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Solutions for Problem Set 2

 

1.

 

  The  Trace  of a square matrix is defined to be the sum of its diagonal elements.  If  PQ  and  QP  
are square products of finite-dimensional rectangular  ( perhaps not square )  matrices,  prove that  
Trace(PQ) = Trace(QP) .   ( Other notations for  “Trace”  are  “tr”  and  “sp”,  the latter from the  
German  word  “Spur”  that means what  “spoor”  means in  English.)

Trace(PQ) = 

 

∑

 

i 

 

( 

 

∑

 

j 

 

p

 

ij 

 

q

 

ji 

 

)  and  Trace(QP) = 
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) ,  which differ only in the order of 
summation.  For sums of finitely many terms the order doesn’t matter.

 

2.

 

  Can the equation  XY – YX = I  be solved for matrices  X  and  Y ?  Explain.

No,  because  Trace(XY – YX) = Trace(XY) – Trace(YX) = 0  <  Trace(I) .

 

( If  Trace(Z) = 0  then  XY – YX = Z  has infinitely many solutions  X  and  Y  but finding some is not so easy.)

 

3.

 

  For any linear operator  

 

L

 

  that maps a finite-dimensional vector space to itself,  show that 
every matrix  L  that represents  

 

L

 

  in some basis has the same  Trace.  ( It defines  Trace(

 

L

 

) .)

For any basis  

 

B

 

  matrix  L := 
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  represents  
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 .  For any other basis  
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C ,  where  C  is an 

invertible matrix,  matrix  C

 

–1
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 .  Trace(C

 

–1

 

LC) = Trace(LCC

 

–1

 

) = Trace(L)  as 
claimed.

 

4.

 

  Prove that finite-dimensional matrix multiplication is associative.  Exhibit an example of non-
associative infinite-dimensional matrix multiplication.

The element in row  i  and column  j  of  (PQ)R  is  
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 ;  the corresponding 
element of  P(QR)  is  
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) .  They differ only in the order of summation,  which 
doesn’t matter if all dimensions are finite.  However,  infinite dimensions are another story;  try

P

 

T

 

 =  ,   Q =   and  r
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 =    so  (PQ)r = Or = o  but  P(Qr) —› P

 

∞

 

 .

 

5.

 

  An operator  

 

L

 

  that maps one vector space to another or to itself is called  “ linear ”  just when  
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(ß

 

x

 

 + 

 

µ

 

y

 

) = ß
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 + 
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  for all scalars  ß  and  

 

µ

 

  and all vectors  

 

x

 

  and  

 

y

 

  in  Domain(

 

L

 

) .  Until 
now we have taken for granted,  as if obvious,  that multiplying two linear operators produces 
another,  if it is defined,  and that multiplication of linear operators is associative;  prove all that.
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If  Domain(

 

Q

 

)  includes  Range(

 

R

 

)  for linear operators  

 

Q

 

  and  

 

R

 

  then operator  

 

QR

 

  is defined 
by the assertion  “ (

 

QR

 

)

 

x

 

 := 
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(

 

Rx

 

)  for every  

 

x

 

  in  Domain(

 

R

 

) .”  This definition implies that
  (
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 ,   
so  

 

QR

 

  is linear too.  If also  Domain(

 

P

 

)  includes  Range(

 

Q

 

)  then,  for every  

 

x

 

  in  Domain(

 

R

 

) ,  
((

 

PQ)R)x = (PQ)(Rx) = P(Q(Rx)) = P((QR)x) = (P(QR))x ,  so  (PQ)R = P(QR)  as claimed.

The foregoing arguments may seem trivial,  and they are if dimensions are finite.  But when dimensions are infinite,  
an assertion like  “ Domain(Q)  includes  Range(R) ”  can be difficult to confirm;  it can be false if  Range(R)  
includes a vector  r  at which  Qr  is undefined because of a failure of convergence,  as occurs in the example in  
Problem 4  above.  Moreover,  the associativity of operator multiplication cannot be inferred directly from the 
associativity of matrix multiplication since the representation of operators by matrices assumes the associativity of 
products of operators like bases  ( linear maps from column vectors to abstract vectors )  and their inverses.  It all 
works the other way around;  the formula defining matrix multiplication can be derived from the associativity and 
distributivity of linear operators’ multiplication by a simple but tedious argument.  Can you find it?  The formula is 
fore-ordained because linear operators are abstractions inspired by analogies between matrix multiplication and other 
operations like differentiation,  integration and geometrical rotation.  Matrix multiplication was used unwittingly by 
the  Chinese  to solve linear equation systems as long ago as  300 BC  ( the date is unsure because a  Chinese Emperor  
burnt all books in  213 BC ),  and turned up in determinants and the  Chain Rule  for partial derivatives in eighteenth 
century  Europe.  Matrix algebra as we know it now began in mid-nineteenth century  England  and the  U.S.

6.  H  is a real symmetric bilinear form just when real scalar  Hxz = Hzx  is linear in  x  and  z  
separately;  Hz(ßx + µy) = ßHzx + µHzy .  Any given  H  defines a  Quadratic form  thus:  
Q(x) := Hxx ;  verify that this  Q  satisfies the  Parallelogram Identity

Q(x+y) + Q(x–y) = 2Q(x) + 2Q(y) .
Show how to use any procedure that computes  Q  to compute  H  too.

      Q(x+y) + Q(x–y) =  H(x+y)(x+y) + H(x–y)(x–y) 
=  Hxx + Hxy + Hyx + Hyy  +  Hxx – Hxy – Hyx + Hyy 
=  2Hxx + 2Hyy  =  2Q(x) + 2Q(y)    as claimed.

Similarly,   (Q(x+y) – Q(x–y))/4  =  ( Hxy + Hyx )/2  =  Hxy ,   so two invocations of  Q  suffice 
to compute  Hxy  for any given  x  and  y  without explicit knowledge of  H .

NOTE THAT  xy  IN  Hxy  IS NOT A VECTOR.  IT IS A PAIR OF VECTORS WRITTEN TO 
SUGGEST AN OBJECT THAT BEHAVES LIKE A PRODUCT LINEAR IN EACH FACTOR.  
Strictly speaking,  the bilinear form  “ Hxz = Hzx ”  should be written  “ H(x, z) = H(z, x) ”  to 
express its symmetry and  “ H(z, ßx + µy) = ßH(z, x) + µH(z, y) ”  to express its linearity,  but the 
extra commas and parentheses would clutter the page without clarifying anything.

Here is a question you were not asked:  Given a  “black box”  that computes a real function  Q(x)  but no information 
about how it’s done,  what test can be performed to check whether  Q(x)  is a quadratic form?  As it happens,  any real 
continuous  Q(x)  that satisfies the  Parallelogram Identity  must be a quadratic form,  but the proof of this assertion is 
not obvious.


