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Vector Spaces,  Bases,  and  Dual Spaces

 

Points,  Lines,  Planes and  Vectors:

 

Strictly speaking,  points are not vectors;  the sum of two points is not another such point but a 
pair of points.  However,  the difference between two points can be regarded as a vector,  
namely the  

 

motion

 

  ( also called  

 

displacement

 

  or  

 

translation

 

 )  that carries one point to the 
other.  In other words,  adding a vector to a point yields a point;  it moves the first point to the 
second.  A vector expression like  

 

b

 

 + 

 

µ

 

c

 

  moves the points’ origin  

 

O

 

   first by  

 

b

 

 ,  and then by 
a scalar multiple  

 

µ

 

  of  

 

c

 

 .  As  

 

µ

 

  runs from  –

 

∞

 

  to  +

 

∞

 

 ,  this point runs along a straight line 
unless  

 

c

 

 = 

 

o

 

 ,  the zero vector.  Alternatively,  the same straight line can be represented by  

 

µ

 

c

 

 + 

 

b

 

  which first runs a straight line parallel to  

 

c

 

  through the origin,  then displaces it by  

 

b

 

 .  
When the intent is clear,  an expression like  

 

b

 

 + 

 

µ

 

c

 

 ,  though a vector,  may sometimes be called 
a  

 

point

 

  or even a  

 

line

 

  if brevity is preferred over strict correctness. ( Many a text-book calls 
the equation  “ 

 

x

 

 = 

 

b

 

 + 

 

µ

 

c

 

 ”  the  

 

parametric

 

  equation  of the straight line;  

 

µ

 

  is the parameter  
and  

 

x

 

  is the displacement from origin  

 

O

 

   to a varying point on the line.)

Unless  

 

c

 

  and  

 

d

 

  are parallel,  the expression  

 

b

 

 + 

 

µ

 

c

 

 + 

 

λ

 

d

 

  displaces the origin to a point that 
traces out a plane as  

 

µ

 

  and  

 

λ

 

  run  independently  from  –

 

∞

 

 to +

 

∞

 

 .  ( If  

 

µ

 

  and  

 

λ

 

  did not run 

 

independently

 

  the figure traced out might be some curve.)  The plane is swept out by parallel 
copies of the straight line  

 

λ

 

d

 

  all passing through the straight line  

 

b

 

 + 

 

µ

 

c

 

 .  Uniformly spaced 
copies of those lines form a cross-hatch pattern in the plane,  filling it with parallelograms.

 

Bases of a Vector Space:

 

For every nonzero space of vectors  

 

x

 

  there are infinitely many ways to choose a coordinate 
system or  

 

Basis

 

  

 

B

 

 = (

 

b

 

1

 

, 

 

b

 

2

 

, …, 

 

b

 

n

 

)  arranged as a  1-by-n  matrix of vectors  

 

b

 

j

 

  that  

 

span

 

  the 
space and are  

 

linearly independent

 

.  “Span”  means every  

 

x

 

  in the space can be expressed as  

 

x

 

 = 

 

B

 

x  if the components  

 

ξ

 

1

 

, 

 

ξ

 

2

 

,  .. 

 

ξ

 

n

 

  of the column vector  x  are chosen appropriately;   

 

i.e.

 

x

 

 =  

 

b

 

1

 

ξ

 

1

 

 + 

 

b

 

2

 

ξ

 

2

 

 + … + 

 

b

 

n

 

ξ

 

n

 

in accordance with the rules of matrix multiplication.  Every  

 

ξ

 

j

 

  is determined uniquely by  

 

x

 

  
because of the  

 

linear independence

 

  of the  

 

b

 

j

 

’s,  which  means any of the following assertions:
If  

 

B

 

x = 

 

o

 

  then  x = o .
If  

 

B

 

x = 

 

B

 

y  then  x = y .
No basis vector  

 

b

 

j

 

  is a linear combination of the others.
Any one assertion implies the others.  ( Can you see why?)  The integer  n  ( assumed here to be 
finite )  is called the  

 

Dimension

 

  of the vector space;  it turns out to be the same no matter how 
the basis is chosen.  To see why,  suppose  

 

C

 

 = (

 

c

 

1

 

, 

 

c

 

2

 

, …, 

 

c

 

m

 

)  is another basis for the same 
space.  Spanning implies  

 

C

 

 = 

 

B

 

H  for some n-by-m  matrix  H ,  and similarly  

 

B = CK ,  so  
BHK = B .  Now linear independence implies column by column that  HK = In ,  the  n-by-n  
identity matrix;  similarly  KH = Im .  These equations imply  m = n  because otherwise,  say if  
m > n ,  a nonzero column  z  satisfying  Hz = o  would have to exist  ( more unknowns than 
equations )  and it would have to satisfy  o ≠ z = Imz = KHz = Ko = o ,  a contradiction.  Thus  

Im = In  and  K = H–1 ;  the vector space has many different bases all of the same dimension  n .
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What Good is a  Basis ?
The freedom to choose a basis often simplifies calculations and proofs.  For instance,  here is a 
phenomenon first noticed by  G. Desargues  (1593 - 1662),  a contemporary of  R. Descartes:

In the plane,  fix two intersecting straight lines  B  and  C  and a  point  p  on neither.  
Through  p  draw two straight lines  X  and  Y  that intersect  B  and  C  in four points all    
told.  Two pairs of those points are not yet joined by straight lines;  draw those lines now 
and,  if they intersect,  call their intersection  q .  As  X  and  Y  move,  always passing 
through  p ,  so does  q  move;  show that it moves along some fixed straight line  D .

To prove the existence of  D  takes some ingenuity if none but the methods of  Euclidean  plane 
geometry may be used;  and if rectangular  Cartesian  coordinates must be used the proof is a 
tedious computation.  But a relatively short computation suffices if we choose an apt basis.

Test these claims by trying to verify  Desargues’  observation above using only the ideas you 
learned in  High-School.  Then you will be better able to appreciate the strategy motivating 
vector notation and its algebra used in the following proof.

Put the origin  o  at the intersection of  B  and  C ,  and then choose basis vectors  b and c  lying along  B  and  C  
respectively and with lengths so chosen that  p = b–c ,  which lies on neither  B  nor  C .  Then  b + c  will turn out 
to lie along  D ,  which also passes through  o .  To confirm this,  let  X  be a line through  p  in a direction  b + ξc .  
Note that  ξ  is neither  0  nor  ∞  since  X  is parallel to neither  B  nor  C .  Then  X  is traced out by  
b–c + µ(b+ξc)  as  µ  runs from  –∞  to  +∞ ,  and intersects  B  at  (1+1/ξ)b  when  µ = 1/ξ ,  and intersects  C  at  
–(1+ξ)c  when  µ = –1 .  Similarly,  as  µ  runs from  –∞  to  +∞ ,  the line  Y  traced out by  b–c + µ(b+ηc)  for any 
fixed finite nonzero  η  intersects  B  at  (1+1/η)b  and  C  at  –(1+η)c .  The last two lines to be drawn are one 
through  –(1+ξ)c  and  (1+1/η)b  traced out by

–(1+ξ)c + µ( (1+1/η)b + (1+ξ)c )   as  µ  runs from  –∞  to  +∞ ,
and another through  –(1+η)c  and  (1+1/ξ)b  traced out by

–(1+η)c + λ( (1+1/ξ)b + (1+η)c )   as  λ  runs from  –∞  to  +∞ .
Aptly determined values of  µ  and  λ  make these two expressions equal to a common value  q ,  which is where the 
lines intersect.  Those apt values of  µ  and  λ  are the solutions of the two linear equations obtained by equating 
coefficients of  b  and  c ;  the results are

µ =  η(1+ξ)/(ξη  – 1) ,   λ =  ξ(1+η)/(ξη  – 1) ,  and finally
q =  ( (1+ξ)(1+η)/(ξη  – 1) )(b + c) ,

which runs along  D  as  ξ  and  η  vary with  X  and  Y ,  Q. E. D.

Had a basis other than  (b, c)  been chosen,  b  and  c  would have been represented by some column vectors  b  and  

c  other than    and   ,  and the point  p  would have had coordinates other than   ,  and the column 

vector  q  representing  q  would have possessed components in some constant ratio more complicated than  1:1 .  
None the less,  AND THIS IS IMPORTANT,  the equations relating  p,  b,  c,  q  and the scalars  µ,  λ,  ξ  and  η  
would have been the same as above except for the bold-face.  When written out componentwise,  the equations 
would have appeared much messier but the same algebraic manipulations would have been performed.  ( No such 
algebra was needed by  Desargues,  who merely imagined  o  and  p  to lie on a  “ line at infinity.”  His observation 
serves now as an axiom of  Projective Plane Geometry,  in which two lines always meet;  they can’t be parallel.)

Our strategy is to combine  Geometry  and  Algebra.  First we relate a geometrical or physical 
situation to its description in terms of abstract vectors,  usually independent of a coordinate 
system.  By choosing a convenient basis we eliminate inessential details.  Then we convert to 
column vectors if necessary to perform the algebraic computations required.  Then we convert 
back to the original setting.  To carry out our strategy,  we need geometrical interpretations for 
the entities and operations of vector and matrix algebra.  Watch for them as we go.

1

0

0

1

1

1–
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Inverses of Bases,  Linear Functionals,  and the  Dual Space
Once again let  B = (b1, b2, …, bn)  be a basis for a space of vectors  x  to which column vectors 
are mapped by the linear operator  B .  This means that for each vector  x  in the space a unique 
column vector  x  can be found to satisfy  x = Bx ,  and similarly  y  can be found for  y = By ,  
and   αx + βy = B(αx + βy) .  Because the  “columns”  of  B  are linearly independent,  αx + βy  

is determined uniquely by the last equation,  so an operator  B–1  can be defined that computes 

the column vectors  x = B–1x  and  y = B–1y  belonging to abstract vectors  x  and  y  in the 

space,  and it is also a linear operator:  B–1(αx + βy) = αx + βy .  In fact,  B–1B = In ,  the  n-by-

n  identity matrix;  and  B B–1 = I  is the identity operator that leaves every vector  x = Ix  in the 
space unchanged.

Just as any square matrix can be viewed as a column of rows,  so
(  eT

1  )
(  eT

2  )
B–1 = (  …   )

(  eT
n  )

is best viewed as a  “column”  of linear operators  eT
k  that map abstract vectors to scalars;  

specifically,  eT
k x  is the  kth  component  ξk  of the column vector  x = B–1x .  Hence  eT

k  is by 

itself the operator that,  acting upon any abstract vector  x ,  yields the  kth  component of the 
column vector  x  that represents  x  using the basis  B .  To form a picture in two or three 

dimensions of what  eT
k  does,  draw a parallelogram or a parallelepiped with one vertex at the 

origin,  with edges there all parallel to basis vectors  bj ,  and with its opposite vertex at any 

chosen vector  x .  Then  eT
k x = ξk  is the scalar multiplier that makes  bkeT

k x = bkξk  the  kth  

edge of that parallelogram or parallelepiped,  so  bkeT
k  projects   to this  kth  edge in a direction 

parallel to the line or plane containing all other edges.  Draw pictures!

From any row  wT = (ω1, ω2, …, ωn)  construct  wT = wTB–1 =  ω1eT
1 + ω2eT

2 + … + ωneT
n ,  

which acts upon a vector  x = Bx  whose column  x  has components  ξ1,  ξ2, …,  ξn  to produce  

wTx = wTx =  ω1ξ1 + ω2ξ2 + ... + ωnξn .  This  scalar product  is so important that it has many 
aliases:  w•x,  <x,w>,  <x|w>  and  (x, w)  are some of them,  but we shall see later that they are 

not exact equivalents.  The entity  wT  is a  linear functional,  a linear operator because  

wT(µx + λy) = µwTx + λwTy ,  and a  functional  rather than a  function  because its values are 
exclusively scalar.  A geometrical interpretation for it will be offered in a few moments.

Historical digression:  The noun  “functional”  arose first from the adjective in  Functional Analysis,  which was at 

first concerned with operators that map functions to scalars;  an instance is the definite integral  h(ƒ) =  ∫o1 ƒ(K) dK  
regarded as an operator upon functions  ƒ(K) .  In time,  each function  ƒ(K)  became identified with a point and then 

a vector  f  in a space of functions.  Then it became possible to write  h(ƒ) = hTf  where the linear functional    hT  

stood for the integral operator   ∫o1 …(K) dK  divorced from the function  ƒ  upon which it acted.  Note how the 

functional  hT  is not the transpose of a vector  h ;  there is no vector  h .  Pedants who wished to stress this non-

relationship used to choose,  say,  vT  for a functional and  v  for an unrelated function,  like a playwright choosing 
names  “Edwin”  and  “Edwina”  for unrelated characters.  That’s a confusing choice I intend to avoid.
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Now observe that every linear functional  wT  acting upon the given vector space,  no matter 

how  wT  is constructed,  must satisfy  wT(µx + λy) = µwTx + λwTy ,  and therefore must be 

expressible in the form  wT = wTB–1  by setting  ωj = wTbj  in the row vector  wT .  Work this 

out!   Therefore the set of all these linear functionals  wT  constitutes another vector space,  

called the Dual  or  Conjugate  of the space of vectors  x ,  with the “rows”  eT
k  of  B–1 as a 

basis.  The two spaces are situated symmetrically,  dual to each other  ( provided the dimension  
n  is finite ).  For instance,  dual to the space of row  n-vectors  is the space of column  n-
vectors;  their only difference appears now to be that one space’s vectors are written on the left,  
the other’s on the right of the scalar product.  Other differences will turn up later.

To any fixed scalar  ß  and functional  wT ≠ oT  corresponds the locus traced out by all vectors  

x  that satisfy the equation  wTx = ß .  This locus divides the space of vectors  x  into two half-

spaces,  one where  wTx > ß  and one where  wTx < ß .  To gauge the shape of this locus,  we 
find that if it contains  x1  and  x2 ≠ x1  then it contains the whole straight line   x1 + µ(x2–x1)  
through them.  Therefore the locus is that straight line if the space of vectors  x  is just two-
dimensional.  Similarly,  if the locus contains  x1  and  x2  and  x3  with nonzero and non-
parallel  x2-x1  and  x3-x1 ,  then the whole plane   x1 + µ(x2-x1) + λ(x3-x1)   lies in the locus 
too.  The locus is that plane if the whole space is just three-dimensional.  In spaces of higher 
dimension the locus is a  hyperplane  whose dimension is one less than the dimension of the 
space.  To complete this picture we should confirm that the locus really has enough points in it 
properly situated to generate a  hyperplane;  that confirmation requires a basis  B  for the space.  

Using this basis,  the equation  wTx = ß  takes the form  wTx = ß ,   i.e.
ω1ξ1 + ω2ξ2 + … + ωnξn  = ß ,

which is one linear equation with  n  unknowns  ξ1,  ξ2,  …,  ξn .  Suppose  ωn ≠ 0 ;  then the 
first   n–1  of those unknowns may be chosen arbitrarily.  For instance,  set all of them to  0 ,  or 
set one of them to  1  and the rest to  0 ,  and then solve for  ξn .  This is a way to generate the 
needed  n  points  xj  with  n–1  linearly independent differences.  Try it for   n = 2  and for  
n = 3.  There are other ways;  what are the hyperplane’s  intercepts  on the coordinate axes?

If we wish to think of a set of linear functionals as a set of  “vectors”  in the dual-space,  how do 

we assign direction and magnitude to a  “vector”  (functional)  wT ?  Its direction is the  normal  

shared by the family of parallel loci  wTx = ß  generated by changing  ß .  And if  ß  is stepped 
through uniformly distributed values,  say   ß  =  …, –2, –1, 0, 1, 2, 3, … ,  then the 
corresponding loci form a  ruling  of uniformly spaced lines or planes or hyperplanes,  each 
separated from its two neighbors by a distance that is inversely proportional to the magnitude of  

wT ,  as can be verified by observing that for any  µ > 0  the set of loci whose equations are  

(µwT)x = ß  is the same as the set whose equations are  wTx = ß/µ .  The foregoing notions of 
direction and magnitude seem vague because they are so general;  they do not require a way to 
compare magnitudes of non-parallel vectors nor to measure angles between them.

Footnote:  “Duality”  sometimes means a  1-to-1  map between hyperplanes in one space and points in its dual 

space,  omitting  o  and  oT ,   set up by an equation like  wTx = 1 .
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Change of Basis:
Suppose now that  B  and  C  are two different bases for the same space.  We have seen above 

that  B = CK  and  C = BK–1  for some matrix K .  Some author calls it the  transition matrix  
from  B  to  C ;  or is it from  C  to  B ?  I can’t remember.

If the coordinates of  x  in basis  B  form a column  x = B–1x ,  then the coordinates of  x  in 

basis  C  must form a column   x = C–1x = KB–1x = Kx .  And if the coordinates of  wT  in basis  

B  form a row  wT = wTB ,  then the coordinates of  wT  in basis  C  must form a row  

wT = wTC = wTBK–1 = wTK–1 .  Hence,  any change of basis can be effected by multiplying 
coordinates by a suitable nonsingular  ( invertible )  matrix or its inverse.  Which?  Don’t try to 
memorize which;  repeating the foregoing manipulations is easier and more reliable.

Note that the scalar product   wTx = wTx = wTx   is the same no matter which basis is used;  this 
is another instance of the important principle mentioned above:

Geometrically meaningful coordinate-free equations involving scalars,  abstract vectors and 
functionals remain unchanged in form after a basis is used to convert vectors into columns 
and functionals into rows,  and these equations are therefore unchanged by changes of basis.  
The choice of basis determines numerical values for coordinates,  some of which vanish 
conveniently if the basis is chosen for this purpose.

Many notations for vectors violate this principle because,  designed initially for  Euclidean  vector spaces,  these 
notations fail to distinguish a space from its dual.  Failure is inevitable because there is no way to distinguish an  
Euclidean  space from its dual.  These notations appear in many a text-book and in computer software where 
vectors are represented sometimes by rows,  sometimes by columns,  thus giving rise to confusing formulas and 
notations like  (v)B  for the row and  [v]B  for the column that represent the same abstract vector  v  relative to a 
varying basis  B .  Confusion intensifies when the kind of symbol  “v”  used for an abstract vector  v  is used also in 
one place for a row,  in another for a column,  so you can’t tell whether expressions involving several such symbols 
are well-formed without scrutinizing their context.  This kind of confusion is so widespread that you must learn to 
cope with it;  but I hope you won’t take that as a license to imitate other persons’ mistakes.

To treat the symbol  “ wT ”  in use for an abstract functional as if it were an abstract vector  w  

transposed is a mistake.  Although  “ GT ”  stands for the transpose of a  matrix  G ,  there is no 

universally valid relation between an abstract functional  wT  and an abstract vector  w  with the 
same name  “w”.  The trouble is not that no such relations exist,  but that there are too many of 
them.  Choosing one,  establishing a map between the vectors in a space and the functionals in 
its dual space,  turns the spaces into something special:–  real Euclidean,  or  complex Unitary,  
or  Hilbert  or  Minkowski  or  Banach  or  …  spaces.

To see how that happens suppose we try to associate real vectors  w  with functionals  wT  by 
giving them equal coordinates in every coordinate system,  writing those coordinates in a row  

wT  for  wT ,  a column  w  for  w .  When we change to a new coordinate system that now uses 
column vector  v = Kv  to represent abstract vector  v  formerly represented by column  v ,  we 

must now represent functional  fT ,  formerly represented by row  fT ,  by row  fT = fTK–1  in 

order to keep  fTv = fTv = (fTK–1)(Kv) = fTv .  As a vector,  w  formerly represented by  w  is 
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now represented by  w = Kw;  as a functional,  wT  formerly represented by  wT  is represented 

now by  wT = wTK–1 .  For the new coordinates of  w  and  wT  to be equal,  as the old were 

assumed to be,  wT  must be the transpose of  w ,  which means  wTK–1 = (Kw)T = wTKT .  If 

this equation must hold for every  wT ,  it implies  K-1 = KT ;  can you see why?

In short,  to be consistent with an association between a real vector space and its dual that gives 

each vector  w  and associated functional  wT  equal coordinates in every coordinate system,  we 

must restrict coordinate transformations’ matrices  K  to satisfy  KT = K –1 .  Such matrices are 
very special;  called  orthogonal matrices,  they represent basis changes from one  orthonormal  
coordinate system to another in a  Euclidean  space whose every vector  v  has a  length  ||v|| 
defined by the familiar  Pythagorean  formula from the coordinates of  v  thus:

||v|| :=  √(vTv)  =  √(vTv)  =  √( sum of squares of coordinates of  v )  .
It is easy to verify that this formula for length is independent of orthogonal changes of basis;  

i.e.  vTv = (Kv)T(Kv) = vTv  whenever  K  is an orthogonal matrix.  More interesting is the 
deduction that  K  must be orthogonal if the last equation is satisfied for every  v ;  can you 
prove this?  Later we shall see that infinitely many  n-by-n  orthogonal matrices exist,  every one 

the product of at most  n  elementary  orthogonal reflections  each of the form  I – (2/cTc)ccT  
for a different column  c .  Products of even numbers of reflections turn out to be  rotations.

Euclidean,  non-Euclidean and Affine Spaces
The vector spaces with which you are best acquainted are  Euclidean  spaces.  Each is a real 
space with an orthonormal basis  B  in which every vector  v = Bv  has a length computed from 

its coordinates by the  Pythagorean  formula  ||v|| = √(vTv) .  Another orthonormal basis  

C = BK–1  can be obtained by post-multiplying by any orthogonal matrix  K–1 = KT .  If vector  

w = Bw  and functional  wT = wTB–1  are related by equal  ( though transposed )  coordinates  

w  and  wT  with one orthonormal basis,  the equality of their coordinates persists with every 
orthonormal basis.

Thus,  an  Euclidean  space is its own dual space.  But this relationship is spoiled by the choice 

of a non-orthonormal basis.  Then  w  and  wT  no longer have equal coordinates,  and length no 
longer satisfies the  Pythagorean  formula.  If you were given a vector space but not an 
orthornormal basis for it,  could you tell whether the space is  Euclidean?  It might not be.

A way to tell was found early in this century by  C. Jordan  and  J. von Neumann.  It is a test 
applied to the lengths of vectors,  provided length is defined.  ( There are vector spaces for 
which length is undefined,  or is defined differently than by the  Pythagorean  formula.)

Theorem: An orthonormal basis exists if and only if length satisfies the Parallelogram Identity :
||x + y||2 + ||x – y||2  =  2||x||2 + 2||y||2 ,

and then the  Euclidean  association between vectors and functionals is provided by the formula
wTx =  ( ||x + w||2 – ||x – w||2 )/4 .

The theorem’s proof is not obvious.  It will be presented later in this course.
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The complex vector space analogous to a real  Euclidean  space is a complex  Unitary  space.  The most obvious 

differences are changes in notation from transposes  wT  to complex conjugate transposes  w* ,  from  orthogonal 

matrices satisfying  KT = K –1  to  unitary  matrices satisfying  K* = K–1 ,  and from the  Pythagorean  formula for  
Euclidean  length to  ||w|| :=  √(w*w)  =  √(w*w)  =  √( sum of squared magnitudes of coordinates of  w )  .  The  
Parallelogram  identity stays the same,  but the formula after it provides  Re(w*x) .

Non-Euclidean  ( and  non-Unitary )  vector spaces do exist.  The simplest example is infinite-
dimensional:  Consider the space of columns with infinitely many  rational  components of 
which only finitely many can be nonzero.  It is a vector space because such columns can be 
multiplied by rational scalars and added to get more of the same.  The dual space consists of 
rows with infinitely many rational components chosen arbitrarily.  This dual space is not like the 
original vector space at all;  there are more rows than there are columns.

The simplest vector spaces have no special relation between a space and its dual  ( other than 
that the dual space’s vectors are written on the left side of the scalar product )  and no definition 
of length for vectors,  though two parallel vectors’ lengths can be compared because one is a 
scalar multiple of the other.  These spaces are called  Affine  spaces;  their geometries concerns 
the properties of configurations of objects that persist after  Affine  transformations that map 
points  ( vectors )  to points,  lines to lines,  planes to planes,  …,  hyperplanes to hyperplanes,  
and preserve parallelism.  ( If parallelism is not preserved the geometry is  Projective.)  
Although these spaces lack a definition for vector length,  we shall see later that they do posses a 
definition for  Content :–  area or volume or hypervolume.  Every other kind of vector space can 
be obtained from an affine space by specializing it in some way,  usually by adding a definition 
for vector length or defining a map between the vector space and its dual.  In the absence of 
such a map,  and usually when one exists too,  we will find that linear algebra works best when 
the notation distinguishes between a space and its dual.

Example:  Cubic Polynomials
Cubic polynomials   p(ξ) = πo + π1ξ + π2ξ2 + π3ξ3  constitute a vector space because the sum of 
two of them is another,  and the product of one with a constant scalar is yet another.  Note that   
π3 = 0  is allowed. The coefficients  πo, π1, π2, π3  are arbitrary constant scalars but  ξ  is an  
indeterminate.  The cubic whose coefficients are all  0  is the zero vector in the space;  it is the 
only cubic that takes the value  0  for all  ξ  because a nonzero cubic cannot vanish at more than 

three values  ξ .  ( Why not?)  That’s why the  “columns”  of  U := (1, ξ, ξ2, ξ3)  are linearly 
independent functions;  they constitute a basis for the space,  which therefore has dimension  4 .

The usual notation for functions is ambiguous.  When we see  “ p(ξ) = πo + π1ξ + π2ξ2 + π3ξ3 ”  
out of context we cannot tell whether it stands for the cubic polynomial or for its value when its 
indeterminate takes the value ξ .  Let us now agree upon the latter interpretation,  and write p  
for the cubic as a whole.  In a similar spirit,  we write  un  for the polynomial whose value is  

un(ξ) = ξn .  Then we see  U := (uo, u1, u2, u3)  is the aforementioned basis for the space of 
cubics,  and that  p = Up  for a column vector  p  whose components are  πo,  π1,  π2  and  π3 .  

What is  U–1 ?  Somehow it extracts the components of  p = U–1p  from the  “cubic as a whole.”
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Exercise:  Choose a constant scalar  ß  and let  vn  stand for the polynomial  vn(ξ) := un(ξ + ß) ,  so that  

vn =  un + nßun–1 + n(n-1)ß2un–2/2 + … .  For the space of cubics,  V := (vo, v1, v2, v3)  is another basis,  one that   
corresponds to a  “shifted”  origin of the variable  ξ ;  i.e.,  Vp  is the cubic  p(ξ + ß)  whose expansion in powers of  

ξ  has coefficients  U–1Vp .  Exhibit matrix  U–1V  and its inverse explicitly in terms of  ß .  What does  VU–1  do?

What relates the cubic  p  to one of its values  p(ξ)  is an operator  eT(ξ)  called  evaluation at   

ξ  and defined by  eT(ξ)p = p(ξ) .  Evidently  eT(ξ)  is a  linear functional  because,  if  p  and  q 

are two cubics,  eT(ξ)(p + q) = p(ξ) + q(ξ) = eT(ξ)p + eT(ξ)q .  In the basis  U  the components 

of evaluation functional  eT(ξ) constitute a row vector  eT(ξ) = eT(ξ)U = (1, ξ, ξ2, ξ3)  of scalar 

values  ( not functions as they were for  U ),  whence eT(ξ)p = eT(ξ)p = p(ξ)  as expected.

Interpolation  is the recovery of a function from samples of its values.  Let  X := {ξ1, ξ2, ξ3, ξ4}  
be a set of four distinct values of  ξ ;  we shall recover the whole cubic  p  from four sample-
values  {p(ξ1), p(ξ2), p(ξ3), p(ξ4)} .  Written as a column vector,  these sample-values are the 

result  ET(X)p  of applying to the cubic  p  a linear operator  ET(X)  comprising four evaluation 

functionals  {eT(ξ1), eT(ξ2), eT(ξ3), eT(ξ4)}  written in a column.  Interpolation is the inversion 

of  ET(X) .  To accomplish this define quartic polynomial  Ç(ξ, X) := (ξ–ξ1)(ξ–ξ2)(ξ–ξ3)(ξ–ξ4)  
and its derivative  Ç '(ξ, X) := ∂Ç(ξ, X)/∂ξ   and then four cubics  cj(X)  whose values are  

eT(ξ)cj(X) = cj(ξ, X) := Ç(ξ, X)/((ξ–ξj)Ç '(ξj, X))  for  j = 1, 2, 3, 4 .  If these cubics are linearly 
independent they can be assembled into a basis  C(X) := (c1(X), c2(X), c3(X), c4(X)) .  Confirm 

that  C(X)  is a basis for the space of cubics by proving that  ET(X)C(X) = I ;  and then confirm 

that  C(X) = ET(X)–1  by proving that  C(X)ET(X) = I ,  the identity on the space of cubics.  

( Do you see why  C(X)ET(X)p = p ?)  The operator  C(X)  is called  “ Lagrange Interpolation.”

To every function  w(τ)  continuous on  –1 ≤ τ ≤ 1  is associated a linear functional  wT  thus:  

wTp = ∫–1
1 w(τ) p(τ) dτ .  This linear functional’s representation as a row  wT = (ωo, ω1, ω2, ω3)  

in basis  U  is  wT = wTU ,  so  ωn = wTun = ∫–1
1 w(τ) τn dτ .  Can every  linear functional  mT  

acting upon cubics  p  be represented as an integral  mTp = ∫–1
1 m(τ) p(τ) dτ  and thus associated 

with some continuous function  m(τ) ?  Yes;  one such  m(τ)  is derived from  mT  as follows:

The expression   h(ξ, τ) = (9 – 15τ2 + 75τξ  – 105τ3ξ – 15ξ2 + 45τ2ξ2 – 105τξ3 + 175τ3ξ3)/8   is 
a cubic polynomial in  τ  as well as  ξ .  Think of it as the cubic   h(τ) = Uh(τ)  where column  

h(τ)  has components  (9–15τ2)/8,  (75τ – 105τ3)/8,  (–15 + 45τ2)/8  and  (–105τ + 175τ3)/8 .  

Now  m(τ) = mTh(τ)  turns out to have the desired property:   mTp = ∫–1
1 m(τ) p(τ) dτ  for  

every  cubic  p ,  as can be verified by confirming that  ∫–1
1 h(τ) eT(τ) dτ = I  ( you must do this 

yourself )  and then that   ∫–1
1 h(τ) eT(τ) dτ = I  is the identity operator on the space of cubics.  

Because of the last two equations,  the expression  h(ξ, τ) = h(τ, ξ) = eT(ξ)h(τ) = eT(ξ)h(τ)  is 
called a  reproducing kernel.  Can you figure out how it was constructed?
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Thus we see that every linear functional  mT  acting on cubics  p  is representable either as a row 

vector  mT  acting upon their columns  p  of coefficients,  or as an integral acting upon their 

values  p(ξ) ,  and in the integral  mTp = ∫–1
1 m(τ) p(τ) dτ  the function m(τ)  associated with  

mT  can be chosen in many ways,  one of them as a uniquely determined cubic !  This identifies 
the space of cubics with its dual space in such a way as to turn them into an  Euclidean  space 

wherein length is defined by  ||p|| := √( ∫–1
1 p(τ)2 dτ )  = √(pTAp)  for a suitable matrix  A  not 

the identity matrix.  ( Can you determine  A ?  Compare  A–1  with  h(ξ, τ) .)  Because basis  U  

is not orthonormal,  the column of coefficients  U–1m  of the cubic polynomial  m ,  whose 

value  eT(τ)m = m(τ)  is determined by the functional  mT ,  are not the same as the elements of 

the row vector  mT  that delivers  mTp = mTp  from the column of coefficients  p = U–1p  of 

every cubic  p .  Instead  mT = (U–1m)TA ;  can you see why?  In short,  if  m  and  p  are cubics 

we can evaluate  mTp  either from its definition as an integral or directly from their coefficients 
using the last three equations and the matrix  A .

Polynomials  qo := uo/√2 ,  q1 := u1√(3/2) ,  q2 := (3u2 – uo)√(5/8) ,  q3 := (5u3 – 3u1)√(7/8)  
provide an orthonormal basis  Q := (q0, q1, q2, q3)  for the space of cubics.  Prove this by 

verifying  QTQ = I ;  you can compute integrals or matrix products to do it.

Now we can address the following question:  How few samples of a cubic  p  suffice to 

determine its definite integral  iTp := ∫–1
1 p(τ) dτ ?  This integral defines a linear functional  iT ,  

and we wish to express it in terms of as few evaluations  eT(ß)  as possible.  One sample  eT(ß)p  

is too few because it could vanish though  iTp  does not;  can you see how?

Two samples suffice;   this is remarkable because they are too few to recover  ( interpolate )  p .  

The proof that two samples suffice comes about because  iT = qo
T√2 ,  which is orthogonal to  

q1,  q2  and  q3 ,  so  iTQ = (√2, 0, 0, 0) .  Another solution of this last equation turns out to be  

iT = eT(–1/√3) + eT(1/√3) ,  as can easily be verified.  The last formula is called  “Gaussian 
Quadrature.”  It is a special case  n = 2  of a general phenomenon;  n  samples artfully situated 

suffice to determine the integral  iTp  of any polynomial  p  of degree less than  2n .

What good comes from thinking of a cubic polynomial as a point or vector in a  4-dimensional 
space?  There are two benefits.  One is a kind of consolidation of knowledge that makes it all 
easier to remember;  knowledge gained in one area,  say calculus,  seems more familiar when it 
is described in terms that remind us of what we learned in another area,  say  geometry,  and  
vice-versa.  But this benefit is invisible to people who do not yet know enough to be worried 
about how to remember it all.  The second benefit is an ability to  “ambush”  problems,  to 
overwhelm them by attack from unexpected directions,  as will happen in other  Math. courses.


