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Vector Spaces, Bases, and Dual Spaces

Points, Lines, Planesand Vectors:

Strictly speaking, points are not vectors,; the sum of two pointsis not another such point but a
pair of points. However, the difference between two points can be regarded as a vector,
namely the motion (also called displacement or trandation) that carries one point to the
other. In other words, adding avector to apoint yields a point; it movesthefirst point to the
second. A vector expression like b + pc movesthe points origin O first by b, and then by
ascalar multiple p of ¢c. As p runsfrom —o to +co, thispoint runsaong astraight line
unless c=o0, the zero vector. Alternatively, the same straight line can be represented by

pc + b which first runs astraight line parallel to ¢ through the origin, then displacesitby b .
When the intent is clear, an expression like b + pc, though avector, may sometimes be called
a point or even a line if brevity is preferred over strict correctness. ( Many atext-book calls
theequation “ x =b + puc” the parametric equation of the straight line; p isthe parameter
and x isthe displacement from origin O to avarying point on the line.)

Unless ¢ and d areparalel, theexpression b + uc + Ad displacesthe origin to a point that
tracesout aplaneas 4 and A run independently from —oto+co . (If pu and A did not run
independently the figure traced out might be some curve.) The planeis swept out by parallel
copies of the straight line Ad all passing through the straight line b + pc . Uniformly spaced
copies of those lines form a cross-hatch pattern in the plane, filling it with parallelograms.

Bases of a Vector Space:

For every nonzero space of vectors x there are infinitely many ways to choose a coordinate
systemor Basis B =(by, by, ..., by) arranged asa 1-by-n matrix of vectors b; that span the

gpace and are linearly independent. “Span” meansevery X in the space can be expressed as

X = Bx if the components &, &,, .. §, of the column vector x are chosen appropriately; i.e.
X = blal + bZEZ + ...+ bnEn

in accordance with the rules of matrix multiplication. Every ¢&; isdetermined uniquely by x

because of the linear independence of the b;’s, which means any of the following assertions:

If Bx=0 then x=0.
If Bx=By then x=y.
No basis vector bj isalinear combination of the others.

Any one assertion implies the others. ( Can you see why?) Theinteger n ( assumed here to be
finite) iscalled the Dimension of the vector space; it turns out to be the same no matter how
the basisis chosen. To seewhy, suppose C =(cq, Cy, ..., Cyy) iSanother basisfor the same
gpace. Spanning implies C = BH for some n-by-m matrix H, and similarly B=CK , so
BHK =B . Now linear independence implies column by column that HK =1, the n-by-n
identity matrix; similarly KH =1,,. These equationsimply m =n because otherwise, say if
m >n, anonzero column z satisfying Hz = 0 would haveto exist ( more unknowns than
equations) and it would haveto satisfy 0# z=1,,z=KHz =Ko =0, acontradiction. Thus

I, =1, and K =H™; the vector space has many different bases all of the same dimension n.
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What Good isa Basis?

The freedom to choose a basis often simplifies calculations and proofs. For instance, hereisa

phenomenon first noticed by G. Desargues (1593 - 1662), acontemporary of R. Descartes:
In the plane, fix two intersecting straight lines B and C and a point p on neither.
Through p draw two straight lines X and Y that intersect B and C infour pointsall
told. Two pairs of those points are not yet joined by straight lines; draw those lines now
and, if they intersect, call their intersection q. As X and Y move, always passing
through p, sodoes g move; show that it moves along some fixed straight line D .

To provethe existence of D takes someingenuity if none but the methods of Euclidean plane
geometry may be used; and if rectangular Cartesian coordinates must be used the proof isa
tedious computation. But arelatively short computation suffices if we choose an apt basis.
Test these claims by trying to verify Desargues observation above using only the ideas you
learned in High-School. Then you will be better able to appreciate the strategy motivating
vector notation and its algebra used in the following proof.

Put the origin o at theintersectionof B and C, and then choose basisvectors b and ¢ lyingaong B and C
respectively and with lengths so chosen that p = b—c, whichliesonneither B nor C. Then b + ¢ will turn out
toliealong D, which also passesthrough o. To confirmthis, let X bealinethrough p inadirection b +¢&c.
Notethat & isneither O nor « since X isparallel toneither B nor C. Then X istraced out by
b—c + u(b+&c) as p runsfrom —o to +oo , andintersects B at (1+1/€)b when u=1/¢, andintersects C at
—(1+&)c when p=-1. Similarly, as p runsfrom —o to +o, theline Y traced out by b—c + p(b+nc) for any
fixed finite nonzero n intersects B at (1+1/n)b and C at —(1+n)c. Thelast two linesto be drawn are one
through —(1+&)c and (1+1/n)b traced out by
—(1+&)c+ p( (1+1n)b + (1+&)c) as | runsfrom —o to +oo,
and another through —(1+n)c and (1+1/€)b traced out by
—(1+tn)c+ A((1+L&)b + (1+n)c) as A runsfrom —oo to +oo .
Aptly determined valuesof p and A make these two expressions equal to acommon value q, which iswhere the
linesintersect. Those apt valuesof P and A arethe solutions of the two linear equations obtained by equating
coefficientsof b and c¢; theresultsare
H= n@+§)/(En—1), A= &1+n)/(&n —1), andfinaly
q= ((1+&)(1+n)/(&n —1) )(b + ),
whichrunsalong D as € and n vary with X and Y, Q.E.D.

Had a basis other than (b, ¢) been chosen, b and ¢ would have been represented by some column vectors b and

¢ other than H and m , andthe point p would have had coordinates other than {1} , and the column

vector q representing g would have possessed components in some constant ratio more complicated than 1:1.
Nonetheless, AND THISISIMPORTANT, theequationsrelating p, b, ¢, q andthescalars , A, & and n
would have been the same as above except for the bold-face. When written out componentwise, the equations
would have appeared much messier but the same algebraic manipulations would have been performed. ( No such
algebrawas needed by Desargues, who merely imagined o and p tolieona “ lineat infinity.” His observation
serves now as an axiom of Projective Plane Geometry, in which two lines aways meet; they can’t be parallel.)

Our strategy isto combine Geometry and Algebra. First we relate ageometrical or physical
situation to its description in terms of abstract vectors, usually independent of a coordinate
system. By choosing a convenient basis we eliminate inessential details. Then we convert to
column vectorsif necessary to perform the algebraic computations required. Then we convert
back to the original setting. To carry out our strategy, we need geometrical interpretations for
the entities and operations of vector and matrix algebra. Watch for them as we go.
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Inverses of Bases, Linear Functionals, and the Dual Space

Onceagainlet B = (b4, by, ..., b,) beabasisfor aspace of vectors x to which column vectors
are mapped by the linear operator B . This means that for each vector x in the space a unique
column vector x can be found to satisfy x = Bx, and similarly y can befound for y =By,
and ox + By =B(ax + By) . Becausethe “columns’ of B arelinearly independent, ax + By
is determined uniquely by the last equation, so an operator B~ can be defined that computes
the column vectors x = B~x and y =B~y belonging to abstract vectors x and y in the
space, and itisalso alinear operator: B~Y(ax + By) =ax + By . Infact, BB =1,, the n-by-
n identity matrix; and BB =1 istheidentity operator that leaves every vector x = Ix inthe
space unchanged.

Just as any square matrix can be viewed as a column of rows, so
(€ey)

!
Bl = EeZ))

(€h)
isbest viewed asa “column” of linear operators eTk that map abstract vectorsto scalars;
specifically, e’ x isthe k™ component &, of the column vector x = B™x . Hence €' isby
itself the operator that, acting upon any abstract vector x, yieldsthe kth component of the
column vector x that represents x using the basis B . To form apicturein two or three
dimensions of what eTk does, draw a parallelogram or a parallelepiped with one vertex at the
origin, with edgesthereall parallel to basis vectors b;, and with its opposite vertex at any

chosen vector x . Then e, x = &, isthe scalar multiplier that makes bye', x = by the ki

edge of that parallelogram or parallelepiped, so bkeTk projects to this kth edge in adirection
parallel to the line or plane containing all other edges. Draw pictures!

Fromany row W' = (0y, 0, ..., w,) construct W' =w B = e’y +we’y + ... + we’,,
which acts upon avector x = Bx whose column x has components &;, &», ..., &, to produce

WX =wx= w&; +wyf,+...+w,E,. This scalar product issoimportant that it has many

aliases: wex, <x,w>, <xjw> and (X, w) are some of them, but we shall see later that they are
not exact equivalents. The entity w' isa linear functional, alinear operator because

wT(ux +Ay) = pw'x + Aw'y , and a functional rather than a function because its values are
exclusively scalar. A geometrical interpretation for it will be offered in afew moments.

Historical digression: Thenoun “functional” arosefirst from the adjectivein Functional Analysis, which was at
first concerned with operators that map functions to scalars; an instance is the definite integral h(f) = jol f(K) dk
regarded as an operator upon functions f(K) . Intime, each function f(k) became identified with apoint and then
avector f inaspace of functions. Then it became possible to write h(f) = h'f wherethelinear functional h'
stood for the integral operator jol ...(K) dk divorced from the function f upon which it acted. Note how the

functional hT isnot the transpose of avector h ; thereisno vector h . Pedants who wished to stress this non-

relationship used to choose, say, v' for afunctional and v for an unrelated function, like aplaywright choosing
names “Edwin” and “Edwina’ for unrelated characters. That's a confusing choice | intend to avoid.
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Now observe that every linear functional w' acting upon the given vector space, no matter
how w' isconstructed, must satisfy w'(px +Ay) = pw'x + Aw'y , and therefore must be
expressiblein theform w' =w'B™ by setting 3 =w'b; intherow vector w' . Work this
out! Therefore the set of all these linear functionals w' constitutes another vector space,

called the Dual or Conjugate of the space of vectors x, with the“rows’ eTk of Blasa

basis. The two spaces are situated symmetrically, dual to each other ( provided the dimension
n isfinite). For instance, dual to the space of row n-vectors isthe space of column n-
vectors; their only difference appears now to be that one space’ s vectors are written on the | eft,
the other’s on the right of the scalar product. Other differences will turn up later.

To any fixed scalar B and functional w' # o' corresponds the locus traced out by all vectors
x that satisfy the equation w'x = B. Thislocus divides the space of vectors x into two half-
spaces, onewhere w'x > and onewhere w'x <. To gauge the shape of thislocus, we
find that if it contains x; and X, # X; then it contains the whole straight line X + p(X;—X4)

through them. Therefore the locusisthat straight line if the space of vectors x isjust two-
dimensional. Similarly, if thelocuscontains x; and x, and x3 with nonzero and non-
paralel x,-x; and X3-X;, thenthewhole plane x; + p(Xx-Xq) + A(X3-X1) liesinthelocus
too. Thelocusisthat plane if the whole spaceisjust three-dimensional. In spaces of higher
dimension the locusisa hyperplane whose dimension is one less than the dimension of the
space. To complete this picture we should confirm that the locus really has enough pointsin it
properly situated to generate a hyperplane; that confirmation requires abasis B for the space.
Using this basis, the equation w'x =R takestheform wix =R, i.e.

W& + W&o * ... + Wy =B,
which is one linear equation with n unknowns &;, &, ..., &, . Suppose w, % 0; thenthe

first n-1 of those unknowns may be chosen arbitrarily. For instance, set all of themto O, or
set oneof themto 1 andtherestto O, andthen solvefor §,. Thisisaway to generate the

needed n points x; with n-1 linearly independent differences. Tryitfor n=2 and for
n=3. Thereare other ways, what are the hyperplane's intercepts on the coordinate axes?

If we wish to think of a set of linear functionalsas a set of “vectors’ in the dual-space, how do
we assign direction and magnitude to a “vector” (functional) w' ? Itsdirection isthe normal
shared by the family of parallel loci w'x = R generated by changing R. Andif R is stepped
through uniformly distributed values, say R = ...,—2,-1,0,1,2, 3, ..., thenthe
corresponding loci form a ruling of uniformly spaced lines or planes or hyperplanes, each
separated from its two neighbors by a distance that isinversely proportional to the magnitude of
w' , ascan beverified by observing that for any >0 the set of loci whose equations are
(Lw")x = R isthe same as the set whose equations are w'x = /. The foregoing notions of
direction and magnitude seem vague because they are so general; they do not require away to
compare magnitudes of non-parallel vectors nor to measure angles between them.

Footnote: “Duality” sometimes meansa 1-to-1 map between hyperplanes in one space and pointsin its dual
space, omitting o and o', set up by an equation like wix=1.
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Change of Basis:
Suppose now that B and C are two different bases for the same space. We have seen above

that B=CK and C =BK™ for some matrix K . Some author callsit the transition matrix
from B to C; orisitfrom C to B ? | can't remember.

If the coordinatesof x inbasis B formacolumn x =B™x, then the coordinates of x in
basis C must formacolumn x = Cx =KB™x =Kx . And if the coordinatesof w' in basis
B formarow w' =w'B, thenthe coordinatesof w' inbasis C must form arow
wT=wTC=w'BK1=w'K™1. Hence, any change of basis can be effected by multiplying
coordinates by a suitable nonsingular (invertible) matrix or itsinverse. Which? Don't try to
memorize which; repeating the foregoing manipulationsis easier and more reliable.

Note that the scalar product w'x =w'x =wTx isthe same no matter which basisisused; this
is another instance of the important principle mentioned above:

Geometrically meaningful coordinate-free equationsinvolving scalars, abstract vectors and
functional s remain unchanged in form after abasis is used to convert vectors into columns
and functionalsinto rows, and these equations are therefore unchanged by changes of basis.
The choice of basis determines numerical values for coordinates, some of which vanish
conveniently if the basis is chosen for this purpose.

Many notations for vectors violate this principle because, designed initially for Euclidean vector spaces, these
notations fail to distinguish a space fromits dual. Failureisinevitable because there is no way to distinguish an
Euclidean space from itsdual. These notations appear in many a text-book and in computer software where

vectors are represented sometimes by rows, sometimes by columns, thus giving rise to confusing formulas and
notationslike (v)g for therow and [v]g for the column that represent the same abstract vector v relativeto a

varying basis B . Confusion intensifies when the kind of symbol “v” used for an abstract vector v isused asoin
one place for arow, in another for acolumn, soyou can't tell whether expressions involving several such symbols
are well-formed without scrutinizing their context. Thiskind of confusion is so widespread that you must learn to
cope withit; but | hope you won't take that as a license to imitate other persons’ mistakes.

Totreat the symbol “ w'” in use for an abstract functional asif it were an abstract vector w
transposed is amistake. Although “ GT” stands for the transpose of a matrix G, thereisno

universally valid relation between an abstract functional w' and an abstract vector w with the
same name “w”. Thetroubleis not that no such relations exist, but that there are too many of
them. Choosing one, establishing a map between the vectors in a space and the functionalsin
itsdual space, turnsthe spaces into something specia:— real Euclidean, or complex Unitary,
or Hilbert or Minkowski or Banach or ... spaces.

To see how that happens suppose we try to associate real vectors w with functionals w' by
giving them equal coordinates in every coordinate system, writing those coordinatesin arow

w' for w', acolumn w for w. Whenwe change to a new coordinate system that now uses
column vector v = Kv to represent abstract vector v formerly represented by column v, we

must now represent functional f', formerly represented by row fT, by row fT =f'K™ in
order to keep fTv="FTv=(fTK)(Kv)=fTv . Asavector, w formerly represented by w is

Prof. W. Kahan Page 5



Math. H110 Vector Spaces, Bases, and Dual Spaces November 4, 1998

now represented by w = Kw; asafunctional, w' formerly represented by w' is represented
now by w' =w'K™. For the new coordinatesof w and w' to beequal, astheold were
assumed to be, wT must be the transpose of w , which means w'K™ = (Kw)" =w'KT . If
this equation must hold for every w' , itimplies K1=KT; can you see why?

In short, to be consistent with an association between areal vector space and its dual that gives
each vector w and associated functional w' equal coordinatesin every coordinate system, we

must restrict coordinate transformations' matrices K to satisfy K™ =K . Such matrices are
very special; called orthogonal matrices, they represent basis changes from one orthonormal
coordinate system to another in a Euclidean space whose every vector v hasa length ||v||
defined by the familiar Pythagorean formulafrom the coordinates of v thus:

IVl := V(vTv) = v(v'v) = v( sum of squares of coordinatesof v) .
It is easy to verify that this formulafor length isindependent of orthogonal changes of basis;

i.e. vIv=(Kv)'(Kv) =vTv whenever K isan orthogonal matrix. More interesting isthe
deductionthat K must be orthogonal if the last equation is satisfied for every v ; canyou
prove this? Later we shall seethat infinitely many n-by-n orthogonal matrices exist, every one

the product of at most n elementary orthogonal reflections each of theform | —(2/c’c)cc’
for adifferent column c. Products of even numbers of reflections turn out to be rotations.

Euclidean, non-Euclidean and Affine Spaces

The vector spaces with which you are best acquainted are Euclidean spaces. Eachisareal
space with an orthonormal basis B in which every vector v = Bv has alength computed from

its coordinates by the Pythagorean formula ||v]| = v(v'Vv) . Another orthonormal basis
C =BK™ can be obtained by post-multiplying by any orthogonal matrix K== KT . If vector
w =Bw and functional w' =w'B! arerelated by equal ( though transposed ) coordinates

w and w' with one orthonormal basis, the equality of their coordinates persists with every
orthonormal basis.

Thus, an Euclidean spaceisitsown dual space. But thisrelationship is spoiled by the choice

of anon-orthonormal basis. Then w and w' no longer have equal coordinates, and length no
longer satisfiesthe Pythagorean formula. If you were given avector space but not an
orthornormal basisfor it, could you tell whether the spaceis Euclidean? It might not be.

A way to tell was found early in this century by C. Jordan and J. von Neumann. It isatest
applied to the lengths of vectors, provided length isdefined. ( There are vector spaces for
which length is undefined, or is defined differently than by the Pythagorean formula.)

Theorem: An orthonormal basis existsif and only if length satisfies the Parallelogram I dentity :
_ X +YIP+Ix=yIF = 2KXIE+2y11F,
and then the Euclidean association between vectors and functionalsis provided by the formula
whx = ([ +wi = lIx —wl* /4.

The theorem’ s proof is not obvious. It will be presented later in this course.
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The complex vector space analogousto areal Euclidean spaceisacomplex Unitary space. The most obvious
differences are changes in notation from transposes w' to complex conjugate transposes w* , from orthogonal
matrices satisfying K=k to unitary matrices satisfying K* = K, and from the Pythagorean formulafor
Euclidean lengthto |w|| := v(w*w) = V(w*w) = v('sum of squared magnitudes of coordinatesof w) . The
Parallelogram identity staysthe same, but the formula after it provides Re(w*X) .

Non-Euclidean (and non-Unitary ) vector spaces do exist. The simplest exampleisinfinite-
dimensional: Consider the space of columns with infinitely many rational components of
which only finitely many can be nonzero. It isavector space because such columns can be
multiplied by rational scalars and added to get more of the same. The dual space consists of
rows with infinitely many rational components chosen arbitrarily. This dual spaceisnot like the
original vector space at al; there are more rows than there are columns.

The simplest vector spaces have no special relation between a space and itsdual ( other than
that the dual space’s vectors are written on the left side of the scalar product ) and no definition
of length for vectors, though two parallel vectors' lengths can be compared because oneisa
scalar multiple of the other. These spaces are called Affine spaces; their geometries concerns
the properties of configurations of objects that persist after Affine transformations that map
points ( vectors) to points, linesto lines, planesto planes, ..., hyperplanesto hyperplanes,
and preserve paralelism. ( If parallelismisnot preserved the geometry is Projective.)
Although these spaces lack a definition for vector length, we shall see later that they do posses a
definition for Content :— area or volume or hypervolume. Every other kind of vector space can
be obtained from an affine space by specializing it in some way, usualy by adding a definition
for vector length or defining a map between the vector space and its dual. In the absence of
such amap, and usualy when one existstoo, we will find that linear algebra works best when
the notation distinguishes between a space and its dual.

Example: Cubic Polynomials

Cubic polynomials p(€) = T, + TyE + TLEZ + TRES constitute a vector space because the sum of

two of them is another, and the product of one with a constant scalar is yet another. Note that
T = 0 isalowed. The coefficients 11, T4, T, T3 are arbitrary constant scalarsbut ¢ isan

indeterminate. The cubic whose coefficientsare all 0 isthe zero vector in the space; it isthe
only cubic that takesthe value 0 for all & because a nonzero cubic cannot vanish at more than

threevalues & . (Why not?) That'swhy the “columns’ of U :=(1, &, &2 &3) arelinearly
independent functions; they constitute a basis for the space, which therefore has dimension 4.

The usual notation for functionsis ambiguous. When we see “ p(€) = T, + TyE + THEZ + TRES”

out of context we cannot tell whether it stands for the cubic polynomial or for its value when its
indeterminate takes the value ¢ . Let us now agree upon the latter interpretation, and write p
for the cubic asawhole. Inasimilar spirit, wewrite u,, for the polynomial whose valueis

Un(&) =&". Thenwesee U :=(u,, Uy, Uy, Ug) isthe aforementioned basis for the space of
cubics, andthat p = Up for acolumn vector p whose componentsare 11, T, T, and Ti.

What is U™ ? Somehow it extracts the components of p=U"p from the “cubic asawhole.”
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Exercise: Choose aconstant scalar B and let v,, stand for the polynomia V(&) := u,(§ + R) , sothat

Vi = Up + NRU, g + N(N-1)R2Up, /2 + ... . For the space of cubics, V := (Vg, Vq, Vo, V3) iSanother basis, onethat
corresponds to a “shifted” origin of thevariable & ; i.e.,, Vp isthecubic p(§ + R) whose expansion in powers of
¢ has coefficients U™Vp . Exhibit matrix U™V and itsinverse explicitly intermsof B. What does VU™ do?

What relates the cubic p to oneof itsvalues p(€) isan operator e'(£) called evaluation at

¢ and defined by e'(£)p = p(f) . Evidently e'(§) isa linear functional because, if p and q
aretwo cubics, €"(&)(p +q) = pE) + q(€) =e"(E)p + e'(§)q . Inthebasis U the components
of evaluation functional eT(£) constitute arow vector e'(8) =e'(E)U = (1, &, €2, &3) of scalar
values ( not functions asthey werefor U ), whencee'(&)p = e'(§)p = p(€) as expected.

Interpolation isthe recovery of afunction from samples of itsvalues. Let X :={§4, &2, &3, {4}

be a set of four distinct values of & ; we shall recover the whole cubic p from four sample-
values {p(&1), P(€2), P(&3), P(§4)} . Written as acolumn vector, these sample-values are the

result ET(X)p of applying to the cubic p alinear operator ET(X) comprising four evaluation
functionals {e'(£,), €"(5,), e"(£3), e'(§4)} written in acolumn. Interpolation isthe inversion

of ET(X) . To accomplish this define quartic polynomial C(¢, X) := (§—<1)(§—<2)(§<3)(§—<4)
and its derivative C'(&, X) :=dC(&, X)/0¢ and then four cubics ¢;(X) whosevaluesare

eT(E)cj(X) =€, X) := CE, X)/(EE)C ', X)) for j=1,2,3,4. If these cubicsarelinearly
independent they can be assembled into abasis C(X) := (c1(X), co(X), c3(X), c4(X)) . Confirm
that C(X) isabasisfor the space of cubics by proving that ET(X)C(X) =1; and then confirm
that C(X)=ET(X)™ by provingthat C(X)ET(X) =1, theidentity on the space of cubics.

(Do you seewhy C(X)ET(X)p=p ?) Theoperator C(X) iscalled “ Lagrange Interpolation.”

To every function w(t) continuouson -1 <t <1 isassociated alinear functional w' thus:
w'p = ;1 w(t) p(t) dt . Thislinear functional’s representation asarow W' = (6, 0y, 0y, K3)
inbasis U isw'=w'U, s0 w,=w"u, =/, w(™) 1" dr. Canevery linear functional m"
acting upon cubics p berepresented asanintegral m'p = j_ll m(T) p(t) dt and thus associated
with some continuous function m(t) ? Yes, onesuch m(t) isderived from m' asfollows:

The expression h(E, T) = (9 — 1512 + 751€ — 10515¢ — 1582 + 451282 — 105183 + 1751°€9)/8 is
acubic polynomial in T aswell as ¢ . Think of it asthe cubic h(t) = Uh(t) where column
h(t) has components (9-15t2)/8, (75t — 105t°)/8, (-15 + 451%)/8 and (-105t + 1751°)/8.
Now m(t) =m'h(t) turnsout to have the desired property: m'p = [ ;> m(t) p() dt for
every cubic p, ascan be verified by confirming that J_ll h(t) e'(t) dt =1 (you must do this
yourself ) and then that j_ll h(t) e'(1) dt = | istheidentity operator on the space of cubics.

Because of the last two equations, the expression h(€, 1) = h(t, &) = €T (§)h(1) = e’ (E)h(1) is
called a reproducing kernel. Can you figure out how it was constructed?
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Thus we see that every linear functional m' acting on cubics p is representable either asarow
vector m' acting upon their columns p of coefficients, or asan integral acting upon their

values p(€), andintheintegral m"p = [ ;1 m(1) p(t) dt the function m(t) associated with

mT can bechosenin many ways, one of them as auniquely determined cubic! Thisidentifies

the space of cubicswith itsdual space in such away asto turn them into an Euclidean space
wherein length is defined by ||p|| := V([ p(t)?> dt) =V(p'Ap) for asuitable matrix A not

the identity matrix. ( Can you determine A ? Compare AL with h(, 1) .) Because basis U
is not orthonormal, the column of coefficients U™m of the cubic polynomial m, whose
value eT(T)m =m(t) isdetermined by the functional m' , arenot the same as the elements of
the row vector m' that delivers m'p =m'p from the column of coefficients p=U"2p of
every cubic p . Instead m' = (U™m)TA ; canyou seewhy? Inshort, if m and p arecubics

we can evaluate m'p either from its definition as an integral or directly from their coefficients
using the last three equations and the matrix A .

Polynomials g :=uy/V2, g1 :=u1V(3/2), gy :=(3uy—Ugy)V(5/8), qz:=(5uz—3uq)V(7/8)
provide an orthonormal basis Q :=(qg, d;, dy, g3) for the space of cubics. Prove this by
verifying Q'o=1; you can compute integrals or matrix productsto do it.

Now we can address the following question: How few samples of acubic p sufficeto
determineits definiteintegral i'p := [ ;1 p(t) dt ? Thisintegral definesalinear functional i,
and we wish to expressit in terms of as few evaluations e'(R) as possible. One sample e'(R)p
istoo few because it could vanish though iTp does not; can you see how?

Two samples suffice; thisisremarkable because they are too few to recover (interpolate) p .
The proof that two samples suffice comes about because iT= qOT\/Z , whichisorthogonal to

gy, 02 and g3, SO iTQ=(v2,0,0,0). Another solution of thislast equation turns out to be

it =eT(-1/V3) + e"(V3) , ascan easily be verified. Thelast formulaiscalled “Gaussian
Quadrature.” Itisaspecia case n=2 of ageneral phenomenon; n samples artfully situated

suffice to determine theintegral i'p of any polynomial p of degreelessthan 2n.

What good comes from thinking of a cubic polynomial as apoint or vector in a 4-dimensional
space? There are two benefits. Oneisakind of consolidation of knowledge that makesit all
easier to remember; knowledge gained in one area, say calculus, seems more familiar when it
is described in terms that remind us of what we learned in another area, say geometry, and
vice-versa. But this benefit isinvisible to people who do not yet know enough to be worried
about how to remember it all. The second benefit is an ability to “ambush” problems, to
overwhelm them by attack from unexpected directions, aswill happen in other Math. courses.
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