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Written solutions for these problems were to be handed in for grading on  Tues. 28 Nov. 2000.

A real symmetric matrix  H = H

 

T

 

  is called  “Positive Definite”  just when  x

 

T

 

Hx > 0  for every 
nonzero vector  x  of the same dimension as  H .  Positive definite matrices have applications to  
Mechanics,  Statistics,  Psychology,  Differential Geometry  and many other areas.

 

1.

 

  Explain why the inverse  H

 

–1

 

  exists and is positive definite.

 

Solution:

 

  H  cannot be singular since  “ Hx = o ”  implies  “ x

 

T

 

Hx = 0 ”,  whence  “ x = o ”.  

Therefore  H

 

–1

 

  exists.  And  H

 

–1T

 

 = H

 

–1

 

  is symmetric since  I = I

 

T

 

 = (H

 

–1

 

H)

 

T

 

 = HH

 

–1T

 

 .  Finally,  

H

 

–1

 

  is positive definite because  xH

 

–1

 

x = (H

 

–1

 

x)

 

T

 

H(H

 

–1

 

x) > 0  whenever  x 

 

≠

 

 o .

A second proof exploits the factorization of any real symmetric  H = Q

 

Λ

 

Q

 

T

 

  in which  Q  is an  

 

Orthogonal

 

  (so  Q

 

T

 

 = Q

 

–1 

 

)  matrix of eigenvectors and  

 

Λ

 

  is a real diagonal matrix of  H’s  
eigenvalues.  These are the  

 

Stationary Values

 

  (including maximum and minimum)  of the 

quotient  x

 

T

 

Hx

 

/

 

x

 

T

 

x  as  x  runs through all nonzero real vectors of  H’s  dimension.  When  H  is 
positive definite too that quotient is positive,  and so are  H’s  eigenvalues;  then likewise for  

H

 

–1

 

 = Q

 

Λ

 

–1

 

Q

 

T

 

 .  Choleski factorization of  H = U

 

T

 

U  provides a third proof:  H

 

–1

 

 = U

 

–1

 

U

 

–1T 

 

.

 

2.

 

  Explain why the equation  Y

 

2

 

 = H ,  though it may have many solutions  Y ,  has just one 
symmetric positive definite solution  Y ;  it is called the positive definite square root of  H  and 
written  Y = 

 

√

 

H .

 

Solution:

 

  There are several ways to construct  Y := 

 

√

 

H .  One way exploits the eigenvector-value 

factorization  H = Q

 

Λ

 

Q

 

T

 

  already mentioned above;  Y := Q

 

√

 

Λ

 

Q

 

T

 

  in which  

 

√

 

Λ

 

  is computed 

elementwise.  A second way sets  Y := (2/

 

π

 

)

 

∫

 

0

 

∞

 

 

 

(I + 

 

ξ

 

2

 

H

 

–1

 

)

 

–1 

 

d

 

ξ

 

 ,  confirmed by using the same 

factorization.  A third way sets  Y

 

0

 

 := I  and runs an iteration  Y

 

n+1

 

 := (Y

 

n

 

 + H·Y

 

n
–1

 

)/2  for  n = 0, 
1, 2, …  which can be proved to converge to the limit  Y = 

 

√

 

H  most easily by using that 
factorization again.  If  (as seems unlikely)  a general formula exists to compute  

 

√

 

H  using only 
finitely many rational arithmetic operations and square roots,  nobody has found it.  No matter 
how  

 

√

 

H  may be constructed,  we come now to the task of proving it unique.

Suppose  V  and  Y  are both real symmetric and positive definite,  and  V

 

2

 

 = Y

 

2

 

 = H .  Then  

x

 

T

 

(V+Y)(V–Y)x = x

 

T

 

(YV–VY)x = 0  for all  x .  To infer that  V = Y  let  

 

µ

 

  be an extreme  

(maximum or minimum)  value of the quotient  x

 

T

 

(V–Y)x

 

/

 

x

 

T

 

x  as  x  runs over all nonzero 
vectors  x .  Then setting the quotient’s derivative to zero yields  (V–Y)x = 

 

µ

 

x ;  each extreme 
value  

 

µ

 

  must be an eigenvalue of  V–Y  with an eigenvector  x  for which we find that  

0 = x

 

T

 

(V+Y)(V–Y)x = 

 

µ

 

x

 

T

 

(V+Y)x .  Since  V  and  Y  are positive definite,  x

 

T

 

(V+Y)x > 0 ;  

therefore every extreme value  

 

µ

 

 = 0 ,  whence  x

 

T

 

(V–Y)x = 0  for all  x ,  which implies  

V–Y = O  thus:   4z

 

T

 

(V–Y)x = (x+z)

 

T

 

(V–Y)(x+z) – (x–z)

 

T

 

(V–Y)(x–z) = 0  for all  x  and  z .
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The existence and uniqueness of a positive definite matrix’s positive definite square root is worth noting because

square roots of a matrix are not so simple in general,  not even for  2-by-2  matrices.  For instance,    has no

square root;    has just two;    has four;  and    has infinitely many.  Can you see why?

 

3.

 

  Show that if  H ,  M  and  H–M  are symmetric and positive definite,  so is  M

 

–1

 

 – H

 

–1

 

 .

 

Solution:

 

  Verify the identity  M

 

–1

 

 – H

 

–1

 

 = H

 

–1

 

(H–M)H

 

–1

 

 + H

 

–1

 

(H–M)M

 

–1

 

(H–M)H

 

–1

 

 ,  and then 

observe that it expresses  M

 

–1

 

 – H

 

–1

 

  as a sum of positive definite matrices,  which must also be 

positive definite.  Another shorter identity  M

 

–1

 

 – H

 

–1

 

 = M

 

–1

 

((H–M)

 

–1

 

 + M

 

–1

 

)–1 M–1  works too 

but is trickier to verify.  A third proof uses  Y := √H   and  X := √(Y–1MY–1)  to deduce that  

I – X2 = Y–1(H–M)Y–1  is positive definite,  whence the same conclusion follows for    

M–1 – H–1 = Y–1(X–2 – I)Y–1 = (XY)–1(I – X2)(XY)–1T .

4.  Show that if  H ,  M  and  H–M  are symmetric and positive definite,  so is  √H – √M .

Solution:  One proof uses  √H = (2/π)∫0∞ (I + ξ2H–1)–1 dξ   and   √M = (2/π)∫0∞ (I + ξ2M–1)–1 dξ  
from problem  2’s  solution as starting points.  For every  ξ > 0  apply problem  3  twice to infer 

that first  (I + ξ2M–1) – (I + ξ2H–1)  and then  (I + ξ2H–1)–1 – (I + ξ2M–1)–1  are positive definite;  
then integrate to deduce the same for  √H – √M .  Another proof parallels the uniqueness proof of 

problem  2:  Let the minimum of the quotient  zT(√H – √M)z/zTz  be  µ ,  the least eigenvalue of  
√H – √M ,  so that  (√H – √M)z = µz  for an eigenvector  z ≠ o .  Then  √Mz = (√H – µI)z ,  

whence  0 < zT(H–M)z = zT(H – (√H – µI)2)z = 2µzT√Hz – µ2zTz ,  and therefore  µ > 0 .

5.  Show that  H ,  M  and  H–M  can be symmetric and positive definite when  H2 – M2  is not.

Solution:  The fact that a real symmetric matrix is positive definite if and only if it and its every 
principal submatrix have positive determinants helps to reveal the following  2-by-2  examples:

H = ,   M =    and   H–M =   are positive definite but   H2 – M2 =    isn’t.

H = ,   M =    and   H–M =   are positive definite but   H2 – M2 =    isn’t.

H = ,   M =    and   H–M =   are positive definite but   H2 – M2 =    isn’t.
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