  or a bigger zero matrix.  
Therefore assume that  Z  is a nonzero matrix of dimension bigger than  1 .  Our proof goes by 
induction;  we assume the desired inference valid for all matrices of dimension smaller than  Z ’s  
with  Trace  zero.  Z  cannot be a nonzero scalar multiple of the identity since  Trace(Z) = 0 ,  so  

Problem 1  implies that some invertible  C  exists such that  C

 

–1

 

ZC =   ;  observe next that  

Trace(B) = 0 .  Then the induction hypothesis implies that  B  is a commutator,  whereupon  

Problem 2  implies that  C

 

–1

 

ZC = XY – YX  is a commutator too,  whence so is  Z .

 

This proof is shorter than was found by  K. Shoda (1936) 

 

Japan J. Math.

 

 

 

13

 

 361-5,  and again by  A.A. Albert  and  B. 
Muckenhoupt (1957) 

 

Michigan Math. J.

 

 

 

4 1-3.

Problem 3:  For any two vectors  u  and  v  in  Euclidean  3-space  E3 ,  an anti-commutative non-
associative  Cross-Product   u×v = –v×u  is defined as follows from the column vectors  u,  v  and  
u×v  that represent their respective vectors  u = Bu  etc.  in  any  orthonormal basis  B :

If   u =    and   v =    then    u×v :=   .

u×v  does depend upon basis  B .  Changing to a new orthonormal basis  BQ–1  where  Q–1 = QT  
changes the respective representatives of  u,  v   and  u×v   from  u,  v  and  u×v  to  Qu,  Qv  and  
(Qu)×(Qv) = Q(u×v)·det(Q) ,  thereby changing  u×v  by a factor  det(Q) .

What values can  det(Q)  take?

Let  X(u)  be the linear operator acting upon  E3  that maps  v  to  X(u)v = u×v ;  in that basis  B  
some matrix  X(u)  represents  X(u) .  To what does the foregoing change of basis change the 

operator  X(u) ?   After that prove  X(u)2 = uuT – uTuI   regardless of orthonormal basis,  and then 
find the eigenvalues of  X(u) .

Solution 3:  In that orthonormal basis  B ,  X(u)  has the matrix  X(u) = X( ) :=  ,  

whence  X(u)2 = uuT – uTuI ,  but this by itself does  not  prove  X(u)2 = uuT – uTuI   since we 
have not yet established how  X(u)  changes when the basis changes.  First we observe that  

det(Q) = det(QT) = det(Q–1) = 1/det(Q)  so  det(Q) = ±1 .  Changing old basis  B  to new basis  

BQ–1  changes  old(X(u))v = old(u×v)  to  new(X(u))v = new(u×v) = old(u×v)det(Q)  so that   

old(X(u))  changes to  new(X(u)) = old(X(u))det(Q) .  Therefore  X(u)2 = uuT – uTuI   for every 

orthonormal basis.  Though  Problem 3  didn’t ask,  X(u)  changes to  X(Qu) = QX(u)QTdet(Q) .

There is another way to verify that  X(u)2 = uuT – uTuI  ;  use the so-called  triple cross-product  

formula  w×(u×v) = uwTv – vwTu  and set  w = u .

0 r
T
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Since  X(u)u = u×u = o ,  zero is an eigenvalue of  X(u)  and  X(u)3 = X(u)X(u)2 = –uTuX(u) ,  

which implies that at least one of  ±ı√uTu  is an eigenvalue too.  ( ı = √(–1) .)  Since  X(u)  is real 

its complex eigenvalues come in complex-conjugate pairs,  so they include both of  ±ı√uTu .  In 

short,  the three eigenvalues of  X(u)  are  0  and  ±ı√uTu .

Problem 4  ( continued from  Problem 3):  Assume what  Problem 3  asked to be proved,  and 

that  uTu = 1  and  µ  is a real scalar.  Obtain a short formula for  exp(µ X(u))  as a polynomial in  
X(u)  and  cos(µ)  and  sin(µ) ,  and then explain why  exp(µ X(u))  is the operator that rotates a 
vector about axis  u  through an angle  µ .  ( Recall that  exp(ıµ) = cos(µ) + ı·sin(µ)  if  ı = √(–1) .)

Solution 4:  Abbreviate  X(u) = X ,  and deduce that  X3 = –X  as was done in the last paragraph 

of  Solution 3.  Therefore  X2n+1 = (–1)nX .  Then the series for the exponential can be split into

exp(µX) =  I + ∑n>0 µnXn/n!

  =  I +  ∑n≥0 µ2n+1X2n+1/(2n+1)!  +  ∑n>0 µ2nX2n/(2n)! 

  =  I +  ∑n≥0 µ2n+1(–1)nX/(2n+1)!  –  ∑n>0 µ2n(–1)nX2/(2n)! 

  =  I +  Xsin(µ)  +  X2(1 – cos(µ)) ,

which exhibits the desired polynomial.  Confirm that  exp(µX)–1 = exp(–µX) = exp(µX)T  since  

XT = –X .  Therefore  exp(µX)  is an orthogonal operator that preserves  Euclidean  length for all  
µ .  Next choose an arbitrary nonzero  v  and let  w(µ) := exp(µX)v  for all real  µ .  Now,  

uTw(µ) = uTv  because  uTX = oT ,  and  w(µ)Tw(µ) = vTv ,  which implies that the cosine of the 
angle between  u  and  w(µ)  stays the same as between  u  and  v  for all  µ .  Therefore the angle 
between  u  and  w(µ)  stays constant as  w(µ)  moves;  it must be revolving about the axis  u  at 
some rate determinable by differentiation:  dw/dµ = Xw = u×w  stays orthogonal to both  u  and  

w(µ)  and has constant squared magnitude  wTXTXw = –vTX2v .  This means  w(µ)  revolves with 
constant angular velocity performing one revolution when  µ  increases by  2π .  Therefore  µ  is 
the angle of revolution through which  exp(µX(u))  rotates any vector about the axis  u .

Problem 5:  A  Simplex  in an  n-dimensional vector space is the convex hull of any  n+1  points 
that do not lie in any hyperplane of dimension less than  n .  Each of those points is a  vertex  of 
the simplex.  Opposite every vertex is a  face  of that simplex consisting of the convex hull of the 
other  n  vertices.  For example,  in  3-space the simplex is a tetrahedron and its faces are triangles.  
Suppose column vectors  x0, x1, x2, …, xn  are given as the coordinates of the vertices for an  
Orthonormal  basis of an  Euclidean  space.  Exhibit one short formula for the  n-dimensional 
unoriented content  ( like volume )  of the simplex,  and another for the  (n–1)-dimensional 
unoriented content  ( like area )  of the face opposite  x0 ,  whose vertices are at  x1, x2, …, xn .  
( Unoriented contents are the nonnegative magnitudes of oriented contents.)
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Solution 5:  The unoriented content of the simplex is  |det([x1–x0, x2–x0, x3–x0, …, xn–x0])|/n!  
because it is a fraction  1/n!  of the content of a parallelepiped from whose corner at  x0  radiate  n  
edges to all the other vertices of the simplex.  The fraction  1/n!  comes from repeated integrations 
of the cross-sections parallel to a face of each of successive simplices of lower dimensions.

Let  n-by-(n–1)  matrix  F = [x2–x1, x3–x1, x4–x1, …, xn–x1] .  The  (n–1)-dimensional unoriented 

content of the face opposite  x0  turns out to be  √(det(FTF))/(n–1)! .  To see why this is so,  let  

W = WT = W–1  be the elementary orthogonal reflector that swaps the last column of the  n-
dimensional identity matrix  I  with a unit vector orthogonal to all  n–1  columns of  F .  This  W  
reflects the given simplex and its faces without altering their unoriented contents.  The last row of  
R := WF  is a row of zeros;  the columns of  R  are the vectors emanating from  Wx1  to the other  
n–1  vertices of the reflected image of the face opposite  x0 .  This image is an  (n–1)-dimensional 
simplex whose unoriented content is  |det(first  n–1  rows of  R)|/(n–1)! .  This is the same as  

√(det(RTR))/(n–1)! = √(det(FTF))/(n–1)! .

Problem 6:  A  Polar Factorization  F = QH  of a given possibly rectangular real matrix  F  has  

QTQ = I  and  H   Symmetric Positive Semidefinite ,  which means that  H = HT  and  xTHx ≥ 0  for 
every  x .  It is analogous to the representation of each complex number  f = q·h  as a product of its 
magnitude  h = |f|  by a complex number  q  of magnitude  |q| = 1 .  Which real matrices  F  have a 
polar factorization?  Why?

Solution 6:  If  F  has more columns than rows it has no polar factorization because  Q  would 

have to have more columns than rows and couldn’t satisfy  QTQ = I  since the rank of a product  
( I )  can’t exceed the rank of a factor  ( Q ).  Otherwise,  when  F  has no more columns than rows,  

F = QH  obtainable as follows:  Let  R  be an orthogonal matrix of eigenvectors of  FTF = RV2RT  

so that  RT = R–1  and  V2  is a diagonal matrix of eigenvalues of  FTF .  We know that  V2 ≥ O  

elementwise because  xTV2x = (FRx)T(FRx) ≥ 0  for every  x .  Therefore diagonal matrix  V ≥ O  

can be obtained from  V2  by taking square roots elementwise.  Then  H := RVRT  must satisfy  

FTF = H2 ;  in other words,  H  is the symmetric positive semidefinite square root of  FTF .

Life is easy when the columns of  F  are linearly independent.  Then  xTV2x = (FRx)T(FRx) > 0  

for every  x ≠ 0 ,  so that all diagonal elements of  V  are positive;  and  Q = FH–1 = FRV–1RT .  
When the columns of  F  are linearly dependent,  some diagonal element(s) of  V  must vanish,  

and then the corresponding columns of  FR  must vanish too because  (FR)T(FR) = V2 .  Dividing 
the nonzero columns of  FR  by the corresponding nonzero diagonal elements of  V  produces a 
matrix whose nonzero columns are orthonormal;  replace its zero columns by more orthonormal 
columns,  as must be possible because the total number of orthonormal columns will not exceed 

the number of rows,  to obtain finally a matrix  P  of orthonormal columns that satisfies  PTP = I  

and  PV = FR .  Now set  Q := PRT  to find  QTQ = PTRRTP = I  and  QH = PRTRVRT = F .
Incidentally,  if non-square  F  has a polar factorization,  FT  doesn’t,  and  vice-versa.


