Least-Squares Approximation and Bilinear Forms

The Normal Equations :

Suppose a column vector g is given in an Euclidean space into which a given matrix F maps another real space of column vectors u. In the Euclidean space, length $||g|| := \sqrt{(g^Tg)}$. Usually matrix F is rectangular with more rows than columns. Our task is to choose u to minimize ||Fu - g||, which will then be the distance from g to Range(F). This task is called "Least-Squares" because the u we seek would minimize the sum of squares of the elements of Fu - g. Differentiating the sum of squares produces $d((Fu - g)^T(Fu - g)) = 2(Fu - g)^TF du$, which vanishes for all (infinitesimal) perturbations du if and only if $(Fu - g)^TF = o^T$. (Do you see why?) Transposed, this becomes the "Normal Equations" of the Least-Squares Problem, $(F^TF)u = F^Tg$;

u must satisfy them to minimize ||Fu - g|| and so best approximate g by a vector in Range(F). Do the Normal Equations have at least one solution $u = \hat{u}$?

If so, is $||F\hat{u} - g|| \le ||Fu - g||$ for all u? *i.e.*, does \hat{u} minimize rather than maximize? These questions among others are addressed in this note.

At first sight one might think the Normal Equations' solution should be $\hat{u} = (F^T F)^{-1} F^T g$. But this formula fails if the columns of F are linearly dependent. To see why, observe that

" Fz = o" \iff " $(Fz)^T(Fz) = z^T(F^TF)z = 0$ " \iff " $(F^TF)z = o$ ",

so $F^{T}F$ is invertible (nonsingular) if and only if the columns of F are linearly independent. This hasn't been assumed; in fact matrix F could be rectangular with more columns than rows.

Exercise: Show that, if the rows of F are linearly independent, a solution $\hat{u} = F^T (FF^T)^{-1}g$ and, if not the only solution of the Normal Equations, it is the only solution that minimizes $\hat{u}^T \hat{u}$ too.

In short, if neither the rows nor the columns of F are linearly independent, neither FF^{T} nor $F^{T}F$ need be invertible, and then the existence of a minimizing solution $u = \hat{u}$ is in question.

Warning: Even when an indicated inverse exists, neither formula $\hat{u} = (F^T F)^{-1} F^T g$ nor $\hat{u} = F^T (FF^T)^{-1} g$ should be used with numerical data unless the computer's arithmetic carries at least twice as many sig. digits as are trusted in the data [F, g] or desired in the result \hat{u} . Otherwise roundoff will degrade the result \hat{u} too badly whenever F is too near a matrix of lower rank. The reason behind this warning will become clear after *Singular Values* have been discussed. If the arithmetic carries barely more sig. digits than are trusted in the data or desired in the result, it should be computed by means of a *QR factorization*, which will also be discussed later. Matlab uses such a factorization to compute \hat{u} , which Matlab calls "F\g", whenever F is not square. Least-Squares is built into Matlab.

Existence and Uniqueness of a Minimizing Solution û:

We shall use Fredholm's Alternatives (q.v.) to deduce that the Normal Equations always have at least one solution \hat{u} , and to determine when it is unique. At least one solution exists if and only if $w^T(F^Tg) = 0$ whenever $w^T(F^TF) = o^T$, so consider any row w^T that satisfies the last equation. It must satisfy also $0 = w^T(F^TF)w = (Fw)^T(Fw)$, which implies Fw = o, which implies $w^T(F^Tg) = (Fw)^Tg = 0$, whereupon Fredholm's Alternative (1) implies that the Normal Equations have at least one solution \hat{u} . It is unique if and only if the columns of F are linearly independent; otherwise add any nonzero solution z of Fz = o to one \hat{u} to get another. How do we know that setting $u = \hat{u}$ minimizes ||Fu - g||? For every u we find

$$\begin{split} \|Fu - g\|^2 - \|F\hat{u} - g\|^2 &= \|F(u - \hat{u}) + (F\hat{u} - g)\|^2 - \|F\hat{u} - g\|^2 \\ &= \|F(u - \hat{u})\|^2 + 2(F(u - \hat{u}))^T(F\hat{u} - g) \qquad (\text{ since } \|z\|^2 = z^T z \) \\ &= \|F(u - \hat{u})\|^2 + 2(u - \hat{u})^T F^T(F\hat{u} - g) = \|F(u - \hat{u})\|^2 \ge 0 \ , \end{split}$$

with equality instead of inequality just when u is a(nother) solution of the Normal Equations.

When the Normal Equations have many solutions \hat{u} , which does Matlab choose for F\g ? It has a near minimal number of nonzero elements. A different solution minimizes $||\hat{u}||^2 := \hat{u}^T \hat{u}$, as if also the space of vectors u were Euclidean. This doubly minimizing solution \hat{u} satisfies both the Normal Equations $(F^T F)\hat{u} = F^T g$ and an auxiliary equation $\hat{u} = F^T Fv$ for some vector v of "Lagrange Multipliers." In consequence v satisfies $(F^T F)^2 v = F^T g$, an equation with least one solution v whose existence is assured by an application of Fredholm's first alternative very much like before except that the hypothesis $w^T(F^T F) = o^T$ is replaced by $w^T(F^T F)^2 = o^T$. (Can you carry out this inference?) Every other solution u of the Normal Equations satisfies $||u||^2 - ||\hat{u}||^2 = ||(u-\hat{u}) + \hat{u}||^2 - ||\hat{u}||^2 = ...$ $\dots = ||u-\hat{u}||^2 + 2\hat{u}^T(u-\hat{u}) = ||u-\hat{u}||^2 + 2v^T F^T F(u-\hat{u}) = ||u-\hat{u}||^2 \ge 0$, so this $\hat{u} = F^T Fv$ really is doubly minimizing; moreover it is determined uniquely by the data [F, g]. (Can you see why?) As we shall see later after Singular Values have been discussed, there is a matrix F^{\dagger} called the "Moore-Penrose Pseudo-Inverse" of F such that the doubly minimizing $\hat{u} = F^{\dagger}g$ is a linear function of g. (Matlab's name for F^{\dagger} is pinv(F).) However, whenever neither $F^T F$ nor FF^T is invertible, so F^{\dagger} is interesting, it turns out to be a violently discontinuous function of F. This renders the doubly minimizing \hat{u} doubly dubious because the space of vectors u need not be Euclidean. Matlab's F\g can be discontinuous too, even when FF^T is invertible and the doubly minimizing \hat{u} is continuous.

Linear Regression:

Least-Squares approximation has been applied to statistical estimation for over two centuries. An m-by-n matrix F is assumed given with linearly independent columns (so $m \ge n$); and a given m-vector g = y + q of "data" is thought to include a systematic contribution y and a "random error" q. The question is how near is y to Range(F)? The answer is obscured by the random error. The elements of this error q are assumed *independently distributed* with *mean* 0 and known *variance* β^2 . These terms are given meaning by an *Averaging* or *Expectation* operator Æ which acts upon every random variable r linearly to produce Ær, the average or *mean* of the population of values of r. Thus $\mathcal{E}q = o$ because every element of q has mean 0; and q has *covariance* matrix $\mathcal{E}((q-\mathcal{E}q)(q-\mathcal{E}q)^T) = \beta^2 I$ since the square of every element of q has mean β^2 but every product of different elements of q has mean 0 because they are independent. The smaller is β , the less uncertainty does random error q introduce into the data g.

Define $x := (F^T F)^{-1} F^T y$ to minimize ||Fx - y|| although neither y nor x can be known. As the known g approximates y, so is x approximated by whatever \hat{u} minimizes $||F\hat{u} - g||$. Get $\hat{u} = (F^T F)^{-1} F^T g$; how well can it approximate x? Since $\mathcal{A}g = y$, we find that $\mathcal{A}\hat{u} = x$, so \hat{u} is an *unbiased* estimate of x. The covariance matrix of \hat{u} is computable too; it is

 $\mathcal{E}((\hat{u} - x)(\hat{u} - x)^T) = \mathcal{E}((F^T F)^{-1} F^T q q^T F (F^T F)^{-1}) = (F^T F)^{-1} F^T \mathcal{E}(q q^T) F (F^T F)^{-1} = \beta^2 (F^T F)^{-1}.$ The smaller this is, the better does \hat{u} approximate x on average. The smaller is ||Fx - y||, the smaller do we expect $||F\hat{u} - g||$ to be. How small should we expect it to be? A calculation below shows that $\mathcal{E}(||F\hat{u} - g||^2) = ||Fx - y||^2 + (m - n)\beta^2$. It means that $||F\hat{u} - g||$ is unlikely to exceed $\beta\sqrt{(m-n)}$ much if y lies in or very near Range(F); conversely, ||Fx - y|| is unlikely to be much smaller than $||F\hat{u} - g||$ if this is many times bigger than $\beta\sqrt{(m-n)}$. Explanation follows. Proof that $\mathcal{A}(\|F\hat{u} - g\|^2) = \|Fx - y\|^2 + (m-n)\beta^2$: The Trace of a square matrix is defined to be the sum of its diagonal elements; evaluate this sum to confirm that $\text{Trace}(B^TC) = \text{Trace}(C B^T)$ for any matrices B^T and C whose products B^TC and $C B^T$ are both square, though perhaps of different dimensions. Next define $H := F(F^TF)^{-1}F^T$ and confirm that $H^T = H = H^2$. (H is the orthogonal projector onto Range(F) because " p = Fz for some z" \iff " p = Hp", so Range(F) = Range(H), and " Hz = o" \iff " $z^TH = o^T$ ", so Nullspace(H) = Range(H)[⊥].) Shortly we shall have use for Trace(H) = Trace((F^TF)^{-1}F^TF) = Trace(I_n) = n. Now we observe that \hat{u} and x are so defined that $F\hat{u} - g = (H - I)g$ and Fx - y = (H - I)y wherein I is the m-by-m identity matrix. Consequently $\mathcal{A}(||F\hat{u} - g||^2) = \mathcal{A}(((H-I)g)^T(H-I)g) = \mathcal{A}(\text{Trace}((H-I)g((H-I)g)^T))$... because $\text{Trace}(b^Tc) = \text{Trace}(cb^T) = \mathcal{A}(\text{Trace}((H-I)\mathcal{A}(gg^T)(H-I))$... because $H = H^T$ isn't random = Trace((H-I)\mathcal{A}(yy^T + yq^T + qy^T + qq^T)(H-I)) = \text{Trace}((H-I)yy^T(H-I)) + \beta^2\text{Trace}((H-I)^2) = \text{Trace}((Fx - y)(Fx - y)^T) + \beta^2\text{Trace}(I - H) = ||Fx - y||^2 + \beta^2(m-n) as was claimed.

Proof that $||F\hat{u} - g||^2$ is unlikely to be many times bigger than its mean $\mathcal{E}(||F\hat{u} - g||^2)$: More precisely, we shall deduce that $||F\hat{u} - g||^2$ exceeds $\lambda \mathcal{E}(||F\hat{u} - g||^2)$ with probability less than $1/\lambda$ for every $\lambda > 1$. This deduction is an instance of *Tchebyshev's Inequality*: If a positive random variable ρ has mean $\mu := \mathcal{E}\rho$, then the probability that $\rho \ge \lambda\mu$ cannot exceed $1/\lambda$ for any $\lambda > 1$. Here is a proof of Tchebyshev's Inequality. Let $p(\xi)$ be the probability that $\rho \le \xi$. This $p(\xi)$ is a nondecreasing function increasing from p(0) = 0 to $p(\infty) = 1$, and $\mu = \int_0^\infty \xi dp(\xi)$ by virtue of the definition of \mathcal{E} . We seek an overestimate for $\int_{\lambda\mu}^\infty dp(\xi)$, which is the probability that $\rho \ge \lambda\mu$. We find that $\int_{\lambda\mu}^\infty dp(\xi) \le \int_{\lambda\mu}^\infty \xi dp(\xi) /(\lambda\mu) \le \int_0^\infty \xi dp(\xi) /(\lambda\mu) = \mu /(\lambda\mu)$, which yields the result claimed. (This can be a gross overestimate because it uses almost no information about p. For almost all values of $\lambda > 1$, and for all values of $\lambda > 1$ for almost all probability functions p, the probability that $\rho \ge \lambda\mu$ is actually far tinier than $1/\lambda$.) Thus the computed $||F\hat{u} - g||^2$ is unlikely to be many times bigger than $||Fx - y||^2 + \beta^2(m-n)$ in which $\beta^2(m-n)$ is given and $||Fx - y||^2$ is unknown, whence something probabilistic can be inferred about the unknown. Another similar application of Least-Squares is to the assumption that y = Fx and g = y + q for a random error q about which β^2 is unknown but estimated from $||F\hat{u} - g||^2/(m-n)$. These applications are treated in Statistics courses.

Abstract Least-Squares:

Suppose a column vector g is given in an Euclidean space into which a given linear operator **F** maps a real space of abstract vectors **u**. In the Euclidean space, length $||g|| := \sqrt{(g^T g)}$, but no such length is defined (yet) for Domain(**F**). Again our task is to choose **u** to minimize $||\mathbf{Fu} - g||$, which will then be the distance from g to Range(**F**). Differentiating the sum of squares $||\mathbf{Fu} - g||^2 = (\mathbf{Fu} - g)^T(\mathbf{Fu} - g)$ produces $d((\mathbf{Fu} - g)^T(\mathbf{Fu} - g)) = 2(\mathbf{Fu} - g)^T\mathbf{F} d\mathbf{u}$, which vanishes for all (infinitesimal) perturbations d**u** if and only if $(\mathbf{Fu} - g)^T\mathbf{F} = \mathbf{o}^T$. This \mathbf{o}^T is the linear functional that annihilates Domain(**F**). The last equation says that when $||\mathbf{Fu} - g||$ is minimized the residual $\mathbf{Fu} - g$ must be *normal* (perpendicular, orthogonal) to Range(**F**). (This explains the word "Normal" in "Normal Equations" and removes any suggestion that other equations are abnormal.) Drawing a picture helps; imagine Range(**F**) to be a plane in Euclidean 3-space containing a vector \mathbf{Fu} which, when it comes closest to a given vector g not in the plane, comes to that point in the plane reached by dropping a perpendicular from g.

We could transpose " $(\mathbf{F}\mathbf{u} - \mathbf{g})^{T}\mathbf{F} = \mathbf{o}^{T}$ " to " $(\mathbf{F}^{T}\mathbf{F})\mathbf{u} = \mathbf{F}^{T}\mathbf{g}$ " if we knew what " $\mathbf{F}^{T}\mathbf{F}$ " meant.

The trouble with the expression " $\mathbf{F}^{T}\mathbf{F}$ " is that it is not what it first seems; if \mathbf{F} were a matrix then $\mathbf{F}^{T}\mathbf{F}$ would map Domain(\mathbf{F}) to itself, but a change of basis in Domain(\mathbf{F}) does not change $\mathbf{F}^{T}\mathbf{F}$ to the expected *similar* matrix. Here is what happens instead:

Let **B** be a basis for Domain(**F**). Then abstract vector $\mathbf{u} = \mathbf{B}\mathbf{u}$ for some column vector \mathbf{u} , and $\mathbf{F}\mathbf{u} = \mathbf{F}\mathbf{B}\mathbf{u} = F\mathbf{u}$ for a matrix $F = \mathbf{F}\mathbf{B}$. The Normal Equations " $(\mathbf{F}\mathbf{u} - g)^T\mathbf{F} = \mathbf{o}^T$ " turn into " $(F\mathbf{u} - g)^T\mathbf{F} = \mathbf{o}^T$ " which becomes " $(F^TF)\mathbf{u} = F^Tg$ " after matrix transposition. **B**C is a new basis for Domain(**F**), and $\mathbf{u} = \mathbf{B}C\mathbf{u}$ for $\mathbf{u} = \mathbf{C}^{-1}\mathbf{u}$, and $\mathbf{F}\mathbf{u} = \mathbb{F}\mathbf{u}$ for matrix $\mathbb{F} = FC$, where C is any invertible matrix of the same dimension as Domain(**F**). What was " $(F^TF)\mathbf{u} = F^Tg$ " in the old basis becomes " $(\mathbb{F}^T\mathbb{F})\mathbf{u} = \mathbb{F}^Tg$ " in the new, replacing matrix F^TF by $\mathbb{F}^T\mathbb{F} = \mathbf{C}^TF^TFC$. This differs from $\mathbf{C}^{-1}F^TFC$, which is how the change in basis would have changed F^TF if it were the matrix of a map from Domain(**F**) to itself. Instead, F^TF is the matrix of a map from Domain(**F**) to its own dual space.

If you doubt that these choices of basis matter, try the following example: Let g := 10101, a scalar, and suppose F = [1, 10, 100] in some coordinate system. Then get Matlab to compute $u = F \setminus g$ to solve the least-squares problem. Next change to a new basis using a diagonal matrix C = diag([10, 1, 1/16]). It changes F to $\mathbb{F} = FC$ and thus changes the solution of the least-squares problem to $u = \mathbb{F} \setminus g$. This maps back to $Cu = C^*((F^*C) \setminus g)$ in the old basis. Compare with the old solution u. Try again with 6-vectors g and 6-by-3 matrices F at random.

Bilinear Forms:

There is no uniquely defined operator $\mathbf{F}^{T}\mathbf{F}$ just as there is no functional \mathbf{u}^{T} determined uniquely by vector \mathbf{u} in a non-Euclidean space. The matrices that appear in the Normal Equations are not all matrices that represent linear maps from one space of column vectors to another or itself; matrix $\mathbf{F}^{T}\mathbf{F}$ belongs to a *Symmetric Bilinear Form* that maps column vectors to row vectors.

Consider $(\mathbf{Fu})^{T}\mathbf{Fv}$. It maps pairs $\{\mathbf{u}, \mathbf{v}\}$ of vectors from Domain(\mathbf{F}) to real scalars, and does so as a linear function of each vector separately; this is the definition of a *Bilinear Form*. And since $(\mathbf{Fu})^{T}\mathbf{Fv}$ is unaltered when \mathbf{u} and \mathbf{v} are swapped, it is a *Symmetric Bilinear Form*.

There are many notations for bilinear forms: \mathbf{Huv} , $H(\mathbf{u}, \mathbf{v})$, $(\mathbf{v}, \mathbf{Hu})$, They all mean this: $\mathbf{Hu}_{}$ is a linear functional in the space dual to vectors \mathbf{v} , and \mathbf{Huv} is its scalar value; $\mathbf{H}_{}\mathbf{v}$ is a linear functional in the space dual to vectors \mathbf{u} , and \mathbf{Huv} is its scalar value; Given a basis \mathbf{B} for vectors $\mathbf{u} = \mathbf{Bu}$, and a basis \mathbf{E} for vectors $\mathbf{v} = \mathbf{Ev}$, there is a matrix \mathbf{H} for which $\mathbf{Huv} = (\mathbf{HBu})\mathbf{Ev} = (\mathbf{Hu})^{T}\mathbf{v} = \mathbf{v}^{T}\mathbf{Hu}$; Changing bases from \mathbf{B} to \mathbf{BC} and \mathbf{E} to \mathbf{ED} changes \mathbf{u} to $\mathbf{u} = \mathbf{C}^{-1}\mathbf{u}$, \mathbf{v} to $\mathbf{v} = \mathbf{D}^{-1}\mathbf{v}$, and \mathbf{H} to $\mathbb{H} = \mathbf{D}^{T}\mathbf{HC}$ so that $\mathbf{Huv} = \mathbf{v}^{T}\mathbf{Hu} = \mathbf{v}^{T}\mathbf{Hu}$.

Exercise: Express the elements of matrix H in terms of the effect H has upon the elements of bases B and E.

A *Symmetric* bilinear form maps vectors **u** and **v** from the same space to scalars, and does so in a way independent of the order of **u** and **v** thus: Huv = Hvu. A symmetric bilinear form has a symmetric matrix $H = H^T$ in any basis. (Why?) Changing the basis changes H to matrix $\mathbb{H} = C^T HC$ for some invertible C; the two matrices \mathbb{H} and H are called "Congruent." This congruence is an *Equivalence*, so it preserves rank; *i.e.*, rank(\mathbb{H}) = rank(H). Congruence also preserves a thing called "Signature" as we'll see when we come to Sylvester's *Inertia* Theorem.