Problem 0: What is Jordan's Canonical Form of $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$?

Solution 0: $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.

Problem 1: Here is what is known about a linear operator L that maps a vector space to itself: No matrix L that represents L in any basis can have 0 as its first diagonal element, but this element is 3 in at least one such L. What operator is L? Justify your answer.

Solution 1: We shall see why $\mathbf{L} = 3\mathbf{I}$ where \mathbf{I} is the identity operator. Evidently $\mathbf{L} \neq \mathbf{O}$, so $\mathbf{w}^{T}\mathbf{L} \neq \mathbf{o}^{T}$ for some functional $\mathbf{w}^{T} \neq \mathbf{o}^{T}$. Suppose now that a vector \mathbf{v} existed satisfying $\mathbf{w}^{T}\mathbf{v} = 1$ and $\mathbf{w}^{T}\mathbf{L}\mathbf{v} = 0$; then a basis $\mathbf{B} = [\mathbf{v}, \mathbf{b}_{2}, \mathbf{b}_{3}, ...]$ could be chosen in which $[\mathbf{b}_{2}, \mathbf{b}_{3}, ...]$ is a basis for the subspace annihilated by \mathbf{w}^{T} , so that every $\mathbf{w}^{T}\mathbf{b}_{j} = 0$, and then \mathbf{w}^{T} would be the first "row" in the inverse basis \mathbf{B}^{-1} , whereupon the matrix $\mathbf{L} = \mathbf{B}^{-1}\mathbf{L}\mathbf{B}$ that represents \mathbf{L} in this basis would have $\mathbf{w}^{T}\mathbf{L}\mathbf{v} = 0$ for its first diagonal element. This can't happen, according to the problem's statement. Therefore no vector \mathbf{v} can ever satisfy both $\mathbf{w}^{T}\mathbf{v} = 1$ and $\mathbf{w}^{T}\mathbf{L}\mathbf{v} = 0$; therefore *every* $\mathbf{w}^{T}\mathbf{L} = \mu\mathbf{w}^{T}$ for some scalar $\mu = \mu(\mathbf{w}^{T}) \neq 0$. This implies $\mathbf{L} = \mathbf{B}^{-1}\mathbf{L}\mathbf{B}$ is diagonal for *every* basis \mathbf{B} . No two diagonal elements can differ without violating the equation $\mathbf{w}^{T}\mathbf{L} = \mu\mathbf{w}^{T}$ when \mathbf{w}^{T} is the difference between their corresponding "rows" in \mathbf{B}^{-1} . This makes \mathbf{L} a scalar multiple of the identity matrix \mathbf{I} , and therefore \mathbf{L} is a scalar multiple of the identity matrix \mathbf{I} , and therefore \mathbf{L} is a scalar multiple of the identity matrix \mathbf{I} .

Problem 2: Z is called a "Commutator" just when Z = XY - YX for some matrices X and Y (not determined uniquely by Z). Prove that if Z is a commutator, so is $\overline{Z} = \begin{bmatrix} 0 & r^T \\ c & Z \end{bmatrix}$ for any row r^T and column c.

Solution 2: Suppose Z = XY - YX; this equation remains valid if X is replaced by $X + \beta I$ for any scalar β , so we might as well assume X is invertible. Then $\overline{Z} = \overline{X} \overline{Y} - \overline{Y} \overline{X}$ wherein

$$\overline{\mathbf{X}} = \begin{bmatrix} 0 & \mathbf{o}^{\mathrm{T}} \\ \mathbf{o} & \mathbf{X} \end{bmatrix} \text{ and } \overline{\mathbf{Y}} = \begin{bmatrix} 0 & -\mathbf{r}^{\mathrm{T}} \mathbf{X}^{-1} \\ \mathbf{X}^{-1} \mathbf{c} & \mathbf{Y} \end{bmatrix}$$

Bonus Problem 1/2: Prove that if Trace(Z) = 0 then Z is a commutator.

Solution 1/2: The asserted inference is obviously valid if Z is 1-by-1 or a bigger zero matrix. Therefore assume that Z is a nonzero matrix of dimension bigger than 1. Our proof goes by induction; we assume the desired inference valid for all matrices of dimension smaller than Z is with Trace zero. Z cannot be a nonzero scalar multiple of the identity since Trace(Z) = 0, so

Problem 1 implies that some invertible C exists such that $C^{-1}ZC = \begin{bmatrix} 0 & r \\ c & B \end{bmatrix}$; observe next that

Trace(B) = 0. Then the induction hypothesis implies that B is a commutator, whereupon Problem 2 implies that $C^{-1}ZC = XY - YX$ is a commutator too, whence so is Z.

This proof is shorter than was found by K. Shoda (1936) *Japan J. Math.* **13** 361-5, and again by A.A. Albert and B. Muckenhoupt (1957) *Michigan Math. J.* **4** 1-3.

Problem 3: For any two vectors **u** and **v** in Euclidean 3-space E^3 , an anti-commutative nonassociative *Cross-Product* $\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}$ is defined as follows from the column vectors **u**, **v** and $\mathbf{u} \times \mathbf{v}$ that represent their respective vectors $\mathbf{u} = \mathbf{B}\mathbf{u}$ etc. in *any* orthonormal basis **B**:

If
$$\mathbf{u} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix}$ then $\mathbf{u} \times \mathbf{v} := \begin{bmatrix} \beta \zeta - \gamma \eta \\ \gamma \xi - \alpha \zeta \\ \alpha \eta - \beta \xi \end{bmatrix}$

 $\mathbf{u} \times \mathbf{v}$ does depend upon basis **B**. Changing to a new orthonormal basis $\mathbf{B}Q^{-1}$ where $Q^{-1} = Q^{T}$ changes the respective representatives of **u**, **v** and $\mathbf{u} \times \mathbf{v}$ from u, v and $\mathbf{u} \times \mathbf{v}$ to Qu, Qv and $(Qu) \times (Qv) = Q(u \times v) \cdot \det(Q)$, thereby changing $\mathbf{u} \times \mathbf{v}$ by a factor $\det(Q)$.

What values can det(Q) take?

Let $\mathbb{X}(\mathbf{u})$ be the linear operator acting upon E^3 that maps \mathbf{v} to $\mathbb{X}(\mathbf{u})\mathbf{v} = \mathbf{u} \times \mathbf{v}$; in that basis **B** some matrix $\mathbf{X}(\mathbf{u})$ represents $\mathbb{X}(\mathbf{u})$. To what does the foregoing change of basis change the operator $\mathbb{X}(\mathbf{u})$? After that prove $\mathbb{X}(\mathbf{u})^2 = \mathbf{u}\mathbf{u}^T - \mathbf{u}^T\mathbf{u}\mathbf{I}$ regardless of orthonormal basis, and then find the eigenvalues of $\mathbb{X}(\mathbf{u})$.

Solution 3: In that orthonormal basis **B**, $\mathbb{X}(\mathbf{u})$ has the matrix $\mathbf{X}(\mathbf{u}) = \mathbf{X}\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} := \begin{bmatrix} 0 & -\gamma & \beta \\ \gamma & 0 & -\alpha \\ -\beta & \alpha & 0 \end{bmatrix}$,

whence $X(u)^2 = uu^T - u^T uI$, but this by itself does *not* prove $X(u)^2 = uu^T - u^T uI$ since we have not yet established how X(u) changes when the basis changes. First we observe that $det(Q) = det(Q^T) = det(Q^{-1}) = 1/det(Q)$ so $det(Q) = \pm 1$. Changing old basis **B** to new basis BQ^{-1} changes $old(X(u))v = old(u \times v)$ to $new(X(u))v = new(u \times v) = old(u \times v)det(Q)$ so that old(X(u)) changes to new(X(u)) = old(X(u))det(Q). Therefore $X(u)^2 = uu^T - u^T uI$ for every orthonormal basis. Though Problem 3 didn't ask, X(u) changes to $X(Qu) = QX(u)Q^T det(Q)$.

There is another way to verify that $\mathbb{X}(\mathbf{u})^2 = \mathbf{u}\mathbf{u}^T - \mathbf{u}^T\mathbf{u}\mathbf{I}$; use the so-called *triple cross-product* formula $\mathbf{w} \times (\mathbf{u} \times \mathbf{v}) = \mathbf{u}\mathbf{w}^T\mathbf{v} - \mathbf{v}\mathbf{w}^T\mathbf{u}$ and set $\mathbf{w} = \mathbf{u}$.

Since $\mathbb{X}(\mathbf{u})\mathbf{u} = \mathbf{u}\times\mathbf{u} = \mathbf{o}$, zero is an eigenvalue of $\mathbb{X}(\mathbf{u})$ and $\mathbb{X}(\mathbf{u})^3 = \mathbb{X}(\mathbf{u})\mathbb{X}(\mathbf{u})^2 = -\mathbf{u}^T\mathbf{u}\mathbb{X}(\mathbf{u})$, which implies that at least one of $\pm i\sqrt{\mathbf{u}^T\mathbf{u}}$ is an eigenvalue too. $(1 = \sqrt{(-1)})$ Since $\mathbb{X}(\mathbf{u})$ is real its complex eigenvalues come in complex-conjugate pairs, so they include both of $\pm i\sqrt{\mathbf{u}^T\mathbf{u}}$. In short, the three eigenvalues of $\mathbb{X}(\mathbf{u})$ are 0 and $\pm i\sqrt{\mathbf{u}^T\mathbf{u}}$.

Problem 4 (continued from Problem 3): Assume what Problem 3 asked to be proved, and that $\mathbf{u}^T \mathbf{u} = 1$ and μ is a real scalar. Obtain a short formula for $\exp(\mu \mathbb{X}(\mathbf{u}))$ as a polynomial in $\mathbb{X}(\mathbf{u})$ and $\cos(\mu)$ and $\sin(\mu)$, and then explain why $\exp(\mu \mathbb{X}(\mathbf{u}))$ is the operator that rotates a vector about axis \mathbf{u} through an angle μ . (Recall that $\exp(\iota\mu) = \cos(\mu) + \iota \cdot \sin(\mu)$ if $\iota = \sqrt{(-1)}$.)

Solution 4: Abbreviate $\mathbb{X}(\mathbf{u}) = \mathbf{X}$, and deduce that $\mathbf{X}^3 = -\mathbf{X}$ as was done in the last paragraph of Solution 3. Therefore $\mathbf{X}^{2n+1} = (-1)^n \mathbf{X}$. Then the series for the exponential can be split into

$$\begin{split} \exp(\mu \mathbf{X}) &= \mathbf{I} + \sum_{n \geq 0} \mu^n \mathbf{X}^n / n! \\ &= \mathbf{I} + \sum_{n \geq 0} \mu^{2n+1} \mathbf{X}^{2n+1} / (2n+1)! + \sum_{n \geq 0} \mu^{2n} \mathbf{X}^{2n} / (2n)! \\ &= \mathbf{I} + \sum_{n \geq 0} \mu^{2n+1} (-1)^n \mathbf{X} / (2n+1)! - \sum_{n \geq 0} \mu^{2n} (-1)^n \mathbf{X}^2 / (2n)! \\ &= \mathbf{I} + \mathbf{X} sin(\mu) + \mathbf{X}^2 (1 - \cos(\mu)) \,, \end{split}$$

which exhibits the desired polynomial. Confirm that $\exp(\mu X)^{-1} = \exp(-\mu X) = \exp(\mu X)^T$ since $X^T = -X$. Therefore $\exp(\mu X)$ is an orthogonal operator that preserves Euclidean length for all μ . Next choose an arbitrary nonzero v and let $w(\mu) := \exp(\mu X)v$ for all real μ . Now, $u^Tw(\mu) = u^Tv$ because $u^TX = o^T$, and $w(\mu)^Tw(\mu) = v^Tv$, which implies that the cosine of the angle between u and $w(\mu)$ stays the same as between u and v for all μ . Therefore the angle between u and $w(\mu)$ stays constant as $w(\mu)$ moves; it must be revolving about the axis u at some rate determinable by differentiation: $dw/d\mu = Xw = u \times w$ stays orthogonal to both u and $w(\mu)$ and has constant squared magnitude $w^TX^TXw = -v^TX^2v$. This means $w(\mu)$ revolves with constant angular velocity performing one revolution when μ increases by 2π . Therefore μ is the angle of revolution through which $exp(\mu X(u))$ rotates any vector about the axis u.

Problem 5: A *Simplex* in an n-dimensional vector space is the convex hull of any n+1 points that do not lie in any hyperplane of dimension less than n. Each of those points is a *vertex* of the simplex. Opposite every vertex is a *face* of that simplex consisting of the convex hull of the other n vertices. For example, in 3-space the simplex is a tetrahedron and its faces are triangles. Suppose column vectors $x_0, x_1, x_2, ..., x_n$ are given as the coordinates of the vertices for an Orthonormal basis of an Euclidean space. Exhibit one short formula for the n-dimensional unoriented content (like volume) of the simplex, and another for the (n-1)-dimensional unoriented content (like area) of the face opposite x_0 , whose vertices are at $x_1, x_2, ..., x_n$. (Unoriented contents are the nonnegative magnitudes of oriented contents.)

Solution 5: The unoriented content of the simplex is $|\det([x_1-x_0, x_2-x_0, x_3-x_0, ..., x_n-x_0])|/n!$ because it is a fraction 1/n! of the content of a parallelepiped from whose corner at x_0 radiate n edges to all the other vertices of the simplex. The fraction 1/n! comes from repeated integrations of the cross-sections parallel to a face of each of successive simplices of lower dimensions.

Let n-by-(n-1) matrix $F = [x_2-x_1, x_3-x_1, x_4-x_1, ..., x_n-x_1]$. The (n-1)-dimensional unoriented content of the face opposite x_0 turns out to be $\sqrt{(\det(F^T F))/(n-1)!}$. To see why this is so, let $W = W^T = W^{-1}$ be the elementary orthogonal reflector that swaps the last column of the n-dimensional identity matrix I with a unit vector orthogonal to all n-1 columns of F. This W reflects the given simplex and its faces without altering their unoriented contents. The last row of R := WF is a row of zeros; the columns of R are the vectors emanating from Wx₁ to the other n-1 vertices of the reflected image of the face opposite x_0 . This image is an (n-1)-dimensional simplex whose unoriented content is $|\det(first n-1 \text{ rows of } R)|/(n-1)!$. This is the same as $\sqrt{(\det(R^T R))/(n-1)!} = \sqrt{(\det(F^T F))/(n-1)!}$.

Problem 6: A *Polar Factorization* F = QH of a given possibly rectangular real matrix F has $Q^{T}Q = I$ and H *Symmetric Positive Semidefinite*, which means that $H = H^{T}$ and $x^{T}Hx \ge 0$ for every x. It is analogous to the representation of each complex number $f = q \cdot h$ as a product of its magnitude h = |f| by a complex number q of magnitude |q| = 1. Which real matrices F have a polar factorization? Why?

Solution 6: If F has more columns than rows it has no polar factorization because Q would have to have more columns than rows and couldn't satisfy $Q^TQ = I$ since the rank of a product (I) can't exceed the rank of a factor (Q). Otherwise, when F has no more columns than rows, F = QH obtainable as follows: Let R be an orthogonal matrix of eigenvectors of $F^TF = RV^2R^T$ so that $R^T = R^{-1}$ and V^2 is a diagonal matrix of eigenvalues of F^TF . We know that $V^2 \ge O$ elementwise because $x^TV^2x = (FRx)^T(FRx) \ge 0$ for every x. Therefore diagonal matrix $V \ge O$ can be obtained from V^2 by taking square roots elementwise. Then $H := RVR^T$ must satisfy $F^TF = H^2$; in other words, H is the symmetric positive semidefinite square root of F^TF .

Life is easy when the columns of F are linearly independent. Then $x^T V^2 x = (FRx)^T (FRx) > 0$ for every $x \neq 0$, so that all diagonal elements of V are positive; and $Q = FH^{-1} = FRV^{-1}R^T$. When the columns of F are linearly dependent, some diagonal element(s) of V must vanish, and then the corresponding columns of FR must vanish too because $(FR)^T (FR) = V^2$. Dividing the nonzero columns of FR by the corresponding nonzero diagonal elements of V produces a matrix whose nonzero columns are orthonormal; replace its zero columns by more orthonormal columns, as must be possible because the total number of orthonormal columns will not exceed the number of rows, to obtain finally a matrix P of orthonormal columns that satisfies $P^TP = I$ and PV = FR. Now set $Q := PR^T$ to find $Q^TQ = P^TRR^TP = I$ and $QH = PR^TRVR^T = F$.

Incidentally, if non-square F has a polar factorization, F^T doesn't, and *vice-versa*.