Written solutions for these problems were to be handed in for grading on Tues. 28 Nov. 2000.

A real symmetric matrix $H=H^{T}$ is called "Positive Definite" just when $x^{T} H x>0$ for every nonzero vector x of the same dimension as H . Positive definite matrices have applications to Mechanics, Statistics, Psychology, Differential Geometry and many other areas.

1. Explain why the inverse H^{-1} exists and is positive definite.

Solution: H cannot be singular since " $\mathrm{Hx}=\mathrm{o}$ " implies " $\mathrm{x}^{\mathrm{T}} \mathrm{Hx}=0$ ", whence " $\mathrm{x}=\mathrm{o}$ ". Therefore H^{-1} exists. And $\mathrm{H}^{-1 T}=\mathrm{H}^{-1}$ is symmetric since $\mathrm{I}=\mathrm{I}^{\mathrm{T}}=\left(\mathrm{H}^{-1} \mathrm{H}\right)^{\mathrm{T}}=\mathrm{HH}^{-1 \mathrm{~T}}$. Finally, H^{-1} is positive definite because $\mathrm{xH}^{-1} \mathrm{x}=\left(\mathrm{H}^{-1} \mathrm{x}\right)^{\mathrm{T}} H\left(\mathrm{H}^{-1} \mathrm{x}\right)>0$ whenever $\mathrm{x} \neq \mathrm{o}$.

A second proof exploits the factorization of any real symmetric $H=Q \Lambda Q^{T}$ in which Q is an Orthogonal (so $\mathrm{Q}^{\mathrm{T}}=\mathrm{Q}^{-1}$) matrix of eigenvectors and Λ is a real diagonal matrix of H 's eigenvalues. These are the Stationary Values (including maximum and minimum) of the quotient $x^{T} H x / x^{T} x$ as x runs through all nonzero real vectors of H's dimension. When H is positive definite too that quotient is positive, and so are H's eigenvalues; then likewise for $\mathrm{H}^{-1}=\mathrm{Q} \Lambda^{-1} \mathrm{Q}^{\mathrm{T}}$. Choleski factorization of $\mathrm{H}=\mathrm{U}^{\mathrm{T}} \mathrm{U}$ provides a third proof: $\mathrm{H}^{-1}=\mathrm{U}^{-1} \mathrm{U}^{-1 \mathrm{~T}}$.
2. Explain why the equation $\mathrm{Y}^{2}=\mathrm{H}$, though it may have many solutions Y , has just one symmetric positive definite solution Y ; it is called the positive definite square root of H and written $Y=\sqrt{\bar{H}}$.

Solution: There are several ways to construct $\mathrm{Y}:=\sqrt{\bar{H}}$. One way exploits the eigenvector-value factorization $\mathrm{H}=\mathrm{Q} \Lambda \mathrm{Q}^{\mathrm{T}}$ already mentioned above; $\mathrm{Y}:=\mathrm{Q} \sqrt{\Lambda} \mathrm{Q}^{\mathrm{T}}$ in which $\sqrt{\Lambda}$ is computed elementwise. A second way sets $\mathrm{Y}:=(2 / \pi) \int_{0}^{\infty}\left(\mathrm{I}+\xi^{2} \mathrm{H}^{-1}\right)^{-1} \mathrm{~d} \xi$, confirmed by using the same factorization. A third way sets $\mathrm{Y}_{0}:=\mathrm{I}$ and runs an iteration $\mathrm{Y}_{\mathrm{n}+1}:=\left(\mathrm{Y}_{\mathrm{n}}+\mathrm{H} \cdot \mathrm{Y}_{\mathrm{n}}{ }^{-1}\right) / 2$ for $\mathrm{n}=0$, $1,2, \ldots$ which can be proved to converge to the limit $Y=\sqrt{\bar{H}}$ most easily by using that factorization again. If (as seems unlikely) a general formula exists to compute $\sqrt{\bar{H}}$ using only finitely many rational arithmetic operations and square roots, nobody has found it. No matter how $\sqrt{\overline{\mathrm{H}}}$ may be constructed, we come now to the task of proving it unique.

Suppose V and Y are both real symmetric and positive definite, and $V^{2}=Y^{2}=H$. Then $x^{T}(V+Y)(V-Y) x=x^{T}(Y V-V Y) x=0$ for all x. To infer that $V=Y$ let μ be an extreme (maximum or minimum) value of the quotient $x^{T}(V-Y) x / x^{T} x$ as x runs over all nonzero vectors x . Then setting the quotient's derivative to zero yields $(\mathrm{V}-\mathrm{Y}) \mathrm{x}=\mu \mathrm{x}$; each extreme value μ must be an eigenvalue of $V-Y$ with an eigenvector x for which we find that $0=x^{T}(V+Y)(V-Y) x=\mu x^{T}(V+Y) x$. Since V and Y are positive definite, $x^{T}(V+Y) x>0$; therefore every extreme value $\mu=0$, whence $x^{T}(V-Y) x=0$ for all x, which implies $V-Y=O$ thus: $4 z^{T}(V-Y) x=(x+z)^{T}(V-Y)(x+z)-(x-z)^{T}(V-Y)(x-z)=0$ for all x and z.

The existence and uniqueness of a positive definite matrix's positive definite square root is worth noting because square roots of a matrix are not so simple in general, not even for 2-by-2 matrices. For instance, $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ has no square root; $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ has just two; $\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right]$ has four; and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ has infinitely many. Can you see why?
3. Show that if H, M and $H-M$ are symmetric and positive definite, so is $M^{-1}-H^{-1}$.

Solution: Verify the identity $\mathrm{M}^{-1}-\mathrm{H}^{-1}=\mathrm{H}^{-1}(\mathrm{H}-\mathrm{M}) \mathrm{H}^{-1}+\mathrm{H}^{-1}(\mathrm{H}-\mathrm{M}) \mathrm{M}^{-1}(\mathrm{H}-\mathrm{M}) \mathrm{H}^{-1}$, and then observe that it expresses $\mathrm{M}^{-1}-\mathrm{H}^{-1}$ as a sum of positive definite matrices, which must also be positive definite. Another shorter identity $\mathrm{M}^{-1}-\mathrm{H}^{-1}=\mathrm{M}^{-1}\left((\mathrm{H}-\mathrm{M})^{-1}+\mathrm{M}^{-1}\right)^{-1} \mathrm{M}^{-1}$ works too but is trickier to verify. A third proof uses $Y:=\sqrt{\bar{H}}$ and $X:=\sqrt{ }\left(\mathrm{Y}^{-1} \mathrm{MY}^{-1}\right)$ to deduce that $\mathrm{I}-\mathrm{X}^{2}=\mathrm{Y}^{-1}(\mathrm{H}-\mathrm{M}) \mathrm{Y}^{-1}$ is positive definite, whence the same conclusion follows for $\mathrm{M}^{-1}-\mathrm{H}^{-1}=\mathrm{Y}^{-1}\left(\mathrm{X}^{-2}-\mathrm{I}\right) \mathrm{Y}^{-1}=(\mathrm{XY})^{-1}\left(\mathrm{I}-\mathrm{X}^{2}\right)(\mathrm{XY})^{-1 \mathrm{~T}}$.
4. Show that if H, M and $H-M$ are symmetric and positive definite, so is $\sqrt{\bar{H}}-\sqrt{\bar{M}}$.

Solution: One proof uses $\sqrt{\bar{H}}=(2 / \pi) \int_{0}^{\infty}\left(\mathrm{I}+\xi^{2} \mathrm{H}^{-1}\right)^{-1} \mathrm{~d} \xi$ and $\sqrt{\mathrm{M}}=(2 / \pi) \int_{0}^{\infty}\left(\mathrm{I}+\xi^{2} \mathrm{M}^{-1}\right)^{-1} \mathrm{~d} \xi$ from problem 2's solution as starting points. For every $\xi>0$ apply problem 3 twice to infer that first $\left(\mathrm{I}+\xi^{2} \mathrm{M}^{-1}\right)-\left(\mathrm{I}+\xi^{2} \mathrm{H}^{-1}\right)$ and then $\left(\mathrm{I}+\xi^{2} \mathrm{H}^{-1}\right)^{-1}-\left(\mathrm{I}+\xi^{2} \mathrm{M}^{-1}\right)^{-1}$ are positive definite; then integrate to deduce the same for $\sqrt{\overline{\mathrm{H}}}-\sqrt{\overline{\mathrm{M}}}$. Another proof parallels the uniqueness proof of problem 2: Let the minimum of the quotient $z^{T}(\sqrt{\bar{H}}-\sqrt{M}) z / z^{T} z$ be μ, the least eigenvalue of $\sqrt{\bar{H}}-\sqrt{\bar{M}}$, so that $(\sqrt{\bar{H}}-\sqrt{\bar{M}}) z=\mu z$ for an eigenvector $z \neq 0$. Then $\sqrt{\bar{M} z}=(\sqrt{\bar{H}}-\mu \mathrm{I}) z$, whence $0<z^{T}(H-M) z=z^{T}\left(H-(\sqrt{\mathrm{H}}-\mu \mathrm{I})^{2}\right) z=2 \mu z^{\mathrm{T}} \sqrt{\mathrm{H}} z-\mu^{2} z^{T} z$, and therefore $\mu>0$.
5. Show that H, M and $H-M$ can be symmetric and positive definite when $H^{2}-M^{2}$ is not.

Solution: The fact that a real symmetric matrix is positive definite if and only if it and its every principal submatrix have positive determinants helps to reveal the following 2-by-2 examples:
$\mathrm{H}=\left[\begin{array}{ll}2 & 2 \\ 2 & 9\end{array}\right], \quad \mathrm{M}=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right] \quad$ and $\mathrm{H}-\mathrm{M}=\left[\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right]$ are positive definite but $\mathrm{H}^{2}-\mathrm{M}^{2}=\left[\begin{array}{ll}7 & 22 \\ 22 & 69\end{array}\right]$ isn't.
$\mathrm{H}=\left[\begin{array}{ll}3 & 3 \\ 3 & 8\end{array}\right], \quad \mathrm{M}=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$ and $\mathrm{H}-\mathrm{M}=\left[\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right]$ are positive definite but $\mathrm{H}^{2}-\mathrm{M}^{2}=\left[\begin{array}{ll}17 & 33 \\ 33 & 64\end{array}\right]$ isn't.
$\mathrm{H}=\left[\begin{array}{ll}8 & 5 \\ 5 & 9\end{array}\right], \quad \mathrm{M}=\left[\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right] \quad$ and $\quad \mathrm{H}-\mathrm{M}=\left[\begin{array}{ll}7 & 5 \\ 5 & 4\end{array}\right]$ are positive definite but $\mathrm{H}^{2}-\mathrm{M}^{2}=\left[\begin{array}{ll}88 & 85 \\ 85 & 81\end{array}\right]$ isn't.

