Least-Squares Approximation and Bilinear Forms

The Normal Equations:
Suppose a column vector \(\mathbf{g} \) is given in an Euclidean space into which a given matrix \(\mathbf{F} \) maps another real space of column vectors \(\mathbf{u} \). In the Euclidean space, length \(||\mathbf{g}|| := \sqrt{\mathbf{g}^T \mathbf{g}} \). Usually matrix \(\mathbf{F} \) is rectangular with more rows than columns. Our task is to choose \(\mathbf{u} \) to minimize \(||\mathbf{Fu} - \mathbf{g}|| \), which will then be the distance from \(\mathbf{g} \) to \(\text{Range}(\mathbf{F}) \). This task is called “Least-Squares” because the \(\mathbf{u} \) we seek would minimize the sum of squares of the elements of \(\mathbf{Fu} - \mathbf{g} \).

Differentiating the sum of squares produces \(d ((\mathbf{Fu} - \mathbf{g})^T(\mathbf{Fu} - \mathbf{g})) = 2(\mathbf{Fu} - \mathbf{g})^T\mathbf{F} d\mathbf{u} \), which vanishes for all (infinitesimal) perturbations \(d\mathbf{u} \) if and only if \((\mathbf{Fu} - \mathbf{g})^T\mathbf{F} = 0^T \). (Do you see why?) Transposed, this becomes the “Normal Equations” of the Least-Squares Problem,

\[
(\mathbf{F}^T\mathbf{F})\mathbf{u} = \mathbf{F}^T\mathbf{g}.
\]

\(\mathbf{u} \) must satisfy them to minimize \(||\mathbf{Fu} - \mathbf{g}|| \) and so best approximate \(\mathbf{g} \) by a vector in \(\text{Range}(\mathbf{F}) \).

Do the Normal Equations have at least one solution \(\mathbf{u} = \hat{\mathbf{u}} \)?

If so, is \(||\mathbf{F}\hat{\mathbf{u}} - \mathbf{g}|| \leq ||\mathbf{Fu} - \mathbf{g}|| \) for all \(\mathbf{u} \)? i.e., does \(\hat{\mathbf{u}} \) minimize rather than maximize?
These questions among others are addressed in this note.

At first sight one might think the Normal Equations’ solution should be \(\hat{\mathbf{u}} = (\mathbf{F}^T\mathbf{F})^{-1}\mathbf{F}^T\mathbf{g} \). But this formula fails if the columns of \(\mathbf{F} \) are linearly dependent. To see why, observe that

\[
\mathbf{Fz} = 0 \quad \iff \quad (\mathbf{Fz})^T(\mathbf{Fz}) = 0 \quad \iff \quad (\mathbf{F}^T\mathbf{F})\mathbf{z} = 0,
\]

so \(\mathbf{F}^T\mathbf{F} \) is invertible (nonsingular) if and only if the columns of \(\mathbf{F} \) are linearly independent. This hasn’t been assumed; in fact matrix \(\mathbf{F} \) could be rectangular with more columns than rows.

Exercise: Show that, if the rows of \(\mathbf{F} \) are linearly independent, a solution \(\hat{\mathbf{u}} = \mathbf{F}^T(\mathbf{F}\mathbf{F}^T)^{-1}\mathbf{g} \) and, if not the only solution of the Normal Equations, it is the only solution that minimizes \(\hat{\mathbf{u}}^T\hat{\mathbf{u}} \) too.

In short, if neither the rows nor the columns of \(\mathbf{F} \) are linearly independent, neither \(\mathbf{F}\mathbf{F}^T \) nor \(\mathbf{F}^T\mathbf{F} \) need be invertible, and then the existence of a minimizing solution \(\mathbf{u} = \hat{\mathbf{u}} \) is in question.

Warning: Even when an indicated inverse exists, neither formula \(\hat{\mathbf{u}} = (\mathbf{F}^T\mathbf{F})^{-1}\mathbf{F}^T\mathbf{g} \) nor \(\hat{\mathbf{u}} = \mathbf{F}^T(\mathbf{F}\mathbf{F}^T)^{-1}\mathbf{g} \) should be used with numerical data unless the computer’s arithmetic carries at least twice as many sig. digits as are trusted in the data \([\mathbf{F}, \mathbf{g}]\) or desired in the result \(\hat{\mathbf{u}} \). Otherwise roundoff will degrade the result \(\hat{\mathbf{u}} \) too badly whenever \(\mathbf{F} \) is too near a matrix of lower rank. The reason behind this warning will become clear after *Singular Values* have been discussed. If the arithmetic carries barely more sig. digits than are trusted in the data or desired in the result, it should be computed by means of a *QR factorization*, which will also be discussed later. Matlab uses such a factorization to compute \(\hat{\mathbf{u}} \), which Matlab calls “\(\mathbf{F}\backslash\mathbf{g} \)”, whenever \(\mathbf{F} \) is not square. Least-Squares is built into Matlab.

Existence and Uniqueness of a Minimizing Solution \(\hat{\mathbf{u}} \):
We shall use Fredholm’s Alternatives (*q.v.*) to deduce that the Normal Equations always have at least one solution \(\hat{\mathbf{u}} \), and to determine when it is unique. At least one solution exists if and only if \(\mathbf{w}^T(\mathbf{F}^T\mathbf{g}) = 0 \) whenever \(\mathbf{w}^T(\mathbf{F}^T\mathbf{F}) = 0^T \), so consider any row \(\mathbf{w} \) that satisfies the last equation. It must satisfy also \(0 = \mathbf{w}^T(\mathbf{F}^T\mathbf{F})\mathbf{w} = (\mathbf{Fw})^T(\mathbf{Fw}) \), which implies \(\mathbf{Fw} = \mathbf{0} \), which implies \(\mathbf{w}^T(\mathbf{F}^T\mathbf{g}) = (\mathbf{Fw})^T\mathbf{g} = 0 \), whereupon Fredholm’s Alternative (1) implies that the Normal Equations have at least one solution \(\hat{\mathbf{u}} \). It is unique if and only if the columns of \(\mathbf{F} \) are linearly independent; otherwise add any nonzero solution \(\mathbf{z} \) of \(\mathbf{Fz} = \mathbf{0} \) to one \(\hat{\mathbf{u}} \) to get another.
How do we know that setting \(u = \hat{u} \) minimizes \(\|Fu - g\| \)? For every \(u \) we find
\[
\|Fu - g\|^2 - \|F\hat{u} - g\|^2 = \|F(u - \hat{u}) + (F\hat{u} - g)\|^2 - \|F\hat{u} - g\|^2 \\
= \|F(u - \hat{u})\|^2 + 2(u - \hat{u})^T(F\hat{u} - g) \\
= \|F(u - \hat{u})\|^2 + 2(u - \hat{u})^TF\hat{u} - 2g \\
\]
with equality instead of inequality just when \(u \) is another solution of the Normal Equations.

When the Normal Equations have many solutions \(\hat{u} \), which does Matlab choose for \(F\backslash g \)? It has a near minimal number of nonzero elements. A different solution minimizes \(\|\hat{u}\|^2 := \hat{u}^T\hat{u} \), as if also the space of vectors \(u \) were Euclidean. This doubly minimizing solution \(\hat{u} \) satisfies both the Normal Equations \((F^TF)\hat{u} = F^Tg\) and an auxiliary equation \(\hat{u} = F^TFv \) for some vector \(v \) of “Lagrange Multipliers.” In consequence \(v \) satisfies \((F^TF)^2v = F^Tg\), an equation with least one solution \(v \) whose existence is assured by an application of Fredholm’s first alternative very much like before except that the hypothesis \(w^T(F^TF) = o^T \) is replaced by \(w^T(F^TF)^2 = o^T \). (Can you carry out this inference?) Every other solution \(u \) of the Normal Equations satisfies \(\|u\|^2 - \|\hat{u}\|^2 = \|(u - \hat{u}) + \hat{u}\|^2 \geq 0 \), so this \(\hat{u} = F^TFv \) really is doubly minimizing; moreover it is determined uniquely by the data \([F, g]\). (Can you see why?) As we shall see later after Singular Values have been discussed, there is a matrix \(F^\dagger \) called the “Moore-Penrose Pseudo-Inverse” of \(F \) such that the doubly minimizing \(\hat{u} = F^\dagger g \) is a linear function of \(g \). (Matlab’s name for \(F^\dagger \) is pinv(F).) However, whenever neither \(F^TF \) nor \(FF^T \) is invertible, so \(F^\dagger \) is interesting, it turns out to be a violently discontinuous function of \(F \). This renders the doubly minimizing \(\hat{u} \) doubly dubious because the space of vectors \(u \) need not be Euclidean. Matlab’s \(F\backslash g \) can be discontinuous too, even when \(FF^T \) is invertible and the doubly minimizing \(\hat{u} \) is continuous.

Linear Regression:
Least-Squares approximation has been applied to statistical estimation for over two centuries. An \(m \times n \) matrix \(F \) is assumed given with linearly independent columns (so \(m \geq n \)); and a given \(m \)-vector \(g = y + q \) of “data” is thought to include a systematic contribution \(y \) and a “random error” \(q \). The question is how near is \(y \) to \(\text{Range}(F) \)? The answer is obscured by the random error. The elements of this error \(q \) are assumed independently distributed with mean 0 and known variance \(\beta^2 \). These terms are given meaning by an Averaging or Expectation operator \(\mathbb{E} \) which acts upon every random variable \(r \) linearly to produce \(\mathbb{E}r \), the average or mean of the population of values of \(r \). Thus \(\mathbb{E}q = o \) because every element of \(q \) has mean 0; and \(q \) has covariance matrix \(\mathbb{E}(q - \mathbb{E}q)(q - \mathbb{E}q)^T = \beta^2I \) since the square of every element of \(q \) has mean \(\beta^2 \) but every product of different elements of \(q \) has mean 0 because they are independent. The smaller is \(\beta \), the less uncertainty does random error \(q \) introduce into the data \(g \).

Define \(x := (F^TF)^{-1}F^Ty \) to minimize \(\|Fx - y\| \) although neither \(y \) nor \(x \) can be known. As the known \(g \) approximates \(y \), so is \(x \) approximated by whatever \(\hat{u} \) minimizes \(\|F\hat{u} - g\| \). Get \(\hat{u} = (F^TF)^{-1}F^Tg \); how well can it approximate \(x \)? Since \(\mathbb{E}g = y \), we find that \(\mathbb{E}\hat{u} = x \), so \(\hat{u} \) is an unbiased estimate of \(x \). The covariance matrix of \(\hat{u} \) is computable too; it is
\[
\mathbb{E}(\hat{u} - x)(\hat{u} - x)^T = \mathbb{E}(F^TF)^{-1}F^Tqq^TF(F^TF)^{-1} = (F^TF)^{-1}F^TF\mathbb{E}(qq^T)F(F^TF)^{-1} = \beta^2(F^TF)^{-1}. \\
\]
The smaller this is, the better does \(\hat{u} \) approximate \(x \) on average. The smaller is \(\|Fx - y\| \), the smaller do we expect \(\|F\hat{u} - g\| \) to be. How small should we expect it to be? A calculation below shows that \(\mathbb{E}(\|F\hat{u} - g\|^2) = \|Fx - y\|^2 + (m-n)\beta^2 \). It means that \(\|F\hat{u} - g\| \) is unlikely to exceed \(\beta\sqrt{m-n} \) much if \(y \) lies in or very near \(\text{Range}(F) \); conversely, \(\|Fx - y\| \) is unlikely to be much smaller than \(\|F\hat{u} - g\| \) if this is many times bigger than \(\beta\sqrt{m-n} \). Explanation follows.
Proof that \(\mathbb{E}(\|\mathbf{F} \mathbf{u} - \mathbf{g}\|^2) = \|\mathbf{F} \mathbf{x} - \mathbf{y}\|^2 + (m-n)\beta^2 \): The Trace of a square matrix is defined to be the sum of its diagonal elements; evaluate this sum to confirm that Trace\(\mathbf{A}^T \mathbf{B}\) = Trace\(\mathbf{B}^T \mathbf{A}\) for any matrices \(\mathbf{A}^T\) and \(\mathbf{B}\) whose products \(\mathbf{A}^T \mathbf{B}\) and \(\mathbf{B}^T \mathbf{A}\) are both square, though perhaps of different dimensions. Next define \(\mathbf{H} := \mathbf{F}^T \mathbf{F} \mathbf{F}^{-1} \mathbf{F} \) and confirm that \(\mathbf{H}^T = \mathbf{H} \) = \(\mathbf{H}^2 \). (\(\mathbf{H} \) is the orthogonal projector onto Range(\(\mathbf{F}\)) because \(\mathbf{p} = \mathbf{F} \mathbf{z} \) for some \(\mathbf{z} \) \(\iff \mathbf{p} = \mathbf{H} \mathbf{p} \), so Range(\(\mathbf{F}\)) = Range(\(\mathbf{H}\)), and \(\mathbf{H} \mathbf{z} = \mathbf{0} \) \(\iff \mathbf{z}^T \mathbf{H} = \mathbf{0}^T \), so Nullspace(\(\mathbf{H}\)) = Range(\(\mathbf{H}^T\)).)

Proof that \(\mathbb{E}(\|\mathbf{F} \mathbf{u} - \mathbf{g}\|^2) \) is unlikely to be many times bigger than its mean \(\mathbb{E}(\|\mathbf{F} \mathbf{u} - \mathbf{g}\|^2) \): More precisely, we shall deduce that \(\|\mathbf{F} \mathbf{u} - \mathbf{g}\|^2 \) exceeds \(\lambda \mathbb{E}(\|\mathbf{F} \mathbf{u} - \mathbf{g}\|^2) \) with probability less than \(1/\lambda \), for every \(\lambda > 1 \). This deduction is an instance of Tchebyshev’s Inequality: If a positive random variable \(\mathbf{p} \) has mean \(\mathbb{E}(\mathbf{p}) = \mu \), then the probability that \(\mathbf{p} \geq \lambda \mu \) cannot exceed 1/\(\lambda \) for any \(\lambda > 1 \). Here is a proof of Tchebyshev’s Inequality. Let \(\rho(\xi) \) be the probability that \(\rho \) \leq \(\xi \). This \(\rho(\xi) \) is a nondecreasing function increasing from \(\rho(0) = 0 \) to \(\rho(\infty) = 1 \), and \(\mu = \int_{\xi=0}^{\infty} \xi \rho(\xi) d\xi \) by virtue of the definition of \(\mathbb{E} \). We seek an overestimate for \(\int_{\xi=0}^{\infty} \xi \rho(\xi) d\xi \), which is the probability that \(\rho \geq \lambda \mu \). We find that \(\int_{\xi=0}^{\infty} \xi \rho(\xi) d\xi \leq \int_{\xi=0}^{\infty} \xi \rho(\xi) d\xi / (\lambda \mu) \leq \int_{\xi=0}^{\infty} \xi \rho(\xi) d\xi / (\lambda \mu) = \mu / (\lambda \mu) \), which yields the result claimed. (This can be a gross overestimate because it uses almost no information about \(\rho \). For almost all values of \(\lambda > 1 \), and for all values of \(\lambda > 1 \) for almost all probability functions \(\rho \), the probability that \(\rho \geq \lambda \mu \) is actually far tinier than \(1/\lambda \).)

Thus the computed \(\|\mathbf{F} \mathbf{u} - \mathbf{g}\|^2 \) is unlikely to be many times bigger than \(\|\mathbf{F} \mathbf{x} - \mathbf{y}\|^2 + \beta^2(m-n) \) in which \(\beta^2(m-n) \) is given and \(\|\mathbf{F} \mathbf{x} - \mathbf{y}\|^2 \) is unknown, whence something probabilistic can be inferred about the unknown. Another similar application of Least-Squares is to the assumption that \(\mathbf{y} = \mathbf{F} \mathbf{x} + \mathbf{q} \) for a random error \(\mathbf{q} \) about which \(\beta^2 \) is unknown but estimated from \(\|\mathbf{F} \mathbf{u} - \mathbf{g}\|^2/(m-n) \). These applications are treated in Statistics courses.

Abstract Least-Squares:
Suppose a column vector \(\mathbf{g} \) is given in an Euclidean space into which a given linear operator \(\mathbf{F} \) maps a real space of abstract vectors \(\mathbf{u} \). In the Euclidean space, length \(||\mathbf{g}|| := \sqrt{\mathbf{g}^T \mathbf{g}} \), but no such length is defined (yet) for Domain(\(\mathbf{F}\)). Again our task is to choose \(\mathbf{u} \) to minimize \(||\mathbf{F} \mathbf{u} - \mathbf{g}|| \), which will then be the distance from \(\mathbf{g} \) to Range(\(\mathbf{F}\)). Differentiating the sum of squares \(||\mathbf{F} \mathbf{u} - \mathbf{g}||^2 = (\mathbf{F} \mathbf{u} - \mathbf{g})^T (\mathbf{F} \mathbf{u} - \mathbf{g}) \) produces \(d (\mathbf{F} \mathbf{u} - \mathbf{g})^T (\mathbf{F} \mathbf{u} - \mathbf{g}) = 2(\mathbf{F} \mathbf{u} - \mathbf{g})^T \mathbf{F} d\mathbf{u} \), which vanishes for all (infinitesimal) perturbations \(d\mathbf{u} \) if and only if \((\mathbf{F} \mathbf{u} - \mathbf{g})^T \mathbf{F} = \mathbf{o}^T \). This \(\mathbf{o}^T \) is the linear functional that annihilates Domain(\(\mathbf{F}\)). The last equation says that when \(||\mathbf{F} \mathbf{u} - \mathbf{g}|| \) is minimized the residual \(\mathbf{F} \mathbf{u} - \mathbf{g} \) must be normal (perpendicular, orthogonal) to Range(\(\mathbf{F}\)). (This explains the word “Normal” in “Normal Equations” and removes any suggestion that other equations are abnormal.) Drawing a picture helps; imagine Range(\(\mathbf{F}\)) to be a plane in Euclidean 3-space containing a vector \(\mathbf{F} \mathbf{u} \) which, when it comes closest to a given vector \(\mathbf{g} \) not in the plane, comes to that point in the plane reached by dropping a perpendicular from \(\mathbf{g} \).

We could transpose \((\mathbf{F} \mathbf{u} - \mathbf{g})^T \mathbf{F} = \mathbf{o}^T \) to \((\mathbf{F}^T \mathbf{F}) \mathbf{u} = \mathbf{F}^T \mathbf{g} \) if we knew what “\(\mathbf{F}^T \mathbf{F} \)” meant.
The trouble with the expression “$F^T F$” is that it is not what it first seems; if F were a matrix then $F^T F$ would map $\text{Domain}(F)$ to itself, but a change of basis in $\text{Domain}(F)$ does not change $F^T F$ to the expected similar matrix. Here is what happens instead:

Let B be a basis for $\text{Domain}(F)$. Then abstract vector $u = Bu$ for some column vector u, and $Fu = FBu = Fu$ for a matrix $F = FB$. The Normal Equations “$(Fu - g)^T F = o^T$” turn into “$(Fu - g)^T F = o^T$” which becomes “$(F^T Fu) = F^T g$” after matrix transposition. BC is a new basis for $\text{Domain}(F)$, and $u = Bu$ for matrix $F = FC$, where C is any invertible matrix of the same dimension as $\text{Domain}(F)$. What was “$(F^T F)u = F^T g$” in the old basis becomes “$(F^T F)u = F^T g$” in the new, replacing matrix $F^T F$ by $BC = CTFC$. This differs from $C^{-1} F^T FC$, which is how the change in basis would have changed $F^T F$ if it were the matrix of a map from $\text{Domain}(F)$ to itself. Instead, $F^T F$ is the matrix of a map from $\text{Domain}(F)$ to its own dual space.

If you doubt that these choices of basis matter, try the following example: Let $g := 10101$, a scalar, and suppose $F = [1, 10, 100]$ in some coordinate system. Then get Matlab to compute $u = F \backslash g$ to solve the least-squares problem. Next change to a new basis using a diagonal matrix $C = \text{diag}(10, 1, 1/16)$. It changes F to $F = FC$ and thus changes the solution of the least-squares problem to $u = F \backslash g$. This maps back to $C^{-1} u = C^{-1} (F \backslash g)$ in the old basis. Compare with the old solution u. Try again with 6-vectors g and 6-by-3 matrices F at random.

Bilinear Forms:

There is no uniquely defined operator $F^T F$ just as there is no functional u^T determined uniquely by vector u in a non-Euclidean space. The matrices that appear in the Normal Equations are not all matrices that represent linear maps from one space of column vectors to another or itself; matrix $F^T F$ belongs to a Symmetric Bilinear Form that maps column vectors to row vectors.

Consider $(Fu)^T Fv$. It maps pairs $\{u, v\}$ of vectors from $\text{Domain}(F)$ to real scalars, and does so as a linear function of each vector separately; this is the definition of a Bilinear Form. And since $(Fu)^T Fv$ is unaltered when u and v are swapped, it is a Symmetric Bilinear Form.

There are many notations for bilinear forms: H_{uv}, $H(u, v)$, (v, Hu), … . They all mean this: H_{uv} is a linear functional in the space dual to vectors v, and H_{uv} is its scalar value; $H_{v,u}$ is a linear functional in the space dual to vectors u, and H_{uv} is its scalar value; Given a basis B for vectors $u = Bu$, and a basis E for vectors $v = Ev$, there is a matrix H for which $H_{uv} = (HBu)^T Ev = (Hu)^T v = v^T Hu$;

Changing bases from B to BC and E to ED changes u to $u' = C^{-1} u$, v to $v' = D^{-1} v$, and H to $\Xi = D^T HC$ so that $H_{uv} = v^T Hu = \nu^T Huv$.

Exercise: Express the elements of matrix H in terms of the effect H has upon the elements of bases B and E.

A Symmetric bilinear form maps vectors u and v from the same space to scalars, and does so in a way independent of the order of u and v thus: $H_{uv} = H_{vu}$. A symmetric bilinear form has a symmetric matrix $H = H^T$ in any basis. (Why?) Changing the basis changes H to matrix $\Xi = C^T HC$ for some invertible C; the two matrices Ξ and H are called “Congruent.” This congruence is an Equivalence, so it preserves rank; i.e., $\text{rank}(\Xi) = \text{rank}(H)$. Congruence also preserves a thing called “Signature” as we’ll see when we come to Sylvester’s Inertia Theorem.