Least-Squares Approximation and Bilinear Forms

The Normal Equations :

Suppose a column vector g is given in an Euclidean space into which a given matrix F maps another real space of column vectors u. In the Euclidean space, length $\|g\|:=\sqrt{ }\left(g^{T} g\right)$. Usually matrix F is rectangular with more rows than columns. Our task is to choose u to minimize $\|\mathrm{Fu}-\mathrm{g}\|$, which will then be the distance from g to Range(F$)$. This task is called "LeastSquares" because the u we seek would minimize the sum of squares of the elements of $\mathrm{Fu}-\mathrm{g}$. Differentiating the sum of squares produces $d\left((\mathrm{Fu}-\mathrm{g})^{\mathrm{T}}(\mathrm{Fu}-\mathrm{g})\right)=2(\mathrm{Fu}-\mathrm{g})^{\mathrm{T}} \mathrm{F} d u$, which vanishes for all (infinitesimal) perturbations du if and only if $(\mathrm{Fu}-\mathrm{g})^{\mathrm{T}} \mathrm{F}=\mathrm{o}^{\mathrm{T}}$. (Do you see why?) Transposed, this becomes the "Normal Equations" of the Least-Squares Problem,

$$
\left(\mathrm{F}^{\mathrm{T}} \mathrm{~F}\right) \mathrm{u}=\mathrm{F}^{\mathrm{T}} \mathrm{~g}
$$

u must satisfy them to minimize $\|\mathrm{Fu}-\mathrm{g}\|$ and so best approximate g by a vector in Range(F).
Do the Normal Equations have at least one solution $u=\hat{u}$?
If so, is $\|\mathrm{Fu}-\mathrm{g}\| \leq\|\mathrm{Fu}-\mathrm{g}\|$ for all u ? i.e., does $\hat{\mathrm{u}}$ minimize rather than maximize? These questions among others are addressed in this note.

At first sight one might think the Normal Equations' solution should be $\hat{u}=\left(F^{T} F\right)^{-1} F^{T} g$. But this formula fails if the columns of F are linearly dependent. To see why, observe that

$$
" \mathrm{Fz}=\mathrm{o} " \Longleftrightarrow \Rightarrow(\mathrm{Fz})^{\mathrm{T}}(\mathrm{Fz})=\mathrm{z}^{\mathrm{T}}\left(\mathrm{~F}^{\mathrm{T}} \mathrm{~F}\right) \mathrm{z}=0 " \Longleftrightarrow \Rightarrow\left(\mathrm{~F}^{\mathrm{T}} \mathrm{~F}\right) \mathrm{z}=\mathrm{o} ",
$$

so $\mathrm{F}^{\mathrm{T}} \mathrm{F}$ is invertible (nonsingular) if and only if the columns of F are linearly independent. This hasn't been assumed; in fact matrix F could be rectangular with more columns than rows.

Exercise: Show that, if the rows of F are linearly independent, a solution $\hat{u}=F^{T}\left(F^{T}\right)^{-1} g$ and, if not the only solution of the Normal Equations, it is the only solution that minimizes $\hat{\mathrm{u}}^{\mathrm{T}} \hat{\mathrm{u}}$ too.

In short, if neither the rows nor the columns of F are linearly independent, neither FF^{T} nor $F^{T} F$ need be invertible, and then the existence of a minimizing solution $u=\hat{u}$ is in question.

Warning: Even when an indicated inverse exists, neither formula $\hat{u}=\left(F^{T} F\right)^{-1} F^{T} g$ nor $\hat{u}=F^{T}\left(F^{T}\right)^{-1} g$ should be used with numerical data unless the computer's arithmetic carries at least twice as many sig. digits as are trusted in the data $[\mathrm{F}, \mathrm{g}]$ or desired in the result $\hat{\mathrm{u}}$. Otherwise roundoff will degrade the result $\hat{\mathrm{u}}$ too badly whenever F is too near a matrix of lower rank. The reason behind this warning will become clear after Singular Values have been discussed. If the arithmetic carries barely more sig. digits than are trusted in the data or desired in the result, it should be computed by means of a $Q R$ factorization, which will also be discussed later. Matlab uses such a factorization to compute \hat{u}, which Matlab calls " $F \backslash g$ ", whenever F is not square. Least-Squares is built into Matlab.

Existence and Uniqueness of a Minimizing Solution \hat{u} :

We shall use Fredholm's Alternatives (q.v.) to deduce that the Normal Equations always have at least one solution \hat{u}, and to determine when it is unique. At least one solution exists if and only if $\mathrm{w}^{\mathrm{T}}\left(\mathrm{F}^{\mathrm{T}} \mathrm{g}\right)=0$ whenever $\mathrm{w}^{\mathrm{T}}\left(\mathrm{F}^{\mathrm{T}} \mathrm{F}\right)=\mathrm{o}^{\mathrm{T}}$, so consider any row w^{T} that satisfies the last equation. It must satisfy also $0=w^{T}\left(F^{T} F\right) w=(F w)^{T}(F w)$, which implies $F w=o$, which implies $w^{T}\left(F^{T} g\right)=(F w)^{T} g=0$, whereupon Fredholm's Alternative (1) implies that the Normal Equations have at least one solution $\hat{\mathrm{u}}$. It is unique if and only if the columns of F are linearly independent; otherwise add any nonzero solution z of $\mathrm{Fz}=\mathrm{o}$ to one $\hat{\mathrm{u}}$ to get another.

How do we know that setting $\mathrm{u}=\hat{\mathrm{u}}$ minimizes $\|\mathrm{Fu}-\mathrm{g}\|$? For every u we find

$$
\begin{aligned}
\|F u-g\|^{2}-\|F \hat{u}-g\|^{2} & =\|F(u-\hat{u})+(F \hat{u}-g)\|^{2}-\|F \hat{u}-g\|^{2} \\
& =\|F(u-\hat{u})\|^{2}+2(F(u-\hat{u}))^{T}(F \hat{u}-g) \quad\left(\text { since } \quad\|z\|^{2}=z^{T} z\right) \\
& =\|F(u-\hat{u})\|^{2}+2(u-\hat{u})^{T} F^{T}(F \hat{u}-g)=\|F(u-\hat{u})\|^{2} \geq 0,
\end{aligned}
$$

with equality instead of inequality just when u is a(nother) solution of the Normal Equations.
When the Normal Equations have many solutions \hat{u}, which does Matlab choose for $F \backslash g$? It has a near minimal number of nonzero elements. A different solution minimizes $\|\hat{u}\|^{2}:=\hat{\mathrm{u}}^{\mathrm{T}} \hat{\mathrm{u}}$, as if also the space of vectors u were Euclidean. This doubly minimizing solution û satisfies both the Normal Equations $\left(\mathrm{F}^{\mathrm{T}} \mathrm{F}\right) \hat{\mathrm{u}}=\mathrm{F}^{\mathrm{T}} \mathrm{g}$ and an auxiliary equation $\hat{u}=F^{T} F v$ for some vector v of "Lagrange Multipliers." In consequence v satisfies $\left(F^{T} F\right)^{2} v=F^{T} g$, an equation with least one solution v whose existence is assured by an application of Fredholm's first alternative very much like before except that the hypothesis $w^{T}\left(F^{T} F\right)=o^{T}$ is replaced by $w^{T}\left(F^{T} F\right)^{2}=o^{T}$. (Can you carry out this inference?) Every other solution u of the Normal Equations satisfies $\|u\|^{2}-\|\hat{u}\|^{2}=\|(u-\hat{u})+\hat{u}\|^{2}-\|\hat{u}\|^{2}=\ldots$ $\ldots=\|u-\hat{u}\|^{2}+2 \hat{u}^{T}(u-\hat{u})=\|u-\hat{u}\|^{2}+2 v^{T} F^{T} F(u-\hat{u})=\|u-\hat{u}\|^{2} \geq 0$, so this $\hat{u}=F^{T} F v$ really is doubly minimizing; moreover it is determined uniquely by the data $[\mathrm{F}, \mathrm{g}]$. (Can you see why?) As we shall see later after Singular Values have been discussed, there is a matrix F^{\dagger} called the "Moore-Penrose Pseudo-Inverse" of F such that the doubly minimizing $\hat{u}=F^{\dagger} \mathrm{g}$ is a linear function of g . (Matlab's name for F^{\dagger} is $\operatorname{pinv}(\mathrm{F})$.) However, whenever neither $\mathrm{F}^{\mathrm{T}} \mathrm{F}$ nor FF^{T} is invertible, so F^{\dagger} is interesting, it turns out to be a violently discontinuous function of F . This renders the doubly minimizing \hat{u} doubly dubious because the space of vectors u need not be Euclidean.
Matlab's $\mathrm{F} \backslash \mathrm{g}$ can be discontinuous too, even when FF^{T} is invertible and the doubly minimizing \hat{u} is continuous.

Linear Regression:

Least-Squares approximation has been applied to statistical estimation for over two centuries. An m-by-n matrix F is assumed given with linearly independent columns (so $m \geq n$); and a given m -vector $\mathrm{g}=\mathrm{y}+\mathrm{q}$ of "data" is thought to include a systematic contribution y and a "random error" q. The question is how near is y to Range (F) ? The answer is obscured by the random error. The elements of this error q are assumed independently distributed with mean 0 and known variance β^{2}. These terms are given meaning by an Averaging or Expectation operator Æ which acts upon every random variable r linearly to produce Ær, the average or mean of the population of values of r. Thus $Æ q=o$ because every element of q has mean 0 ; and q has covariance matrix $\mathbb{Æ}\left((q-Æ q)(q-Æ q)^{T}\right)=\beta^{2} I$ since the square of every element of q has mean β^{2} but every product of different elements of q has mean 0 because they are independent. The smaller is β, the less uncertainty does random error q introduce into the data g.

Define $\mathrm{x}:=\left(\mathrm{F}^{\mathrm{T}}\right)^{-1} \mathrm{~F}^{\mathrm{T}} \mathrm{y}$ to minimize $\|\mathrm{Fx}-\mathrm{y}\|$ although neither y nor x can be known. As the known g approximates y, so is x approximated by whatever \hat{u} minimizes $\|F \hat{u}-\mathrm{g}\|$. Get $\hat{u}=\left(\mathrm{F}^{\mathrm{T}} \mathrm{F}\right)^{-1} \mathrm{~F}^{\mathrm{T}} \mathrm{g}$; how well can it approximate x ? Since $\nVdash g=\mathrm{y}$, we find that $\nVdash \mathrm{u}=\mathrm{x}$, so u is an unbiased estimate of x . The covariance matrix of $\hat{\mathrm{u}}$ is computable too; it is

$$
\nVdash\left((\hat{\mathrm{u}}-\mathrm{x})(\hat{\mathrm{u}}-\mathrm{x})^{\mathrm{T}}\right)=\nVdash\left(\left(\mathrm{F}^{\mathrm{T}} \mathrm{~F}\right)^{-1} \mathrm{~F}^{\mathrm{T}} \mathrm{qq}^{\mathrm{T}} \mathrm{~F}\left(\mathrm{~F}^{\mathrm{T}} \mathrm{~F}\right)^{-1}\right)=\left(\mathrm{F}^{\mathrm{T}} \mathrm{~F}\right)^{-1} \mathrm{~F}^{\mathrm{T}} \nVdash\left(\mathrm{qq}^{\mathrm{T}}\right) \mathrm{F}\left(\mathrm{~F}^{\mathrm{T}} \mathrm{~F}\right)^{-1}=\beta^{2}\left(\mathrm{~F}^{\mathrm{T}} \mathrm{~F}\right)^{-1}
$$ The smaller this is, the better does \hat{u} approximate x on average. The smaller is $\|F x-y\|$, the smaller do we expect $\|\mathrm{Fu}-\mathrm{g}\|$ to be. How small should we expect it to be? A calculation below shows that $Æ\left(\|F \hat{u}-\mathrm{g}\|^{2}\right)=\|\mathrm{Fx}-\mathrm{y}\|^{2}+(\mathrm{m}-\mathrm{n}) B^{2}$. It means that $\|\mathrm{Fu}-\mathrm{g}\|$ is unlikely to exceed $\beta \sqrt{ }(m-n)$ much if y lies in or very near Range (F); conversely, $\|F x-y\|$ is unlikely to be much smaller than $\|F \hat{u}-g\|$ if this is many times bigger than $\beta \sqrt{ }(m-n)$. Explanation follows.

Proof that $Æ\left(\|F \hat{u}-\mathrm{g}\|^{2}\right)=\|\mathrm{Fx}-\mathrm{y}\|^{2}+(\mathrm{m}-\mathrm{n}) B^{2}$: The Trace of a square matrix is defined to be the sum of its diagonal elements; evaluate this sum to confirm that $\operatorname{Trace}\left(B^{T} C\right)=\operatorname{Trace}\left(C B^{T}\right)$ for any matrices B^{T} and C whose products $B^{T} C$ and $C B^{T}$ are both square, though perhaps of different dimensions. Next define $H:=F\left(F^{T} F\right)^{-1} F^{T}$ and confirm that $H^{T}=H=H^{2}$. (H is the orthogonal projector onto Range (F) because " $p=F z$ for some z " $\Longleftrightarrow " \mathrm{p}=\mathrm{Hp} "$, so Range $(\mathrm{F})=\operatorname{Range}(\mathrm{H})$, and " $\mathrm{Hz}=\mathrm{o} " \Longleftrightarrow \Rightarrow \mathrm{z}^{\mathrm{T}} \mathrm{H}=\mathrm{o}^{\mathrm{T}} "$, so Nullspace $(\mathrm{H})=\operatorname{Range}(\mathrm{H})^{\perp}$.) Shortly we shall have use for $\operatorname{Trace}(H)=\operatorname{Trace}\left(\left(F^{T} F\right)^{-1} F^{T} F\right)=\operatorname{Trace}\left(I_{n}\right)=n$. Now we observe that und x are so defined that $\mathrm{Fu}-\mathrm{g}=(\mathrm{H}-\mathrm{I}) \mathrm{g}$ and $\mathrm{Fx}-\mathrm{y}=(\mathrm{H}-\mathrm{I}) \mathrm{y}$ wherein I is the $\mathrm{m}-\mathrm{by}-\mathrm{m}$ identity matrix. Consequently

$$
\begin{array}{rlc}
Æ\left(\|\mathrm{Fu}-\mathrm{g}\|^{2}\right) & =Æ\left(((\mathrm{H}-\mathrm{I}) \mathrm{g})^{\mathrm{T}}(\mathrm{H}-\mathrm{I}) \mathrm{g}\right)=Æ\left(\operatorname{Trace}\left((\mathrm{H}-\mathrm{I}) \mathrm{g}((\mathrm{H}-\mathrm{I}) \mathrm{g})^{\mathrm{T}}\right)\right) & \ldots \text { because } \operatorname{Trace}\left(\mathrm{b}^{\mathrm{T}} \mathrm{c}\right)=\operatorname{Trace}\left(\mathrm{cb}^{\mathrm{T}}\right) \\
& =Æ\left(\operatorname{Trace}\left((\mathrm{H}-\mathrm{I}) \mathrm{gg}^{\mathrm{T}}(\mathrm{H}-\mathrm{I})\right)\right)=\operatorname{Trace}\left((\mathrm{H}-\mathrm{I}) Æ\left(\mathrm{gg}^{\mathrm{T}}\right)(\mathrm{H}-\mathrm{I})\right) & \ldots \text { because } \mathrm{H}=\mathrm{H}^{\mathrm{T}} \text { isn't random } \\
& =\operatorname{Trace}\left((\mathrm{H}-\mathrm{I}) Æ\left(\mathrm{yy}^{\mathrm{T}}+\mathrm{yq}^{\mathrm{T}}+\mathrm{qy}^{\mathrm{T}}+\mathrm{qq}^{\mathrm{T}}\right)(\mathrm{H}-\mathrm{I})\right) & \ldots \text { because } \mathrm{g}=\mathrm{y}+\mathrm{q} \\
& =\operatorname{Trace}\left((\mathrm{H}-\mathrm{I})\left(\mathrm{yy}^{\mathrm{T}}+\mathrm{O}+\mathrm{O}+\beta^{2} \mathrm{I}\right)(\mathrm{H}-\mathrm{I})\right)=\operatorname{Trace}\left((\mathrm{H}-\mathrm{I}) \mathrm{yy}^{\mathrm{T}}(\mathrm{H}-\mathrm{I})\right)+\beta^{2} \operatorname{Trace}\left((\mathrm{H}-\mathrm{I})^{2}\right) \\
& =\operatorname{Trace}\left((\mathrm{Fx}-\mathrm{y})(\mathrm{Fx}-\mathrm{y})^{\mathrm{T}}\right)+\beta^{2} \operatorname{Trace}(\mathrm{I}-\mathrm{H})=\|\mathrm{Fx}-\mathrm{y}\|^{2}+\beta^{2}(\mathrm{~m}-\mathrm{n}) \quad \text { as was claimed. }
\end{array}
$$

Proof that $\|F \hat{u}-\mathrm{g}\|^{2}$ is unlikely to be many times bigger than its mean $Æ\left(\|F \hat{u}-\mathrm{g}\|^{2}\right)$: More precisely, we shall deduce that $\|F \hat{u}-g\|^{2}$ exceeds $\lambda \circledast\left(\|F \hat{u}-g\|^{2}\right)$ with probability less than $1 / \lambda$ for every $\lambda>1$. This deduction is an instance of Tchebyshev's Inequality: If a positive random variable ρ has mean $\mu:=\npreceq \rho$, then the probability that $\rho \geq \lambda \mu$ cannot exceed $1 / \lambda$ for any $\lambda>1$. Here is a proof of Tchebyshev's Inequality. Let $p(\xi)$ be the probability that $\rho \leq \xi$. This $p(\xi)$ is a nondecreasing function increasing from $p(0)=0$ to $p(\infty)=1$, and $\mu=\int_{0}^{\infty} \xi \mathrm{d} p(\xi)$ by virtue of the definition of \nVdash. We seek an overestimate for $\int_{\lambda \mu}^{\infty} \mathrm{d} p(\xi)$, which is the probability that $\rho \geq \lambda \mu$. We find that $\int_{\lambda \mu}^{\infty} \mathrm{d} p(\xi) \leq \int_{\lambda \mu}^{\infty} \xi \mathrm{d} p(\xi) /(\lambda \mu) \leq \int_{0}^{\infty} \xi \mathrm{d} p(\xi) /(\lambda \mu)=\mu /(\lambda \mu)$, which yields the result claimed. (This can be a gross overestimate because it uses almost no information about p. For almost all values of $\lambda>1$, and for all values of $\lambda>1$ for almost all probability functions p, the probability that $\rho \geq \lambda \mu$ is actually far tinier than $1 / \lambda$.) Thus the computed $\|F \hat{u}-g\|^{2}$ is unlikely to be many times bigger than $\|F x-y\|^{2}+\beta^{2}(m-n)$ in which $\beta^{2}(m-n)$ is given and $\|F x-y\|^{2}$ is unknown, whence something probabilistic can be inferred about the unknown. Another similar application of Least-Squares is to the assumption that $y=F x$ and $g=y+q$ for a random error q about which B^{2} is unknown but estimated from $\|F \hat{u}-g\|^{2} /(m-n)$. These applications are treated in Statistics courses.

Abstract Least-Squares:

Suppose a column vector g is given in an Euclidean space into which a given linear operator \mathbf{F} maps a real space of abstract vectors \mathbf{u}. In the Euclidean space, length $\|\mathrm{g}\|:=\sqrt{ }\left(\mathrm{g}^{\mathrm{T}} \mathrm{g}\right)$, but no such length is defined (yet) for $\operatorname{Domain}(\mathbf{F})$. Again our task is to choose \mathbf{u} to minimize $\|\mathbf{F u}-\mathrm{g}\|$, which will then be the distance from g to Range (\mathbf{F}). Differentiating the sum of squares $\|\mathbf{F u}-\mathrm{g}\|^{2}=(\mathbf{F u}-\mathrm{g})^{\mathrm{T}}(\mathbf{F u}-\mathrm{g})$ produces $\mathrm{d}\left((\mathbf{F u}-\mathrm{g})^{\mathrm{T}}(\mathbf{F} \mathbf{u}-\mathrm{g})\right)=2(\mathbf{F u}-\mathrm{g})^{\mathrm{T}} \mathbf{F} \mathrm{du}$, which vanishes for all (infinitesimal) perturbations du if and only if $(\mathbf{F u}-\mathrm{g})^{\mathrm{T}} \mathbf{F}=\mathbf{o}^{\mathrm{T}}$. This \mathbf{o}^{T} is the linear functional that annihilates $\operatorname{Domain}(\mathbf{F})$. The last equation says that when $\|\mathbf{F u}-\mathrm{g}\|$ is minimized the residual $\mathbf{F u}-\mathrm{g}$ must be normal (perpendicular, orthogonal) to Range (\mathbf{F}). (This explains the word "Normal" in "Normal Equations" and removes any suggestion that other equations are abnormal.) Drawing a picture helps; imagine Range (\mathbf{F}) to be a plane in Euclidean 3 -space containing a vector $\mathbf{F u}$ which, when it comes closest to a given vector g not in the plane, comes to that point in the plane reached by dropping a perpendicular from g .

We could transpose " $(\mathbf{F u}-\mathrm{g})^{\mathrm{T}} \mathbf{F}=\mathbf{o}^{\mathrm{T}} "$ to " $\left(\mathbf{F}^{\mathrm{T}} \mathbf{F}\right) \mathbf{u}=\mathbf{F}^{\mathrm{T}} \mathrm{g}$ " if we knew what " $\mathbf{F}^{\mathrm{T}} \mathbf{F}$ " meant.

The trouble with the expression " $\mathbf{F}^{\mathrm{T}} \mathbf{F}$ " is that it is not what it first seems; if \mathbf{F} were a matrix then $\mathbf{F}^{\mathrm{T}} \mathbf{F}$ would map Domain (\mathbf{F}) to itself, but a change of basis in Domain (\mathbf{F}) does not change $\mathbf{F}^{\mathrm{T}} \mathbf{F}$ to the expected similar matrix. Here is what happens instead:

Let \mathbf{B} be a basis for Domain (\mathbf{F}). Then abstract vector $\mathbf{u}=\mathbf{B u}$ for some column vector \mathbf{u}, and $\mathbf{F u}=\mathbf{F B} \mathbf{u}=\mathrm{Fu}$ for a matrix $\mathrm{F}=\mathbf{F B}$. The Normal Equations " $(\mathbf{F u}-\mathrm{g})^{\mathrm{T}} \mathbf{F}=\mathbf{o}^{\mathrm{T}}$ " turn into " $(\mathrm{Fu}-\mathrm{g})^{\mathrm{T}} \mathrm{F}=\mathrm{o}^{\mathrm{T}}$ " which becomes $"\left(F^{T} F\right) u=F^{T} g$ " after matrix transposition. BC is a new basis for $\operatorname{Domain}(\mathbf{F})$, and $\mathbf{u}=\mathbf{B C} \mathbb{d}$ for $u_{u}=C^{-1} \mathbf{u}$, and $\mathbf{F u}=\mathbb{F} u$ for matrix $\mathbb{F}=\mathrm{FC}$, where C is any invertible matrix of the same dimension as Domain (\mathbf{F}). What was $"\left(\mathrm{~F}^{\mathrm{T}} \mathrm{F}\right) \mathrm{u}=\mathrm{F}^{\mathrm{T}} \mathrm{g}$ " in the old basis becomes " $\left(\mathbb{F}^{\mathrm{T}}\right) \mathfrak{\mathbb { R }}=\mathbb{F}^{\mathrm{T}} \mathrm{g}$ " in the new, replacing matrix $\mathrm{F}^{\mathrm{T}} \mathrm{F}$ by $\mathbb{F}^{\mathrm{T}}=\mathrm{C}^{\mathrm{T}} \mathrm{F}^{\mathrm{T}} \mathrm{FC}$. This differs from $C^{-1} \mathrm{~F}^{\mathrm{T}} \mathrm{FC}$, which is how the change in basis would have changed $\mathrm{F}^{\mathrm{T}} \mathrm{F}$ if it were the matrix of a map from Domain (\mathbf{F}) to itself. Instead, $\mathrm{F}^{\mathrm{T}} \mathrm{F}$ is the matrix of a map from $\operatorname{Domain}(\mathbf{F})$ to its own dual space.

If you doubt that these choices of basis matter, try the following example: Let $\mathrm{g}:=10101$, a scalar, and suppose $\mathrm{F}=[1,10,100]$ in some coordinate system. Then get Matlab to compute $u=F \backslash g$ to solve the least-squares problem. Next change to a new basis using a diagonal matrix $C=\operatorname{diag}([10,1,1 / 16])$. It changes F to $\mathbb{F}=\mathrm{FC}$ and thus changes the solution of the least-squares problem to $u=\mathbb{F} \backslash g$. This maps back to $C u=C^{*}\left(\left(F^{*} C\right) \backslash g\right)$ in the old basis. Compare with the old solution u. Try again with 6 -vectors g and 6 -by- 3 matrices F at random.

Bilinear Forms:

There is no uniquely defined operator $\mathbf{F}^{\mathrm{T}} \mathbf{F}$ just as there is no functional \mathbf{u}^{T} determined uniquely by vector \mathbf{u} in a non-Euclidean space. The matrices that appear in the Normal Equations are not all matrices that represent linear maps from one space of column vectors to another or itself; matrix $\mathrm{F}^{\mathrm{T}} \mathrm{F}$ belongs to a Symmetric Bilinear Form that maps column vectors to row vectors.

Consider $(\mathbf{F u})^{\mathrm{T}} \mathbf{F v}$. It maps pairs $\{\mathbf{u}, \mathbf{v}\}$ of vectors from Domain (\mathbf{F}) to real scalars, and does so as a linear function of each vector separately; this is the definition of a Bilinear Form. And since $(\mathbf{F u})^{\mathrm{T}} \mathbf{F v}$ is unaltered when \mathbf{u} and \mathbf{v} are swapped, it is a Symmetric Bilinear Form.

There are many notations for bilinear forms: Huv, $H(\mathbf{u}, \mathbf{v}),(\mathbf{v}, \mathrm{Hu}), \ldots$. They all mean this:
$\mathbf{H u}$ _ is a linear functional in the space dual to vectors \mathbf{v}, and Huv is its scalar value;
$\mathbf{H}_{-} \mathbf{v}$ is a linear functional in the space dual to vectors \mathbf{u}, and Huv is its scalar value;
Given a basis \mathbf{B} for vectors $\mathbf{u}=\mathbf{B u}$, and a basis \mathbf{E} for vectors $\mathbf{v}=\mathbf{E v}$, there is a matrix H for which $\mathbf{H u v}=(\mathbf{H B u}) \mathbf{E v}=(H u)^{T} v=v^{T} H u$;
Changing bases from \mathbf{B} to $\mathbf{B C}$ and \mathbf{E} to $\mathbf{E D}$ changes u to $\mathbb{u}=C^{-1} u$, v to $\mathbb{v}=D^{-1} v$, and H to $\mathbb{H}=D^{T} H C$ so that $\mathbf{H u v}=v^{T} H u=v^{T} \mathbb{H}_{H u}$.

Exercise: Express the elements of matrix H in terms of the effect \mathbf{H} has upon the elements of bases \mathbf{B} and \mathbf{E}.
A Symmetric bilinear form maps vectors \mathbf{u} and \mathbf{v} from the same space to scalars, and does so in a way independent of the order of \mathbf{u} and \mathbf{v} thus: $\mathbf{H u v}=\mathbf{H v u}$. A symmetric bilinear form has a symmetric matrix $H=H^{T}$ in any basis. (Why?) Changing the basis changes H to matrix $\mathbb{H}=\mathrm{C}^{\mathrm{T}} \mathrm{HC}$ for some invertible C ; the two matrices \mathbb{H} and H are called "Congruent." This congruence is an Equivalence, so it preserves rank; i.e., $\operatorname{rank}(\mathbb{H})=\operatorname{rank}(\mathrm{H})$. Congruence also preserves a thing called "Signature" as we'll see when we come to Sylvester's Inertia Theorem.

