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Problem 0: What is Jordan’s Canonical Form %{2 j ?
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_ 21
Solution 0: (g2
003

Problem 1: Here is what is known about a linear operdtothat maps a vector space to itself:
No matrix L that represents in any basis can have 0 as its first diagonal element, but this
elementis 3 in at least one such L. What operatbrisJustify your answer.

Solution 1: We shall see why. = 3 wherel is the identity operator. Evidently # O, so
w'L # o' for some functionaw! # o' . Suppose now that a vecter existed satisfying
w'v=1 andw'Lv = 0; then a basi8 = [v, by, bs, ...] could be chosen in whictb], b, ...]
is a basis for the subspace annihilatedily, so that everyv’b; =0, and therw” would be

the first “row ” in the inverse basB™!, whereupon the matrix LB7ILB that representt
in this basis would havev'Lv = 0 for its first diagonal element. This can’t happen, according to
the problem’s statement. Therefore no veatocan ever satisfy bottv'v=1 andw'Lv =0 ;

thereforeevery w'L =puw' for some scalap = p(w') # 0. This implies L BB is

diagonal foreverybasisB . No two diagonal elements can differ without violating the equation
w'L =pw" whenw' is the difference between their corresponding “ rows 'Bift. This
makes L a scalar multiple of the identity matrix 1, and thereforis a scalar multiple of the
identity operatorl ; the scalar turns out to be 3.

Problem 2: Z is called a “ Commutator ” just when Z = XY-YX for some matrices X and Y

( not determined uniquely by Z). Prove thatif Z is a commutator, E@i%o ZT] for any row
cz

rT and column c.

Solution 2: Suppose Z = XY-YX; this equation remains valid if X is replaced by X + 3l for
any scalar 3, so we might as well assume X is invertible. TheX ¥—Y X wherein

and Y= {0 —rTX_li
1

Y:{OOT
X7c Y

o X
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Bonus Problem 1/2: Prove that if Trace(Z) =0 then Z is a commutator.

Solution 1/2: The asserted inference is obviously valid if Z is 1-by-1 or a bigger zero matrix.
Therefore assume that Z is a nonzero matrix of dimension bigger than 1. Our proof goes by
induction; we assume the desired inference valid for all matrices of dimension smaller than Z'’s
with Trace zero. Z cannot be a nonzero scalar multiple of the identity since Trace(Z) =0, so
0 ﬂ ; observe next that

cB

Trace(B) = 0. Then the induction hypothesis implies that B is a commutator, whereupon

Problem 2 implies that @ZC = XY — YX is a commutator too, whence sois Z .

Problem 1 implies that some invertible C exists such thaZC=

This proof is shorter than was found by K. Shoda (1986an J. Math13361-5, and again by A.A. Albert and B.
Muckenhoupt (1957Michigan Math. J4 1-3.

Problem 3: For any two vectoral andv in Euclidean 3-spacE3, an anti-commutative non-
associativeCross-Product uxv = -vxu is defined as follows from the column vectors u, v and
uxv that represent their respective vectars Bu etc. inany orthonormal basi® :

o

B

3 BL-yn
and v {n
Y 4

y§—al

on —B§
uxv does depend upon badis. Changing to a new orthonormal bag8i® 1 where Q1= Q"
changes the respective representatives,of anduxv from u, v and xv to Qu, Qv and
(Qux(Qv) = Q(wv)-det(Q) , thereby changingxv by a factor det(Q) .

What values can det(Q) take?

Let X(u) be the linear operator acting upﬁgr that mapsv to X(u)v =uxv ; in that basisB
some matrixX(u) represents{(u) . To what does the foregoing change of basis change the

operatorX(u) ? After that proveX(u)2 =uu' —u'ul regardless of orthonormal basis, and then
find the eigenvalues aX(u) .

0-yB

Y 0 —al »

B a O

If u= then xu :=

a
B
Y
T

Solution 3: In that orthonormal basiB , X(u) has the matrixXX(u) =X(|g|) :=

whence X(u)? = uu" — Uu'ul , but this by itself doesiot prove X(u)? =uu’ —u'ul since we

have not yet established hoX(u) changes when the basis changes. First we observe that
det(Q) = det(Q) = det(Q}) = 1/det(Q) so det(Q)«£1. Changing old basiB to new basis
BQ ™! changes old{(u))v = olduxv) to newi(u))v = new(ixv) = olduxv)det(Q) so that
old({(u)) changes to nevwd(u)) = old(<(u))det(Q) . Therefore{(u)2=uu’ —u'ul for every
orthonormal basis. Though Problem 3 didn’t a%fy) changes toX(Qu) = QX(u)Q"det(Q) .

There is another way to verify thé@(u)2 =uu’ —u'ul ; use the so-callettiple cross-product

formula wx(uxv) =uw'v —vw'u and setw =u .
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Since X(u)u =uxu =0, zerois an eigenvalue ¢f(u) and X (u) =X (u)X(u)? = -uTuX(u) ,
which implies that at least one afvu'u is an eigenvalue too. ( K4-1).) SinceX(u) is real
its complex eigenvalues come in complex-conjugate pairs, so they include hothuldi . In
short, the three eigenvalues ¥{u) are 0 andtivu'u .

Problem 4 ( continued from Problem 3): Assume what Problem 3 asked to be proved, and

that u'u = 1 andp is a real scalar. Obtain a short formula for p¥(u)) as a polynomial in
X(u) and cogf) and sing) , and then explain why exp¥(u)) is the operator that rotates a
vector about axiai through an anglet . ( Recall that expf) = cos(1) + 1-sin) if 1=V(-1) .)

Solution 4: Abbreviate X(u) =X , and deduce thaX® =X as was done in the last paragraph
of Solution 3. Thereforex?"*1= (<1)X . Then the series for the exponential can be split into
exp@X) = | +3 5o "X"n!
= 1+ Yo MY 2n+ 1)1 + 350X (2n))!
= 1+ T WEMHELXI@N+HL)! = 3 o H2N-1)X(20)!
= |+ Xsin() + X21 — cosp)) ,
which exhibits the desired polynomial. Confirm that m@(l = exp(pX) = exp(JX)T since

XT=-X . Therefore exp(X) is an orthogonal operator that preserves Euclidean length for all
K . Next choose an arbitrary nonzeroand letw(u) := exp{uX)v for all real u. Now,

u'w(u) =u'v becauseu'™X =o', andw(p)'w(p) =v'v, which implies that the cosine of the
angle betweeru and w(j) stays the same as betweenand v for all p. Therefore the angle
betweenu and w(p) stays constant as(l) moves; it must be revolving about the anisat
some rate determinable by differentiatiorw/dlt = Xw = uxw stays orthogonal to bota and

w(l) and has constant squared magnitud&X "™Xw = —v"X?v . This meansv(p) revolves with
constant angular velocity performing one revolution wipeincreases by 12. Thereforep is
the angle of revolution through which epp{((u)) rotates any vector about the axis

Problem 5: A Simplexin an n-dimensional vector space is the convex hull of any n+1 points
that do not lie in any hyperplane of dimension less than n. Each of those pointstiexaof

the simplex. Opposite every vertex igace of that simplex consisting of the convex hull of the

other n vertices. For example, in 3-space the simplex is a tetrahedron and its faces are triangles.
Suppose column vectorgy, Xy, Xo, ..., X, are given as the coordinates of the vertices for an
Orthonormal basis of an Euclidean space. Exhibit one short formula for the n-dimensional
unoriented content ( like volume ) of the simplex, and another for the (n—1)-dimensional
unoriented content ( like area) of the face opposite whose vertices are a, %y, ..., X, .

( Unoriented contents are the nonnegative magnitudes of oriented contents.)
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Solution 5: The unoriented content of the simplex is |dgtkys, Xo—Xo, X3=Xg» ---, Xi—Xo))|/Nn!
because it is a fraction 1/n! of the content of a parallelepiped from whose corgeraatiate n

edges to all the other vertices of the simplex. The fraction 1/n! comes from repeated integrations
of the cross-sections parallel to a face of each of successive simplices of lower dimensions.

Let n-by-(n—1) matrix F = peXq, X3—Xq, X4=Xq, ..., X7X1] . The (n-1)-dimensional unoriented
content of the face oppositg) xurns out to be/(det(FTF))/(n—l)! . To see why this is so, let

W =WT" =W be the elementary orthogonal reflector that swaps the last column of the n-
dimensional identity matrix | with a unit vector orthogonal to all n—1 columns of F. This W

reflects the given simplex and its faces without altering their unoriented contents. The last row of
R := WF is arow of zeros; the columns of R are the vectors emanating frgnto\the other

n—1 vertices of the reflected image of the face opposgjte This image is an (n—1)-dimensional
simplex whose unoriented content is |det(first n—1 rows of R)|/(n—1)!. This is the same as
V(det(RR))/(n-1)! =v(det(F F))/(n-1)! .

Problem 6: A Polar Factorization F = QH of a given possibly rectangular real matrix F has

Q'Q =1 and H Symmetric Positive Semidefinjtevhich means that H ='Hand XHx >0 for

every X . Itis analogous to the representation of each complex number f=g-h as a product of its
magnitude h = |f| by a complex number g of magnitude |g| =1 . Which real matrices F have a
polar factorization? Why?

Solution 6: If F has more columns than rows it has no polar factorization because Q would

have to have more columns than rows and couldn’t sati$f €I since the rank of a product
(1) can’t exceed the rank of a factor ( Q). Otherwise, when F has no more columns than rows,

F = QH obtainable as follows: Let R be an orthogonal matrix of eigenvectors$of RART
sothat R= R and \# is a diagonal matrix of eigenvalues of = We know that ¥> 0O
elementwise because Wx = (FRx)'(FRx)= 0 for every x . Therefore diagonal matrixa\D
can be obtained from 2\/by taking square roots elementwise. Then H := Rviust satisfy
FTF = H; in other words, H is the symmetric positive semidefinite square rodtfof F

Life is easy when the columns of F are linearly independent. Theéfx x (FRx)' (FRx) > 0

for every x# 0, so that all diagonal elements of V are positive; and QZEHARVIR' .
When the columns of F are linearly dependent, some diagonal element(s) of V must vanish,

and then the corresponding columns of FR must vanish too becaus¢FER) V2 . Dividing

the nonzero columns of FR by the corresponding nonzero diagonal elements of V produces a
matrix whose nonzero columns are orthonormal; replace its zero columns by more orthonormal
columns, as must be possible because the total number of orthonormal columns will not exceed

the number of rows, to obtain finally a matrix P of orthonormal columns that sati$fes I|P
and PV=FR. Nowset Q :=PRofind JQ=PRR'P=1 and QH=PRVR' =F.
Incidentally, if non-square F has a polar factorizatioh,dBesn't, andvice-versa
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