Math. H110 Problems’ Solutions November 27, 2000 7:05 pm

Written solutions for these problems were to be handed in for grading on Tues. 28 Nov. 2000.

A real symmetric matrix H = His called “Positive Definite” just when'bx > 0 for every
nonzero vector x of the same dimension as H . Positive definite matrices have applications to
Mechanics, Statistics, Psychology, Differential Geometry and many other areas.

1. Explain why the inverse H exists and is positive definite.

Solution: H cannot be singular since “Hx =0 " implies "Hx = 0", whence “x=0".
Therefore H' exists. And AT = H™! is symmetric since |1 = 1= (HH)" = HH™1T. Finally,
H™1 is positive definite because X = (H")"H(H™x) > 0 whenever %o .

A second proof exploits the factorization of any real symmetric \®Qin which Q is an

Orthogonal (so d = Q1) matrix of eigenvectors andl is a real diagonal matrix of H's
eigenvalues. These are tationary Valueg(including maximum and minimum) of the

guotient XHx/x™x as x runs through all nonzero real vectors of H's dimension. When H is
positive definite too that quotient is positive, and so are H’'s eigenvalues; then likewise for

H™1=QA~XQ". Choleski factorization of H =W provides a third proof: #=UU™1T.

2. Explain why the equation 4= H , though it may have many solutions Y , has just one
symmetric positive definite solution Y ; it is called the positive definite square root of H and
written Y =VH .

Solution: There are several ways to construct YEE. One way exploits the eigenvector-value
factorization H=@Q already mentioned above; Y :%0Q" in which VA is computed
elementwise. A second way sets Y :TgRf° (I + EzH‘l)‘1 d¢ , confirmed by using the same

factorization. Athird way sets oY= | and runs an iteration ,Y; := (Y, + H-Y,b/2 for n=0,

1, 2, ... which can be proved to converge to the limit WH=most easily by using that
factorization again. If (as seems unlikely) a general formula exists to comdutesing only
finitely many rational arithmetic operations and square roots, nobody has found it. No matter
how vH may be constructed, we come now to the task of proving it unique.

Suppose V and Y are both real symmetric and positive definite, ardy3/=H . Then
XT(V+Y)(V=Y)x = x(YV=VY)x = 0 forall x. Toinferthat V=Y lep be an extreme

(maximum or minimum) value of the quotienf(¥=Y)x/x"x as x runs over all nonzero
vectors X . Then setting the quotient’s derivative to zero yields (V-Yix;=each extreme
value i must be an eigenvalue of V-Y with an eigenvector x for which we find that

0 = X' (V+Y)(V=Y)x = ux' (V+Y)x . Since V and Y are positive definite! (W+Y)x >0 ;
therefore every extreme valye= 0, whence XV-Y)x =0 forall x, which implies
V=Y = O thus: 4%(V=Y)x = (x+2)"(V=Y)(x+2) — (x=2) (V=Y)(x=z) =0 forall x and z .
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The existence and uniqueness of a positive definite matrix’s positive definite square root is worth noting because

square roots of a matrix are not so simple in general, not even for 2-by-2 matrices. For ir%t%}ce, has no
square root; {1 2} has just tw 1 O} has four; a{rjrdﬂ has infinitely many. Can you see why?
01 04 01

3. Show thatif H, M and H-M are symmetric and positive definite, sois—M™.

Solution: Verify the identity M1 — H1 = HY{(H-M)HL + H{H-M)M~YH-M)H™L, and then
observe that it expresses M- H1 as a sum of positive definite matrices, which must also be
positive definite. Another shorter identity & H™t = M~{(H-M)~2 + M)~ M~ works too

but is trickier to verify. A third proof uses Y ¥H and X ::\/(Y‘lMY‘l) to deduce that

| — X2 = Y YH-M)Y~! is positive definite, whence the same conclusion follows for

M- H1= Yy I (x2= py—1= (X)X — X3 (xy)~1T.

4. Show thatif H, M and H-M are symmetric and positive definite, gblisVM .

Solution: One proof usesH = (2M)fo™ (I + E2H ™) 1dE and VM = (2m)fy™ (I + E2M~YLdE
from problem 2’s solution as starting points. For evéry0 apply problem 3 twice to infer
that first (I +€2M™) — (1 +&2H™Y) and then (I €2H™)™1— (1 +&2M~Y1 are positive definite;
then integrate to deduce the same¥ér—vM . Another proof parallels the uniqgueness proof of

problem 2: Let the minimum of the quotient(¥H —vM)z/z'z be ., the least eigenvalue of
VH -VM , so that {H—-vM)z =z for an eigenvector o . ThenvMz = VH —ul)z,

whence 0 <%H-M)z = Z'(H - WH —pl)z = uz'VHz —p?z"z , and thereforgi >0 .

5. Showthat H, M and H-M can be symmetric and positive definite whlenMd is not.

Solution: The fact that a real symmetric matrix is positive definite if and only if it and its every
principal submatrix have positive determinants helps to reveal the following 2-by-2 examples:

H=122, M=19 and H-M=312 are positive definite but® HM? =| 7 Zi isn'’t.
129 104 12 5 122 6

H=133, M=19 and H-M =323 are positive definite but® HW? =|17 :’j isn’t.
13§ 03 139 133 6

H=|85, M=19 and H-M 375 are positive definite but® Hw? = |88 8j isn't.
59 09 154 185 8
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