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Least-Squares Approximation  and  Bilinear Forms

 

The  Normal Equations :

 

Suppose a column vector  g  is given in an  Euclidean  space into which a given matrix  F  maps 

another real space of column vectors  u .  In the  Euclidean  space,  length  ||g|| := 

 

√

 

(g

 

T

 

g) .  Usually 
matrix  F  is rectangular with more rows than columns.  Our task is to choose  u  to minimize  
||Fu – g|| ,  which will then be the distance from  g  to  Range(F) .  This task is called  “Least-
Squares”  because the  u  we seek would minimize the sum of squares of the elements of  Fu – g .  

Differentiating the sum of squares produces   d

 

 

 

((Fu – g)

 

T

 

(Fu – g)) = 2(Fu - g)

 

T

 

F

 

 

 

du ,  which 

vanishes for all  (infinitesimal)  perturbations  du  if and only if  (Fu – g)

 

T

 

F = o

 

T

 

 .  ( Do you see 
why?)  Transposed,  this becomes the  “ Normal Equations ”  of the  Least-Squares Problem,

     (F

 

T

 

F)u = F

 

T

 

g ;
u  must satisfy them to minimize  ||Fu – g||  and so best approximate  g  by a vector in  Range(F) .

Do the  Normal Equations  have at least one solution  u = û ?
If so,  is  ||Fû – g|| 

 

≤

 

 ||Fu – g||  for all  u ?   

 

i.e.

 

,  does  û  minimize rather than maximize?
These questions among others are addressed in this note.

At first sight one might think the  Normal Equations’  solution should be  û = (F

 

T

 

F)

 

–1

 

F

 

T

 

g .  But 
this formula fails if the columns of  F  are linearly dependent.  To see why,  observe that

   “ Fz = o ”   

 

⇐⇒

 

   “ (Fz)

 

T

 

(Fz) = z

 

T

 

(F

 

T

 

F)z = 0 ”   

 

⇐⇒

 

   “ (F

 

T

 

F)z = o ” ,

so  F

 

T

 

F  is invertible  ( nonsingular )  if and only if the columns of  F  are linearly independent.  
This hasn’t been assumed;  in fact matrix  F  could be rectangular with more columns than rows.

 

Exercise:

 

  Show that,  if the rows of  F  are linearly independent,  a solution  û = F

 

T

 

(FF

 

T

 

)

 

–1

 

g  and,  

if not the only solution of the  Normal Equations,  it is the only solution that minimizes  û

 

T

 

û  too.

In short,  if neither the rows nor the columns of  F  are linearly independent,  neither  FF

 

T

 

  nor  

F

 

T

 

F  need be invertible,  and then the existence of a minimizing solution  u = û  is in question.

Warning:  

 

Even when an indicated inverse exists,  neither formula  û = (F

 

T

 

F)

 

–1

 

F

 

T

 

g  nor  û = F

 

T

 

(FF

 

T

 

)

 

–1

 

g  should be 
used with numerical data unless the computer’s arithmetic carries at least twice as many sig. digits as are trusted in 
the data  [F, g]  or desired in the result  û .  Otherwise roundoff will degrade the result  û  too badly whenever  F  is too 
near a matrix of lower rank.  The reason behind this warning will become clear after  

 

Singular Values

 

  have been 
discussed.  If the arithmetic carries barely more sig. digits than are trusted in the data or desired in the result,  it should 
be computed by means of a  

 

QR  factorization

 

,  which will also be discussed later.  Matlab  uses such a factorization 
to compute  û ,  which  Matlab  calls  “ 

 

F\g

 

 ”,  whenever  F  is not square.  Least-Squares  is built into  Matlab.

 

Existence and Uniqueness  of a  Minimizing Solution  û :

 

We shall use  Fredholm’s Alternatives  (

 

q.v

 

.)  to deduce that the  Normal Equations  always have 
at least one solution  û ,  and to determine when it is unique.  At least one solution exists if and 

only if  w

 

T

 

(F

 

T

 

g) = 0  whenever  w

 

T

 

(F

 

T

 

F) = o

 

T

 

 ,  so consider any row  w

 

T

 

  that satisfies the last 

equation.  It must satisfy also  0 = w

 

T

 

(F

 

T

 

F)w = (Fw)

 

T

 

(Fw) ,  which implies  Fw = o ,  which 

implies  w

 

T

 

(F

 

T

 

g) = (Fw)

 

T

 

g = 0 ,  whereupon  Fredholm’s Alternative (1)  implies that the  Normal 
Equations  have at least one solution  û .  It is unique if and only if the columns of  F  are linearly 
independent;  otherwise add any nonzero solution  z  of  Fz = o  to one  û  to get another.
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How do we know that setting  u = û  minimizes  ||Fu – g|| ?   For every  u  we find

||Fu – g||

 

2

 

 – ||Fû – g||

 

2

 

 =  ||F(u – û) + (Fû – g)||

 

2

 

 – ||Fû – g||

 

2

 

 

=  ||F(u – û)||

 

2

 

 + 2(F(u – û))

 

T

 

(Fû – g)                ( since  ||z||

 

2

 

 = z

 

T

 

z )

=  ||F(u – û)||

 

2

 

 + 2(u – û)

 

T

 

F

 

T

 

(Fû – g)   =  ||F(u – û)||

 

2

 

  

 

≥

 

  0 ,
with equality instead of inequality just when  u  is  a(nother)  solution of the  Normal Equations.

 

When the  Normal Equations  have many solutions  û ,  which does  Matlab  choose for  

 

F\g

 

 ?  It has a near minimal 

number of nonzero elements.   A different solution minimizes  ||û||

 

2

 

 := û

 

T

 

û ,  as if also the space of vectors  u  were  

Euclidean.  This doubly minimizing solution  û  satisfies both the  Normal Equations  (F

 

T

 

F)û = F

 

T

 

g  and an auxiliary 

equation  û = F

 

T

 

Fv  for some vector  v  of  “Lagrange Multipliers.”  In consequence  v  satisfies  (F

 

T

 

F)

 

2

 

v = F

 

T

 

g ,  an 
equation with least one solution  v  whose existence is assured by an application of  Fredholm’s  first alternative very 

much like before except that the hypothesis  w

 

T

 

(F

 

T

 

F) = o

 

T

 

  is replaced by  w

 

T

 

(F

 

T

 

F)

 

2

 

 = o

 

T

 

 .  ( Can you carry out this 

inference?)  Every other solution  u  of the  Normal Equations  satisfies   ||u||

 

2

 

 – ||û||

 

2

 

 = ||(u–û) + û||

 

2

 

 – ||û||

 

2

 

 = …

… = ||u–û||

 

2

 

 + 2û

 

T

 

(u–û) = ||u–û||

 

2

 

 + 2v

 

T

 

F

 

T

 

F(u–û) = ||u–û||

 

2

 

 

 

≥

 

 0 ,   so this  û = F

 

T

 

Fv  really is doubly minimizing;  
moreover it is determined uniquely by the data  [F, g] .  ( Can you see why?)  As we shall see later after  Singular 

Values  have been discussed,  there is a matrix  F

 

†

 

  called the  “Moore-Penrose  Pseudo-Inverse”  of  F  such that the 

doubly minimizing  û = F

 

†

 

g  is a linear function of  g .  ( Matlab’s  name for  F

 

†

 

  is  pinv(F).)  However,  whenever 

neither  F

 

T

 

F  nor  FF

 

T

 

  is invertible,  so  F

 

†

 

  is interesting,  it turns out to be a violently discontinuous function of  F .  
This renders the doubly minimizing  û  doubly dubious because the space of vectors  u  need not be  Euclidean.  

Matlab’s  

 

F\g

 

  can be discontinuous too,  even when  FF

 

T

 

  is invertible and the doubly minimizing  û  is continuous.

 

Linear Regression:

 

Least-Squares  approximation has been applied to statistical estimation for over two centuries.  An  
m-by-n  matrix  F  is assumed given with linearly independent columns  ( so  m 

 

≥

 

 n );  and a given  
m-vector  g = y + q  of  “data”  is thought to include a systematic contribution  y  and a  “random 
error”  q .  The question is how near is  y  to  Range(F) ?  The answer is obscured by the random 
error.  The elements of this error  q  are assumed  

 

independently distributed

 

  with  mean  0  and 

known variance  ß2 .  These terms are given meaning by an  Averaging  or  Expectation  operator  
Æ  which acts upon every random variable  r  linearly to produce  Ær ,  the average or  mean  of 
the population of values of  r .  Thus  Æq = o  because every element of  q  has mean  0 ;  and  q  

has  covariance  matrix  Æ((q–Æq)(q–Æq)T) = ß2I  since the square of every element of  q  has 

mean  ß2  but every product of different elements of  q  has mean  0  because they are independent.  
The smaller is  ß ,  the less uncertainty does random error  q  introduce into the data  g .

Define  x := (FTF)–1FTy  to minimize  ||Fx – y||  although neither  y  nor  x  can be known.  As the 
known  g  approximates  y ,  so is  x  approximated by whatever  û  minimizes  ||Fû - g|| .  Get  

û = (FTF)–1FTg ;  how well can it approximate  x ?  Since  Æg = y ,  we find that  Æû = x ,  so  û  
is an  unbiased  estimate of  x .  The covariance matrix of  û  is computable too;  it is

  Æ( (û – x)(û – x)T) =  Æ( (FTF)–1FTqqTF(FTF)–1)  =  (FTF)–1FTÆ(qqT)F(FTF)–1  =  ß2(FTF)–1 .
The smaller this is,  the better does  û  approximate  x  on average.  The smaller is  ||Fx – y|| ,  the 
smaller do we expect  ||Fû – g||  to be.  How small should we expect it to be?  A calculation below 

shows that  Æ(||Fû - g||2)  =  ||Fx - y||2 + (m–n)ß2 .  It means that  ||Fû – g||  is unlikely to exceed  
ß√(m–n)  much if  y  lies in or very near  Range(F) ;  conversely,  ||Fx – y||  is unlikely to be much 
smaller than  ||Fû – g||  if this is many times bigger than  ß√(m–n) .  Explanation follows.
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Proof that   Æ(||Fû - g||2)  =  ||Fx - y||2 + (m–n)ß2 :  The  Trace  of a square matrix is defined to be the sum of its 

diagonal elements;  evaluate this sum to confirm that  Trace(BTC) = Trace(C BT)  for any matrices  BT  and  C  whose 

products  BTC  and  C BT  are both square,  though perhaps of different dimensions.  Next define  H := F(FTF)–1FT  

and confirm that  HT = H = H2 .  ( H  is the orthogonal projector onto   Range(F)  because  “ p = Fz  for some  z ”  

⇐⇒   “ p = Hp ” ,  so  Range(F) = Range(H) ,  and “ Hz = o ”  ⇐⇒   “ zTH = oT ” ,  so  Nullspace(H) = Range(H)⊥  .)  

Shortly we shall have use for  Trace(H) = Trace((FTF)–1FTF) = Trace(In) = n .  Now we observe that  û  and  x  are so 
defined that  Fû – g = (H – I)g  and  Fx – y = (H – I)y  wherein  I  is the  m-by-m  identity matrix.  Consequently

      Æ(||Fû – g||2) =  Æ( ((H–I)g)T(H–I)g )  =  Æ(Trace( (H–I)g((H–I)g)T ))         …  because  Trace(bTc) = Trace(cbT)

=  Æ(Trace( (H–I)ggT(H–I) ))  =  Trace( (H–I)Æ(ggT)(H–I) )    …  because  H = HT  isn’t random

=  Trace( (H–I)Æ(yyT + yqT + qyT + qqT)(H–I) )                          …  because  g = y + q

=  Trace( (H–I)( yyT + O + O + ß2I )(H–I) )  =  Trace( (H–I)yyT(H–I) ) + ß2Trace((H–I)2)

=  Trace( (Fx – y)(Fx – y)T) + ß2Trace(I – H)  =  ||Fx – y||2 + ß2(m–n)      as was claimed.

Proof that   ||Fû - g||2  is unlikely to be many times bigger than its mean  Æ(||Fû - g||2) :  More precisely,  we shall 

deduce that   ||Fû - g||2  exceeds  λÆ(||Fû - g||2)  with probability less than  1/λ  for every  λ > 1 .  This deduction is an 
instance of  Tchebyshev’s Inequality :  If a positive random variable  ρ  has mean  µ := Æρ ,  then the probability that  
ρ ≥ λµ  cannot exceed  1/λ  for any  λ > 1 .  Here is a proof of  Tchebyshev’s Inequality.  Let  p(ξ)  be the probability 

that  ρ ≤ ξ .  This  p(ξ)  is a nondecreasing function increasing from  p(0) = 0  to  p(∞) = 1 ,  and  µ =   by 

virtue of the definition of  Æ .  We seek an overestimate for   ,  which is the probability that  ρ ≥ λµ .  We 

find that    ≤   /(λµ)  ≤   /(λµ)  =  µ /(λµ)  ,  which yields the result claimed.  ( This can 

be a gross overestimate because it uses almost no information about  p .  For almost all values of  λ > 1 ,  and for all 
values of  λ > 1  for almost all probability functions  p ,  the probability that  ρ ≥ λµ  is actually far tinier than  1/λ .)

Thus the computed  ||Fû – g||2  is unlikely to be many times bigger than  ||Fx – y||2 + ß2(m–n)  in which  ß2(m–n)  is 

given and  ||Fx – y||2  is unknown,  whence something probabilistic can be inferred about the unknown.  Another 
similar application of  Least-Squares  is to the assumption that  y = Fx  and  g = y + q  for a random error  q  about 

which  ß2  is unknown but estimated from  ||Fû – g||2/(m–n) .  These applications are treated in  Statistics  courses.

Abstract  Least-Squares:
Suppose a column vector  g  is given in an  Euclidean  space into which a given linear operator  F  

maps a real space of abstract vectors  u .  In the  Euclidean  space,  length  ||g|| := √(gTg) ,  but no 
such length is defined  (yet)  for  Domain(F) .  Again our task is to choose  u  to minimize  
||Fu – g|| ,  which will then be the distance from  g  to  Range(F) .  Differentiating the sum of 

squares  ||Fu – g||2 = (Fu – g)T(Fu – g)  produces   d ((Fu – g)T(Fu – g)) = 2(Fu - g)TF du ,  

which vanishes for all  (infinitesimal)  perturbations  du  if and only if  (Fu – g)TF = oT .  This  oT  
is the linear functional that annihilates  Domain(F) .  The last equation says that when  ||Fu – g||  is 
minimized the residual  Fu – g  must be  normal  ( perpendicular,  orthogonal )  to  Range(F) .  
( This explains the word  “Normal”  in  “Normal Equations”  and removes any suggestion that 
other equations are abnormal.)  Drawing a picture helps;  imagine  Range(F)  to be a plane in  
Euclidean 3-space  containing a vector  Fu  which,  when it comes closest to a given vector  g  not 
in the plane,  comes to that point in the plane reached by dropping a perpendicular from  g .

We could transpose  “ (Fu – g)TF = oT ”  to  “ (FTF)u = FTg ”  if we knew what  “ FTF ”  meant.

ξ  d p ξ( )
0
∞∫

d p ξ( )λµ
∞∫

d p ξ( )λµ
∞∫ ξ  d p ξ( )λµ

∞∫ ξ  d p ξ( )
0
∞∫
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The trouble with the expression  “ FTF ”  is that it is not what it first seems;  if  F  were a matrix 

then  FTF  would map  Domain(F)  to itself,  but a change of basis in  Domain(F)  does not change  

FTF  to the expected  similar  matrix.  Here is what happens instead:

Let  B  be a basis for  Domain(F) .  Then abstract vector  u = Bu  for some column vector  u ,  and  Fu = FBu = Fu  for 

a matrix  F = FB .  The  Normal Equations  “ (Fu – g)TF = oT ”  turn into  “ (Fu – g)TF = oT ”  which becomes  

“ (FTF)u = FTg ”  after matrix transposition.  BC  is a new basis for  Domain(F) ,  and  u = BCu  for  u = C–1u ,  and  
Fu = Fu  for matrix  F = FC ,  where  C  is any invertible matrix of the same dimension as  Domain(F) .  What was  

“ (FTF)u = FTg ”  in the old basis becomes  “ (FTF)u = FTg ”  in the new,  replacing matrix  FTF  by  FTF = CTFTFC .  

This differs from  C–1FTFC ,  which is how the change in basis would have changed  FTF  if it were the matrix of a 

map from  Domain(F)  to itself.  Instead,  FTF  is the matrix of a map from  Domain(F)  to its own dual space.

If you doubt that these choices of basis matter,  try the following example:  Let  g := 10101 ,  a scalar,  and suppose  
F = [1, 10, 100]  in some coordinate system.  Then get  Matlab  to compute  u = F\g  to solve the least-squares 
problem.  Next change to a new basis using a diagonal matrix  C = diag([10, 1, 1/16]) .  It changes  F  to  F = FC  and 
thus changes the solution of the least-squares problem to  u = F\g .  This maps back to  Cu  = C*((F*C)\g) in the 
old basis.  Compare with the old solution  u .  Try again with  6-vectors  g  and  6-by-3  matrices  F  at random.

Bilinear Forms:
There is no uniquely defined operator  FTF  just as there is no functional  uT  determined uniquely 
by vector  u  in a  non-Euclidean  space.  The matrices that appear in the  Normal Equations  are 
not all matrices that represent linear maps from one space of column vectors to another or itself;  

matrix  FTF  belongs to a  Symmetric Bilinear Form  that maps column vectors to row vectors.

Consider  (Fu)TFv .  It maps pairs  {u, v}  of vectors from  Domain(F)  to real scalars,  and does 
so as a linear function of each vector separately;  this is the definition of a  Bilinear Form.  And 

since  (Fu)TFv  is unaltered when  u  and  v  are swapped,  it is a  Symmetric Bilinear Form.

There are many notations for bilinear forms:  Huv ,  H(u, v) ,  (v, Hu) , … .  They all mean this:
Hu_  is a linear functional in the space dual to vectors  v ,  and  Huv  is its scalar value;
H_v  is a linear functional in the space dual to vectors  u ,  and  Huv  is its scalar value;
Given a basis  B  for vectors  u = Bu ,  and a basis  E  for vectors  v = Ev ,  there is a

matrix  H  for which  Huv = (HBu)Ev = (Hu)Tv = vTHu ;

Changing bases from  B  to  BC  and  E  to  ED  changes  u  to  u = C–1u ,  v  to  v = D–1v ,

and  H  to  H = DTHC  so that  Huv = vTHu = vTHu .

Exercise:  Express the elements of matrix  H  in terms of  the effect  H  has upon the elements of bases  B  and  E .

A  Symmetric  bilinear form maps vectors  u  and  v  from the same space to scalars,  and does so 
in a way independent of the order of  u  and  v  thus:  Huv = Hvu .  A symmetric bilinear form has 

a symmetric matrix  H = HT  in any basis.  (Why?)  Changing the basis changes  H  to matrix  

H = CTHC  for some invertible  C ;  the two matrices  H  and  H  are called  “ Congruent.”  This 
congruence is an  Equivalence,  so it preserves rank;  i.e.,  rank(H) = rank(H) .  Congruence also 
preserves a thing called  “Signature”  as we’ll see when we come to  Sylvester’s Inertia Theorem.


