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What is a  

 

Quadratic Form

 

 ?  It is a scalar-valued functional  ƒ(

 

v

 

) = 

 

¥vv

 

  obtained from a  

 

Symmetric Bilinear Form

 

  

 

¥uv

 

 ,  a functional that is both  

 

symmetric

 

,  

 

¥uv

 

 = 

 

¥vu

 

 ,  and  

 

linear

 

 : 

 

¥u

 

(

 

µ

 

v

 

 + ß

 

w

 

) = 

 

µ

 

¥uv

 

 + ß

 

¥uw

 

  for all real scalars  

 

µ

 

  and  ß  and all vectors  

 

u

 

,  

 

v

 

  and  

 

w

 

  in a
real vector space.  If column vectors  u  and  v  represent vectors  

 

u

 

 = 

 

B

 

u  and  

 

v

 

 = 

 

B

 

v  in some 
basis  

 

B

 

 ,  then  

 

¥uv

 

 = u

 

T

 

Yv = v

 

T

 

Yu  for some symmetric matrix  Y = Y

 

T

 

 ,  and  ƒ(

 

v

 

) = v

 

T

 

Yv .

Symmetric bilinear operator  

 

¥

 

  maps the space of vectors  

 

u

 

  and  

 

v

 

  linearly to its dual space:
       

 

¥u

 

_  is a linear functional in the space dual to vectors  

 

v

 

 ,  and  

 

¥uv

 

 = 

 

¥vu

 

  is its scalar value;
       

 

¥

 

_

 

v

 

  is a linear functional in the space dual to vectors  

 

u

 

 ,  and  

 

¥uv

 

 = 

 

¥vu

 

  is its scalar value.
( See the notes on  “Least Squares Approximation and Bilinear Forms”.)  Matrix  Y  represents 

this operator  

 

¥

 

  in the basis  

 

B

 

 ,  representing  

 

¥u

 

_  by  u

 

T

 

Y  and  

 

Y

 

_

 

v

 

  by  v

 

T

 

Y .  Changing  

 

B

 

  

to a new basis  

 

B

 

C

 

–1

 

  changes  

 

u

 

 ’s  representative  u  to  Cu  in order to keep  

 

u

 

 = 

 

B

 

C

 

–1

 

(Cu) ,  

and similarly changes  v  to  Cv ;  and then,  to keep  

 

¥uv

 

 = (Cu)

 

T

 

(C

 

T–1

 

YC

 

–1

 

)(Cv)  unchanged,  

Y  changes to  C

 

T–1

 

YC

 

–1

 

 .  In other words,  the  

 

Congruent

 

  matrices  Y  and  C

 

T–1

 

YC

 

–1

 

  
represent the same symmetric bilinear form  

 

¥

 

  and the same quadratic form  ƒ(…)  in different 
coordinate systems  ( bases ).

A quadratic form  ƒ(

 

v

 

) = 

 

Zvv

 

  is obtainable from any 

 

non-symmetric

 

 bilinear form  

 

Zuv

 

 

 

≠

 

 

 

Zvu

 

  

represented by a nonsymmetric matrix  Z  thus:  ƒ(

 

v

 

) = v

 

T

 

Zv  even though  u

 

T

 

Zv 

 

≠

 

 v

 

T

 

Zu .  No 
good purpose is served this way;  ƒ(…)  depends upon only the 

 

symmetric

 

 part  

 

¥

 

  of  

 

Z

 

  defined 

thus:  

 

¥uv

 

 := (

 

Zuv

 

 + 

 

Zvu

 

)/2  and so  Y = (Z + Z

 

T

 

)/2 .  Moreover,  only the symmetric bilinear 
form  

 

¥

 

  can be recovered from  ƒ(…)  via the identity  

 

¥uv

 

 = ( ƒ(

 

u

 

+

 

v

 

) – ƒ(

 

u

 

–

 

v

 

) )/4 .

 

Exercise:

 

  Suppose  Q  is a matrix  ( perhaps neither square nor real )  that satisfies  (Qx)

 

T

 

(Qx) = x

 

T

 

x  for all  

 

real

 

 

column vectors  x  of the right dimension.  Must  Q

 

T

 

Q = I ?  Why?

 

Another way to recover a symmetric bilinear form from its quadratic form is by differentiation:  
dƒ(

 

v

 

) = ƒ

 

'

 

(

 

v

 

)dv = 2¥vdv .  In other words,  the derivative of a quadratic form  ƒ(v)  is a linear 
functional  ƒ'(v)  ( of course )  that is also linear in the form’s argument  v  and symmetric in so 

far as  ƒ'(v)u = ƒ'(u)v .  In matrix terms  ƒ'(v) = 2vTY  and  ƒ'(v)u = 2vTYu = 2uTYv = ƒ'(u)v .  
Conversely if  y(v)  satisfies  y(o) = 0  and if its derivative  y'(v) = 2¥v  is linear in  v ,  then  
y"(v) = 2¥  is a constant symmetric bilinear operator  ( symmetric because all continuous second 

derivatives are symmetric )  and  y(v) = ∫ov y'(u)du = ¥vv  is a quadratic form.  In matrix terms,  

y'(v)u = 2vTYu  is linear in  v ,  y"(v)uw = 2wTYu = 2uTYw = y"(v)wu  because  Y = YT  must 

be symmetric,  and  y(v) = ∫ov 2uTYdu = vTYv  regardless of the path of integration.  In short,  a 
quadratic form can be recognized as such by determining whether its derivative depends linearly 
on the form’s argument.

…   …   …   …

Quadratic forms can be defined over complex vector spaces,  but in two ways.  There are complex quadratic forms 
that take complex scalar values algebraically the same as above but quite different from what follows.  There are 
real-valued quadratic forms very much like what follows but each obtained from an  Hermitian  bilinear form  Huv  
that is linear in one argument,  say  u ,  and  Conjugate-Linear  in the other:  Hu(µv + ßw) = µHuv + ßHuw  where  
µ  and  ß  are the complex conjugates of  µ  and  ß .  Bilinear operator  H  is  Hermitian  just when  Hvu = Huv .  In 
matrix terms,  Huv = v*Hu  with an  Hermitian  matrix  H = H* ,  its complex-conjugate transpose;  H  is congruent 

to  C*–1HC–1 .  The  Hermitian  quadratic form  ƒ(v) = Hvv = v*Hv  obtained from  H  is real for all complex  v  
and consequently slightly more complicated than real quadratic forms on real spaces,  to which this note is confined.
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Every quadratic form  ƒ(…)  satisfies an identity called the  Parallelogram Law :
ƒ(x + y) + ƒ(x – y)  =  2ƒ(x) + 2ƒ(y) .

This law is easy to deduce when  ƒ(…)  is obtained from a given bilinear form  ¥ ;  do so!  The 
law gets its name from the case  √ƒ(v) = ||v||  of ordinary length defined in an  Euclidean  space 
by the  Pythagorean  formula.  Conversely …

Theorem: Any real continuous scalar function  ƒ(…)  that satisfies the parallelogram law
for all vectors  x  and  y  in a real linear space must be a quadratic form.

This seems plausible;  setting  x = y = o  implies  ƒ(o) = 0 ,  and then setting  x = o  and letting  

y —› o  in  ƒ(y) – ƒ(–y) = 0  implies  ƒ'(o) = oT  if the derivative exists,  and then doing it again 
with  ƒ(x + y) – 2ƒ(x) + ƒ(x – y)  =  2ƒ(y)  suggests that  ƒ"(x)  is independent of  x .  But a 
suggestion is not a proof.  The  Theorem’s  proof found by  C. Jordan  and  J. von Neumann  
early in the  20th  century is unusual enough to be worth reproducing here.  First we need a …

Lemma:  If a continous scalar functional  ç(x)  satisfies  ç(o) = 0  and   ç(x+y) + ç(x–y) = 2ç(x)  

for all vectors  x  and  y  in a real linear space,  ç(x)  must be a linear functional  ç(x) = cTx .

Proof:  Start by discovering that
ç(x+y) =  ç( (x+y)/2 + (x+y)/2 )  +  ç( (x+y)/2 – (x+y)/2 ) …  since  ç(o) = 0

=  2ç( (x+y)/2 ) …  by hypothesis
=  ç( (x+y)/2 + (x-y)/2 )  +  ç( (x+y)/2 – (x-y)/2 ) …  by hypothesis
=  ç(x) + ç(y)   for all vectors  x  and  y .

Next,  for positive integers  n = 1, 2, 3, ...  in turn,  use this discovery to verify by induction that
ç(nx) =  ç((n-1)x) + ç(x)  =  (n-1)ç(x) + ç(x)  =  nç(x) .

Then from   0 =  ç(nx – nx)  =  ç(nx) + ç(-nx)   verify that  ç(-nx) = -nç(x)  for all  x .  And 
from   ç(x) = ç(nx/n) = nç(x/n)   infer that   ç(x/n) = ç(x)/n .  Similarly   ç((m/n)x) = (m/n)ç(x) 
for all rational  m/n .  Since every real number  µ  is a limit of rational numbers and since  ç(…)  
is continuous,   ç(µx) = µç(x) for every real  µ  and every vector  x .  This ensures that 

ç(µx+ßy) = µç(x)+ßç(y) ,  confirming that  ç(…)  must be a linear functional;   ç(x) = cTx  for 

some  cT .  End of lemma’s proof.

To prove the  Theorem  take any given scalar function  ƒ(...)  that satisfies the parallelogram law 
above and from  ƒ(…)  construct the functional   Ç(x, y) := ( ƒ(x+y) – ƒ(x-y) )/4 .  Evidently  
Ç(x, o) = 0 ;  and  Ç(x, x) = ƒ(2x)/4 = ƒ(x)  and  Ç(y, x) = Ç(x, y)  via the  Parallelogram Law.  
Moreover

4Ç(z, x+y) + 4Ç(z, x-y) =  ƒ(z+x+y) – ƒ(z-x-y)  +  ƒ(z+x-y) – ƒ(z-x+y) 
   =  2ƒ(z+x) + 2ƒ(y)  –  2ƒ(z-x) – 2ƒ(y)    ...  Parallelogram Law
   =  8Ç(z, x)

for all vectors  x,  y  and  z .  Now identify  Ç(z, x)  with the  ç(x)  of the lemma to deduce that  
Ç(…)  is a linear functional of its second argument and,  because  Ç(x, y) = Ç(y, x) ,  also a 
linear functional of its first.  In short,  Ç(…)  is a  symmetric bilinear functional  ¥…  of its two 
arguments;  in any coordinate system in which  x  and  y  are represented by column vectors  x  

and  y ,   we conclude  Ç(x, y) = yTYx  for some real symmetric matrix  Y = YT ,  as claimed.

Exercise:  How do  ¥…  and the coordinate system  ( basis )  determine the matrix  Y ?


