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Jordan’s Normal Form

 

Our objective is to demonstrate that for any given complex  n-by-n  matrix  B  there exists at 
least one invertible matrix  C  that transforms  B  by 

 

Similarity

 

   into a diagonal sum

C

 

–1

 

BC =   

of  

 

Jordan Blocks

 

  each of the form  ßI + J ,  where  ß  is an eigenvalue of  B  and  J  is obtained 
from the identity matrix  I  either by deleting its first row and appending a last row of zeros,  or 
equivalently by deleting its last column and prepending a first column of zeros.  For example,
here is a  4-by-4  Jordan Block:

ßI + J  =    .

Such a block has one repeated eigenvalue and only one eigenvector regardless of its dimension.  
Every eigenvalue  ß

 

j

 

  of  B  appears in at least one  Jordan Block,  and these blocks can appear 
in any order,  and their various dimensions add up to the dimension  n  of  B .  We’ll see that  B  
determines its  Jordan  blocks completely except for the order in which they appear.  Since every 

matrix  Z

 

–1

 

BZ  

 

Similar

 

  to  B  has the same blocks,  they tell us all that can be known about the 
geometrical effect of a linear operator whose matrix,  in an unknown coordinate system,  is  B .  
For instance they show how  B  decomposes the vector space into an  

 

Irreducible

 

  sum of

 

 Nested 
Invariant  Subspaces

 

,  as will be explained later.

An important application of  Jordan’s Normal Form  is the extension of the definitions of scalar 
functions  ƒ(ß)  of a scalar argument  ß  to define matrices  ƒ(B) .  However,  we shall find that  
ƒ(B)  is easier to find from a  

 

Pennants

 

  form of  B ,  or from a triangular  

 

Schur

 

  form.

Jordan’s  canonical form under similarity is hard to discover because it can be a discontinuous 
function of its data  B .  For example,  no matter how tiny the nonzero number  

 

µ

 

  may be,
Jordan’s Normal Form of

must be diagonal with four  1-by-1  Jordan  blocks;  do you see why?  And do you see why
Jordan’s Normal Form of

is the same for all  

 

µ

 

 

 

≠

 

 0 ?  Irreducible invariant subspaces are not determined uniquely if  

 

µ

 

 = 0 .

Discovering the  Jordan  blocks takes several steps each intended to simplify the problem.  The
first step identifies the eigenvalues  ß

 

j

 

  of  B  as the zeros  ( generally complex numbers )  of its

 

Characteristic Polynomial

 

   det(

 

λ

 

I – B) =  

 

λ

 

n

 

 – Trace(B)

 

λ

 

n–1

 

 + … + (–1)

 

n

 

det(B)  =  

 

∏

 

j 

 

(

 

λ

 

 – ß

 

j

 

) .

β1I1 J1+ O O … O

O β2I2 J2+ O … O

O O β3I3 J3+ … O

… … … … …
O O O … βLIL JL+

β 1 0 0

0 β 1 0

0 0 β 1

0 0 0 β

β 1 0 0

0 β 1 0

0 0 β 1

µ 0 0 β

β 1 0 0

0 β µ 0

0 0 β 1

0 0 0 β
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The  Cayley-Hamilton  Theorem:

 

Every square matrix satisfies its own  Characteristic Equation;

i.e.,  ƒ(B) = O  when   ƒ(

 

λ

 

) := det(

 

λ

 

I–B) =  

 

∑

 

0

 

≤

 

j

 

≤

 

n 

 

ƒ

 

j

 

λ

 

j

 

   is the characteristic polynomial of  B .  
This theorem is stated with an incorrect proof or none in many texts on linear algebra,  which is 
reason enough to present a correct proof here:

Let the  

 

Classical Adjoint

 

  or  

 

Adjugate

 

  of  

 

λ

 

I–B  be  A(

 

λ

 

) := Adj(

 

λ

 

I–B) .  It is known to satisfy  
A(

 

λ

 

)(

 

λ

 

I–B) = (

 

λ

 

I–B)A(

 

λ

 

) = ƒ(

 

λ

 

)I .  At first sight,  we could replace the scalar  

 

λ

 

  by the matrix  
B  in the last equation to get  ƒ(B) = (BI–B)A(B) = O ,  which is what the theorem claims.  But 
this is not a proof.  How do we know that a matrix identity,  valid for all  

 

scalar

 

  values of a 
variable  

 

λ ,

 

  remains valid after  

 

λ

 

  is replaced by a  

 

matrix

 

 ?  It’s not so in general,  as the next 
examples show:  Set

P :=   ,    Q :=   ,    R :=   ,   and    S :=  –   ;

then  P

 

λ

 

Q = O  for all scalars  

 

λ

 

  but  PRQ = P 

 

≠

 

 O ,  and   (Q–

 

λ

 

I)(Q+

 

λ

 

I) = -

 

λ

 

2

 

I  for all scalars  

 

λ

 

  but   (Q–PI)(Q+PI) = S 

 

≠

 

 –P

 

2

 

I .  These counter-examples reveal a flaw in the simple-minded 
substitution of  B  for  

 

λ

 

  above.  A correct proof must be more complicated:

Each element of adjugate  A(

 

λ

 

)  is a polynomial in  

 

λ

 

  of degree at most  n–1 ;  it must have the 

form  A(

 

λ

 

) =  

 

∑

 

0

 

≤

 

j<n 

 

A

 

j

 

λ

 

j

 

  in which every coefficient  A

 

j

 

  is an  n-by-n  matrix.  In fact every  
A

 

j

 

  is a polynomial in  B  computable from the identity  A(

 

λ

 

)(

 

λ

 

I–B) = (

 

λ

 

I–B)A(

 

λ

 

) = ƒ(

 

λ

 

)I ,

 

 

i.e.

 

   (

 

λI – B) ∑0≤j<n Aj λj  =  ∑0≤j≤n ƒj λj I  ,

by matching the coefficients of successive powers of  λ .  Begin with the coefficient of  λn ;  

An–1 = ƒnI = I .  Then for  λn–1  find that  An–2 – BAn–1  = ƒn–1I ,  so  An–2 = ƒn–1I + B .  And in 
general  Aj–1 = ƒjI + BAj  for  j = n, n-1, …, 3, 2, 1, 0  in turn,  starting from  An := O  and 
ending at  A–1 := O  to meet end-conditions in the sums.  This confirms by reverse induction that 
every  Aj  is a polynomial in  B  with coefficients drawn from the numbers  ƒj ,  and therefore  
BAj = AjB  just as  λAj = Ajλ ,  justifying simple-minded substitution.  Alternatively observe that

O = A–1 =  ƒ0I + B(ƒ1I + B(ƒ2I + … + B(ƒn–1I + B)…))  = ƒ(B) ,
which is what the  Cayley-Hamilton  theorem claims.  End of proof.

Triangular Forms  Similar  to  B 
Two other forms are almost as useful as  Jordan’s  and far easier to exhibit.  First is  Schur’s  

decomposition  B = QUQ*  in which  Q* = Q–1  and  U  is upper-triangular with the eigenvalues 
of  B  on its diagonal.  This unitary similarity has many uses and is relatively easy to compute 
with fair accuracy  ( QUQ*  is almost exactly  B );  its existence will be demonstrated below.

The second form to which every square matrix  B  can be reduced by complex similarity is a    
diagonal sum of triangular matrices of which each has only one eigenvalue,  and this eigenvalue 
is distinct from the eigenvalue of every other triangle in that sum.  Though still a continuous 
function of  B ,  this similarity is more difficult to compute than  Schur’s,  as we shall see later.
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Schur’s  triangularization will be shown to exist through a process of  deflation ;  as each 
eigenvalue of  B  is chosen its eigenvector will be used to reduce by  1  the dimension of the 
matrix from which the next eigenvalue of  B  will be chosen.  Here is how deflation works:

Choose any eigenvalue  ß1  of  B  and find eigenvector  v1  as a nonzero solution of the singular 
homogeneous linear system  (ß1I – B)v1 = o .  Then embed  v1  in a new basis  V := [v1, v2, …]  
of the vector space as its first basis vector.  B  is the matrix of a linear operator whose matrix in 

the new basis is   V–1BV =     because  Bv1 = ß1v1  so  V–1Bv1 =   .  Here  B  is a 

square matrix whose dimension is  1  less than  B ’s .  The eigenvalues of  B  are  ß1  and the 

eigenvalues of  B  because  det(λI – B) =  det(λI – V–1BV)  =  (λ – ß1)det(λI – B) .  What was 
just done to  B  can now be done to  B :  Choose any eigenvalue  ß2  of  B  ( and of  B )  and 
solve  B v2 = ß2v2  for a nonzero eigenvector  v2  of  B  ( not of  B )  and then form a new basis  

V := [v2, v3, …]  for the space upon which  B  ( not  B )  acts;  the first column of  V–1B V  is  

V–1B v2 =   .  Set  W :=    to find   (VW)–1B(VW) =    =   .  

Repeating the process ultimately delivers an upper-triangular  U = Q–1BQ  with its eigenvalues 
on its diagonal in the order in which they were chosen as eigenvalues of  B .

Exercise:  Use this  U  to deduce the  Cayley-Hamilton Theorem  from the factorization  det(λI – B) =  ∏j (λ – ßj) .  
( Because the theorem’s proof given earlier required no knowledge of eigenvalues,  it works also for a scalar field,  
like the  Rational  field,  whose matrices  B  may  “lack”  eigenvalues because the field is not algebraically closed.)

Schur’s  triangularization is a special case of deflation performed by  Unitary Similarities.  The 
given matrix  B  is regarded as a linear operator that maps a  Unitary Space  to itself;  the space 
is endowed with a length  ||v|| := √(v*v)  defined as the root-sum-squares of the magnitudes of 
the elements of vector  v .  Only  orthonormal  bases are used for this space;  every change from 
one such basis to another is represented by a  Unitary Matrix  whose inverse equals its complex 
conjugate transpose.  When eigenvector  v1  is found it is divided by its length to  normalize  it 
so that  ||v1|| = 1 ,  and then it is embedded in an orthonormal basis  V := [v1, v2, v3, …]  so that  

V–1 = V* .  There are many ways to construct such a  V .  One computes subsequent columns  
v2, v3, …  by applying  Gram-Schmidt  orthogonalization to the columns of  [v1, I]  and 
discarding a resulting column of zeros.  Another computes the elementary orthogonal reflector  

V = V* = V–1 = I – 2uu*/u*u  that swaps  v1  with the first column of the identity  I .  Likewise 
for  V ,  so  W  above is unitary too,  and so is the product  Q  of unitary matrices.  Thus we 

obtain  Schur’s  triangularization  U = Q*BQ  with  Q* = Q–1 .

Below we’ll need a special  Schur  triangularization in which repeated eigenvalues of  B  appear 
in adjacent locations on the diagonal of  U .  If  ß1  is a repeated eigenvalue of  B  it is also an 
eigenvalue of  B  and can be chosen for  ß2  above.  Thus can the needed ordering of  B ’s  
eigenvalues be imposed upon all diagonal elements of upper triangle  U ,  at least in principle.

β1 b
T

o B

β1

o

β2

o

1 o
T

o V

β1 b
T
V

o V
1–
BV

β1 … …

0 β2 …

o o …
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Exercise:  Use  Schur’s  triangularization to deduce that every  Hermitian  matrix  A = A*  is unitarily similar to a 
real diagonal matrix,  so the eigenvectors of  A  can be chosen to form a complex orthonormal basis.

A real  Schur  decomposition of a real square matrix  B = QUQT  exists in which  QT = Q–1  is 
real orthogonal and  U  is real block-upper-triangular with  1-by-1  and  2-by-2  blocks on its 
diagonal;  each  1-by-1  block is a real eigenvalue of  B ,  and each  2-by-2  block is a real 
matrix with two complex-conjugate eigenvalues of  B .  The existence is proved by choosing,  
for any complex eigenvalue  ß1 ,  a pair of orthogonal vectors that span an invariant subspace of  
B  belonging to this complex eigenvalue and its conjugate,  and embedding the pair as the first 
two vectors of a new basis for the space.  This change of basis deflates the eigenproblem of  B  
to a real matrix  B  of dimension  2  less than  B ’s.  The deflation and subsequent real block- 
triangularization is otherwise very much like the foregoing complex triangularization.

Exercise:  Use  Schur’s  real triangularization to deduce that every real symmetric matrix  A = AT  is orthogonally 
similar to a real diagonal matrix,  so the eigenvectors of  A  can be chosen to form a real orthonormal basis.

Next we shall show how  Schur’s  U = Q*BQ  can be reduced by further similarities  ( changes 
of basis )  to a diagonal sum of  Pennants,  each an upper-triangular matrix with one eigenvalue 
of  B  repeated as often as the triangle’s dimension.  First we need a …

Lemma £ :  Suppose square matrices  F  and  P  of perhaps different dimensions have no
eigenvalue in common†.  Define a linear operator  £(Z) := ZF – PZ  mapping the vector space of 
matrices  Z  of appropriate dimensions to itself;   then  £(Z) = O  only when  Z = O ,  so this 
linear operator  £  is invertible.

Proof:  Suppose  £(Z) = O .  Then  PZ = ZF  and hence  P2Z = PZF = ZF2 ,  and similarly  

PkZ = ZFk  for  k = 0, 1, 2, 3, ... .  Now consider the characteristic polynomial of  F ,  namely  
Φ(λ) := det(λI – F)  = ∏1≤j≤n (λ–ϕj)  where  ϕ1, ϕ2, …, ϕn  are all the eigenvalues  ( perhaps not 
all distinct )  of  F .  The  Cayley-Hamilton  theorem says  Φ(F) = O ;  but all the factors of 
Φ(P) = ∏1≤j≤n (P – ϕjI)  are nonsingular so it is too.  Expand  Φ(…)  in powers of its argument 
to see term-by-term that  Φ(P)Z = ZΦ(F) = O ,  so  Z = O ,  as claimed.  End of proof.

Therefore the equation   £(X) = XF – PX = Y   can be solved for  X = £–1(Y)  in terms of  F,  P
and  Y  of the right dimensions so long as  F  and  P  have no eigenvalue in common†,  i.e.  so 
long as  GCD(det(λI–F), det(λI–P)) = 1 .  Entirely rational closed-form formulas for  X  do exist:

Let  Yk := Pk–1Y + Pk–2YF + ... + PYFk–2 + YFk–1  for every integer  k ≥ 0 .  Evidently  Y0 = O  and  Y1 = Y  and  

Yk = XFk – PkX .  For each  k  substitute  Yk  for  λk  in  Φ(λ)  to get  ¥ = XΦ(F) – Φ(P)X = –Φ(P)X ,  whereupon  

X := –Φ(P)–1¥ .  This is a rational formula requiring no knowledge of eigenvalues,  but rarely useful for numerical 
computation.  Another way begins by reducing  F  and  P  by similarity each to one of the upper-triangular forms 

above,  say  U := Q–1FQ  and  R := D–1PD .  Then solve   ZU – RZ = D–1YQ   for  Z  element by element starting in 

its lower left corner and working up to the right by diagonals.  Finally set  X := DZQ–1 .
——————————————————————————————————————————————
† Sometimes the phrase  “ disjoint spectra ”  is said instead of  “ no eigenvalue in common.”  First Physicists and 
Chemists said  “spectrum”  for the set of eigenvalues of a linear operator that  Quantum Mechanics  associates with 
an atom or molecule radiating light in colors characterized by its spectrum.  Now  Mathematicians  say it too.
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Block-Diagonalizing  a  Block-Triangular Matrix
Lemma £  above helps us construct a triangular similarity that block-diagonalizes a given block-

triangular matrix:     is similar to    =  =    whenever 

matrix  X  satisfies  XF – PX = Y ,  and such an  X  exists when square matrices  P  and  F  have  
disjoint spectra  ( no common eigenvalue ).  Repeat this process upon  P  and  F  so long as they 
too are block-triangular and have on their diagonals square blocks whose spectra are disjoint.  
Such configurations come from the special  Schur  triangularizations mentioned above.

Therefore,  after any square matrix  B  has been triangularized by a similarity  Q–1BQ = U  in 
such a way that equal eigenvalues of  B  are consecutive on the diagonal of  U ,  similarities can 
further reduce the triangle  U  ultimately to a diagonal sum of  Pennants  like this:

(QK)–1B(QK) = K–1UK =   ;

here  ß1, ß2, ß3, …, ßk  are the  distinct  eigenvalues of  B .  Each pennant  ßI + N  is a triangle 
with only one eigenvalue on its diagonal,  like this  4-by-4  example:

ßI + N  =    .

Each such pennant is copied from corresponding elements of  U .  Each strictly upper-triangular  

N  has zeros on its diagonal and is therefore  Nilpotent,  meaning  Nm = O  for some positive 
integer  m ≤ dim(N) .  Upper-triangular matrix  K  is a pennant too,  with  1’s  on its diagonal 

and nonzero superdiagonal blocks only where  K–1UK  puts zero blocks above the diagonal.

The foregoing diagonal sum of pennants can be shown to be a continuous function of  B  in the following sense:  As 
the elements of  B  all vary continuously but not too far,  the elements of  QK  and of each pennant in the diagonal 
sum also vary continuously;  however the eigenvalues on each pennant’s diagonal can become no longer all equal,  
though different pennants’ spectra remain disjoint.  Eigenvalues can vary abruptly;  an eigenvalue of multiplicity  

m  can split into  m  eigenvalues that spread apart as fast as the  mth  root of the perturbations in  B ,  as in the first 

example above with a tiny perturbation  µ .  Worse,  the elements of  QK  or  (QK)–1  can be so gargantuan that 
roundoff committed during the pennants’ numerical computation gets amplified enough to obliterate some of the 
data in  B .  A few computer programs  ( not  MATLAB )  try to avoid this obliteration by locating tight clusters of  
B ’s  eigenvalues,  choosing one cluster per approximated pennant,  in such a way that the elements of  QK  and  

(QK)–1  never become intolerably big.  This is a tough task.  Several years ago  Prof. Ming Gu  proved a conjecture 
of  Prof. J.W. Demmel  (they are both here at  UCB)  to the effect that attempts to avoid obliterating the data must 
occasionally consume a lot of time trying to choose suitable clusters.  Specifically,  for all dimensions sufficiently 
large there are rare matrices  B  for which choosing clusters consumes time that grows like an exponential function 
of  B ’s  dimension though the time required to compute all approximate pennants would grow like the cube of 
dimension  ( comparable to several matrix multiplications or inversions )  if a good choice of clusters were known 
in advance.  Therefore our discussion of pennants and of  Jordan’s Normal Form  is entirely theoretical,  not a 
recipe for infallible numerical computation with arithmetic operations rounded to finite precision.

P Y

O F

I X

O I

1–
P Y

O F

I X

O I

I X–

O I

P Y

O F

I X

O I

P O

O F

β1I1 N1+ O O … O

O β2I2 N2+ O … O

O O β3I3 N3+ … O

… … … … …
O O O … βkIk Nk+

β ? ? ?

0 β ? ?

0 0 β ?

0 0 0 β
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Functions of Matrices  and  Sylvester’s Interpolation Formula
The diagonal sum of pennants helps us understand the extension of a scalar function  ƒ(λ)  of a 
scalar argument  λ  to matrix arguments.  We have already seen how a polynomial  ƒ(…)  can be 
extended to a matrix argument;  it happened in the  Cayley-Hamilton  theorem.  Analogously,  

exp(λ) =  ∑n≥0 λn/n!  can be extended to define  exp(B) :=  ∑n≥0 B
n/n!  for all square matrices  

B  since the infinite series converges absolutely and,  ultimately,  very quickly.

Exercise:  The economist  M. Keynes  said  “Ultimately we are all dead.”  Roughly how many terms of the series 
for  exp(–1000)  must be added up until every subsequent term is tinier than the sum of the series?  How much 
bigger than its sum is the biggest term in the series?  One way to answer these questions is to use a computer to 
generate those terms and the value of  exp(–1000) .  A better way uses  Stirling’s  asymptotic approximation

n! ≈  √(2πn) exp( n·log(n) – n + 1/(12n) +… )   for big   n .
Answering these questions will help you appreciate why computers don’t compute  exp(…)  just from its series .

Exercise:  Why bother to compute  exp(…)  for matrices?  Confirm from the series that,  for any scalar variable  τ  
and  constant  square matrix  B , the derivative  d exp(τB)/dτ = B·exp(τB) = exp(τB)B .  Then show that the 

solution  y(τ)  of  dy/dτ = By + c(τ)  is the vector function  y(τ) = exp(τB)(y(0) + ∫oτ exp(–θB)c(θ)dθ ) .

Exercise:  We say that matrix  Y  is a square root of  X  when  Y2 = X .  One of    and    has square 

roots and the other doesn’t;  say which and why.  Explain why every  n-by-n  Hermitian Positive Definite  X = X*  

has at least  2n  square roots  Y ,  and if more than  2n  then infinitely many.  Not every such  Y = √X  since …

If an extension of  ƒ(…)  to square matrix arguments exists,  it is expected to have certain 

properties,  among them   Bƒ(B) = ƒ(B)B ,    C–1ƒ(B)C = ƒ(C–1BC)  for all invertible  C ,  and  

ƒ( )  =    whenever  ƒ(Bj)  is defined for both square submatrices  Bj ,  since 

these equations are certainly satisfied when  ƒ(…)  is a polynomial or an absolutely convergent 
power series,  as you should verify.  P.A.M. Dirac  summed up these expectations in one line:

      Zƒ(B) = ƒ(B)Z   for all matrices  Z  that satisfy   ZB = BZ .
These expectations are met by  Sylvester’s Interpolation Formula  which expresses  ƒ(B)  as a 
polynomial  Φ(B)  with coefficients that depend upon  B  and  ƒ(…)  as follows:

Suppose polynomials  Φ(λ)  and  Ψ(λ)  have these properties …
•  Ψ(B) = O ,  and
•  ƒ(λ) = Φ(λ) + Ψ(λ)·µ(λ)  for a function  µ(λ)  sufficiently differentiable at all zeros of  Ψ(…) .
Then  Sylvester’s Interpolation Formula  defines  ƒ(B) := Φ(B) .  How does this work?

First  Ψ(…)  has to be chosen,  and then it has to be used to determine  Φ(…) .  One candidate 
is  Ψ(λ) = det(λI–B)  because the  Cayley-Hamilton  theorem says this  Ψ(B) = O ,  but a better 
one may be the monic polynomial  Ψ(λ)  of minimum degree that satisfies  Ψ(B) = O ;  here a  

monic polynomial of degree  d  has  1  as the coefficient of  λd .  This  Ψ(λ)  of minimum degree 
divides evenly into every polynomial  p(λ)  satisfying  p(B) = O ,  as would  p(λ) = det(λI–B) ,  
because  p(λ)  divided by  Ψ(λ)  yields a quotient polynomial  q(λ)  and a remainder 
polynomial  r(λ) = p(λ) – Ψ(λ)q(λ)  of degree less than  Ψ(λ) ’s ;  but then  r(B) = O  and so  
r(λ) = 0  since no nonzero polynomial  r(…)  of degree less than  Ψ(…) ’s  can satisfy  r(B) = O .

0 1

0 0

0 0 1

0 0 0

0 0 0

B1 O

O B2

ƒ B1( ) O

O ƒ B2( )
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This  Ψ(…) ,  called  “ the Minimum Polynomial   of  B ” ,  is determined uniquely by  B ;  …
Exercise:    Explain why.  Then use the pennants form of  B  to show that its every eigenvalue  ß  is a zero of  

Ψ(…)  with the same multiplicity  m  as the maximum index  m  at which  Nm–1 ≠ O  for the pennant  ßI + N .  Use  
Jordan’s Normal Form  to show that the distinct zeros,  if any,  of the polynomial  det(λI–B)/Ψ(λ)  are those distinct 
eigenvalues of  B  each with two or more eigenvectors;  if they exist  Sylvester  would call  B  “ Derogatory.”

For  Sylvester’s  formula to work  Ψ(…)  does not have to be the minimum polynomial of  B ;  
any polynomial multiple of that minimum polynomial is acceptable.  After  Ψ(…)  has been 
chosen it determines uniquely a polynomial  Φ(…)  of minimum degree  ( less than  Ψ(…) ’s )  
that  Interpolates  ( matches )  ƒ(…)  and perhaps its first few derivatives  ƒ'(…),  ƒ" (…),  …  
( if they all have finite values )  at every zero  ß  of  Ψ(…)  in the following sense:

if  ß  is a zero of  Ψ(…)  of multiplicity  m ,

which means  Ψ(ß) = Ψ'(ß) = Ψ" (ß) = … = Ψ(m–1)(ß) = 0 ≠ Ψ(m)(ß) ,

then  Φ(ß) = ƒ(ß) ,  Φ'(ß) = ƒ'(ß) ,  Φ" (ß) = ƒ" (ß) ,  …,  and  Φ(m–1)(ß) = ƒ(m–1)(ß) .

Why must  Φ(…)  satisfy these equations?  How do they determine  Φ(…) ?  Why  uniquely ?
Φ(…)  must satisfy the last  m  equations at every  m-tuple  zero  ß  of  Ψ(…)  because  ƒ(λ) = Φ(λ) + Ψ(λ)·µ(λ)  

was assumed;  it implies that the  Taylor Series  expansion of ƒ(λ)–Φ(λ)  in powers of  (λ–ß)  begins at  (λ–ß)m .  If 
the aggregate of those equations for all zeros of  Ψ(…)  determines  Φ(λ) ,  it is determined uniquely because the 
difference between two such polynomials is a polynomial of degree less than  Ψ(…) ’s  and yet,  having all the 
zeros of  Ψ(…)  with at least the same multiplicities,  this difference would have degree no less than  Ψ(…) ’s  if it 
did not vanish.  Φ(…)  is now determined by the aggregate of those equations because of their linearity in the 
desired coefficients of  Φ(…) ;  the number of linear equations is the same as the number of coefficients,  namely 
the degree of  Ψ(…) ,  and the equations’ solution is unique if it exists,  so it exists and  Sylvester’s   ƒ(B) := Φ(B) .

Exercise:  Prove that if all zeros  ßj  of  Ψ(…)  are distinct  Φ(λ) = ∑j ƒ(ßj)Ψ(λ)/((λ–ßj)Φ'(ßj)) ;  this is  Lagrange’s 

Interpolating Polynomial.  Repeated zeros of  Ψ(…)  lead to a different  Φ(…)  named after  Hermite.

In short,  when  ƒ(…)  and enough of its derivatives take finite values on the spectrum of  B ,  so 
that  Sylvester’s Interpolation Formula  ƒ(B) := Φ(B)  does exist,  it provides a polynomial that  
defines  ƒ(B)  but does not provide an always good recipe for computing it.

Analogous situations arise for functions like  exp(…),  sin(…),  cos(…),  …  which are defined well by infinite 
series or by differential equations both of which are impractical ways to compute those functions numerically at big 
arguments;  recall the  Exercise  above about  exp(–1000) .  For a matrix  B  of big dimension  n ,  the  n–1  matrix 
multiplications required for an explicit computation of the polynomial  Φ(B)  would generally consume time 

roughly proportional to  n4 ,  far greater than the time  ( roughly proportional to  n3 )  that will be needed to 
compute  ƒ(B)  from its pennants form when it can be computed,  which is almost always.  Worse,  the coefficients 
of a polynomial  Φ(…)  can be huge compared with its value,  so the explicit computation of  Φ(B)  can turn into a 
mess of rounding errors left behind after cancellation.  For instance consider the  Tchebyshev  polynomials  
Tk(λ) := cos(k·arccos(λ)) .  They  are  polynomials because they satisfy the recurrence   T0(λ) = 1 ,  T1(λ) = λ   and  
Tk+1(λ) = 2λTk(λ) – Tk–1(λ)  for  k = 1, 2, 3, …   in turn.  Although  –1 ≤ Tk(λ) ≤ 1  when  –1 ≤ λ ≤ 1 ,  coefficients 

of  Tk(λ)  grow exponentially with  k ;  confirm for  k ≥ 2  that  Tk(λ) = 2k–1λk – 2k–3kλk–2 + … .  This formula is a 
numerically unstable way to compute values of  Tk(λ)  when  λ  is almost  ±1 ;  use the recurrence instead.

There’s a faster way than  Sylvester’s Interpolation Formula  to compute  ƒ(B)  when a pennants 

form of  B  like  (QK)–1B(QK)  above is available:  ƒ(B) = (QK) ƒ((QK)–1B(QK)) (QK)–1 . It is 

derived from  Sylvester’s  polynomial thus:  ƒ(B) = Φ(B) = (QK) Φ((QK)–1B(QK)) (QK)–1 ,  in 
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which inner factor  Φ((QK)–1B(QK))  could be obtained from the pennants form by replacing its 
every pennant  ßI+N  by  Φ(ßI+N) .  However,  Φ(…)  need not be computed at all.   Since  

Ψ((QK)–1B(QK)) = (QK)–1Ψ(B)(QK) = O ,  every pennant’s  Ψ(ßI+N) = O ;  consequently  
Φ(ßI+N)  = ƒ(ßI+N) ,  which can be computed faster than  Φ(ßI+N)  can as follows:

Exercise:  Show that  ƒ(ßI + N) = ƒ(ß)I + f'(ß)N + ƒ" (ß)N2/2 + … + ƒ(m–1)(ß)Nm–1/(m–1)!   when   Nm = O .  Use 

this formula and the pennants form of  B  to confirm that  exp(B) = eτ exp(B–τI)  for every scalar  τ .  ( Warning:  
exp(B+C) = exp(B)·exp(C)  only if  BC = CB ;  otherwise the  Campbell-Baker-Hausdorff  series must be used.)

Fortunately,  Sylvester’s  definition of  ƒ(B) := Φ(B)  as a polynomial does not compel us to 
compute the polynomial,  which could have high degree and huge coefficients causing loss of 
accuracy to roundoff.  Instead,  the pennants form permits a more direct computation:

ƒ(B) =  (QK) (QK)–1 

in which each pennant  ƒ(ßI+N) =  ƒ(ß)I + f'(ß)N + ƒ" (ß)N2/2 + … + ƒ(m–1)(ß)Nm–1/(m–1)!   

when   Nm = O .  Most often  m = 1 or 2 .

Actually,  we needn’t compute  B ’s  pennants form to compute  ƒ(B) .  The pennants form’s 
purpose is to help us understand  ƒ(B) ,  after which we can compute it in better but unobvious 
ways developed here at  UCB  by  Prof. B.N. Parlett  and his students.  An outline follows.

Consider first an approximate pennant  P ≈ ßI + N ;  here  P  is upper-triangular with all diagonal elements nearly 
equal,  so  P–ßI ≈ N  is nearly nilpotent.  We can’t be sure the  Taylor  series

ƒ(P) =  ƒ(ß)I + f'(ß)(P–ßI) + ƒ" (ß)(P–ßI)2/2 + … + ƒ(m–1)(ß)(P–ßI)m–1/(m–1)! + …
will converge rapidly when  P–ßI ≈ N  is nearly nilpotent since its elements may be huge.  Still,  if the dimension  
m  of  P  is small,  a polynomial close to the first  m  terms of this series can be used in  Sylvester’s Interpolation 
Formula  to compute  ƒ(P)  as follows:  Let  Ψ(λ) := det(λI–P) = (λ–ß1)(λ–ß2)(λ–ß3)(…)(λ–ßm)  and express

ƒ(λ) =  ƒ(ß1) + (∆ƒ(ß1, ß2) + (∆2ƒ(ß1, ß2, ß3) + … + ∆m–1ƒ(ß1, ß2, …, ßm)(λ–ßm–1)...)(λ–ß2))(λ–ß1) +

+ ∆mƒ(ß1, ß2, …, ßm, λ) Ψ(λ)

in terms of its  Divided Differences  ∆k–1ƒ(ß1, ß2, …, ßk)  using  Newton’s Divided Difference Formula ;  these are 
explained  ( usually in a different notation )  in texts like  Conte & de Boor  Elementary Numerical Analysis  3rd ed. 
(1980) ch. 2.  Like derivatives,  divided differences can be computed from the function  ƒ(…)  and scalar values of 
its argument.  For instance  ∆ƒ(ß1, ß2) = (ƒ(ß1)–ƒ(ß2))/(ß1–ß2)  if  ß1 ≠ ß2 ;  otherwise  ∆ƒ(ß, ß) = ƒ'(ß) .  Then

ƒ(P) = ƒ(ß1)I + (∆ƒ(ß1, ß2) + (∆2ƒ(ß1, ß2, ß3) + … + ∆m–1ƒ(ß1, ß2, …, ßm)(P–ßm–1I)...)(P–ß2I))(P–ß1I)
because  Ψ(P) = O .  Thus  ƒ(P)  can be computed quickly from a polynomial for small approximate pennants  P .

Next consider that  ƒ( ) =   has to satisfy  ƒ( ) = ƒ( )  ,  so  X  must satisfy 

an equation  XF–PX = Yƒ(F)–ƒ(P)Y  whose solution exists when the spectra of  P  and  F  are disjoint,  and  X  can 
be computed quickly when  P  and  F  are upper-triangular;  see after  Lemma £ .  Thus  Schur’s  decomposition  

U = Q–1BQ  provides an upper triangle from which  ƒ(B) = Qƒ(U)Q–1  can be computed directly block by block,  
starting at near-pennant diagonal blocks and working to the upper right,  without computing  U ’s  pennants form.

ƒ β1I1 N1+( ) O O … O

O ƒ β2I2 N2+( ) O … O

O O ƒ β3I3 N3+( ) … O

… … … … …
O O O … ƒ βkIk Nk+( )

P Y

O F

ƒ P( ) X

O ƒ F( )

P Y

O F

P Y

O F

P Y

O F

P Y

O F
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So,  ƒ(B)  can be computed without reducing  B  to a diagonal sum of pennants by similarities.  

Can we compute  ƒ(B)  without knowing  Schur’s  triangle  U = Q–1BQ  nor  B ’s  eigenvalues?

One might surmise so at first.  Certainly  ƒ(B)  can be computed whenever  ƒ(λ) = p(λ)/q(λ)  is 
a  Rational  function,  a ratio of polynomials,  whose denominator polynomial  q(λ)  has no zero 

coincident with an eigenvalue of  B .  ( Otherwise  q(B)–1  would not exist;  do you see why?)  

Moreover  ƒ(B) = p(B)q(B)–1 = Φ(B)  wherein all the coefficients of  Sylvester’s  polynomial  
Φ(…)  can be determined by finitely many rational arithmetic operations upon the elements of  
B  without first computing its eigenvalues.  An inelegant way to do so is suggested by the …

Exercise:  Use the  Cayley-Hamilton  theorem to express  q(B)–1 ,  if it exists,  as a polynomial in  B .

Exercise:  Show that,  in principle,  B ’s  minimum polynomial can be determined by finitely many comparisons 

and rational arithmetic operations upon  B ’s  elements.  Hint:  I, B, B2, B3, …  can’t all be linearly independent.

The situation is different for non-rational functions.  Any  analytic  function  ƒ(…)  can be 
extended to  ƒ(B)  provided no eigenvalue of  B  falls upon a  singularity  of  ƒ(…) .  A function  
ƒ(…)  is  analytic  if its domain in the complex  λ-plane  consists of a region at every interior 
point  ß  of which the  Taylor  series

ƒ(ß) + f'(ß)(λ–ß) + ƒ" (ß)(λ–ß)2/2 + … + ƒ(m)(ß)(λ–ß)m/m! + …
converges to  ƒ(λ)  for all sufficiently small  |λ–ß| > 0 .  The  singularities  of  ƒ(…)  are the 
boundary-points of its domain.  For example,  polynomials and  exp(…)  and  sin(…)  are all 
analytic with no finite singularity;  rational functions are analytic with their singularities at their 
poles  ( where they take infinite values );  cotan(…)  is analytic with singularities at all integer 
multiples of  π ;  analytic functions  ln(…)  and  √(…)  are singular at  0  and along the negative 
real axis across which they jump discontinuously.  Every textbook about analytic functions of a 
complex variable explains  Cauchy’s Integral Formula

ƒ(ß) =  ∫Ç ( ƒ(λ)/(λ–ß) ) dλ /(2πı)
in which  ı = √(–1)  and the path of integration runs counter-clockwise around a closed curve  Ç  
lying in the domain of  ƒ(…)  and surrounding  ß  but no singularity of  ƒ(…) .  ( The integral is 
zero if  ß  lies outside  Ç .)  This formula can be used to extend  ƒ(…)  to a matrix argument:

ƒ(B) :=  ∫Ç ( ƒ(λ)(λI–B)–1 ) dλ /(2πı)
provided  Ç  surrounds the spectrum of  B  but no singularity of  ƒ(…) .  Although no eigenvalue 
of  B  appears explicitly in this integral formula,  it delivers the same result as did  Sylvester’s 
Interpolation Formula.  To see why,  let  Ψ(…)  be either  B ’s  minimum polynomial or its 
characteristic polynomial and consider  Θ(ß, λ) := ( 1 – Ψ(ß)/Ψ(λ) )/(λ–ß) .  Despite first 
appearances,  Θ(ß, λ)  is  a polynomial in  ß  of degree one less than  Ψ ’s  with coefficients that 
are rational functions of  λ .  ( Do you see why?)  Then we find that  Sylvester’s Polynomial

Φ(ß) :=  ∫Ç ƒ(λ)Θ(ß, λ) dλ /(2πı)  =  ƒ(ß) – Ψ(ß) ∫Ç ( ƒ(λ)/((λ–ß)Ψ(λ)) ) dλ /(2πı)
has coefficients determined by  ƒ(…) ,  by  Ψ(…)  and by integration around any closed curve  
Ç  inside which lies the spectrum of  B  and no singularity of  ƒ(…) .  Then  ƒ(B) = Φ(B)  since  
Ψ(B) = O ,  and yet no eigenvalue of  B  appears explicitly in the integral that defined  Φ(…) .

But it’s a swindle.  Attempts to simplify the integral that defined  Φ(…)  by expressing it in a  
“closed form”  in terms of elementary transcendental functions like  ln(…)  and  arctan(…)  etc. 
bring the eigenvalues of  B  back.  They persist unless  ƒ(…)  is rational or sometimes algebraic.
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Example:  exp(Bτ)
Solutions  η(τ)  of a  2nd-order  linear homogeneous differential equation  η"  – 2αη '  – γη = 0     

( here  η'  = dη/dτ  and   η" (τ) = d2η/dτ2 )  with constant coefficients  α  and  γ  can be obtained 
from an equivalent first-order homogeneous system of linear differential equations  y'  = By  

with  y =   and a constant coefficient matrix  B =  .  Solutions are  y(τ) = exp(Bτ)yo  

for any constant  yo = y(0) .  To compute  exp(Bτ)  we get the eigenvalues  ßj =  α ± √(α2 + γ)  
of  B  as the zeros of its characteristic polynomial  det(λI – B) = λ2 – 2αλ  – γ = (λ – ß1)(λ – ß2) .

ß1 ≠ ß2  if  α2 + γ ≠ 0 ,  and then the  Lagrange  interpolating polynomial that matches  exp(λτ)  

at  λ = ß1  and at  λ = ß2  is  Φ(λ) :=  ( (λ–ß2)exp(ß1τ) – (λ–ß1)exp(ß2τ) )/(ß1 – ß2) ,  and then  
exp(Bτ) = Φ(B) .  Note how this degenerates towards  0/0  as  ß1  and  ß2  approach equality.

ß1 = ß2 = α  if  α2 + γ = 0 ,  and then the  Hermite  interpolating polynomial that matches  
exp(λτ)  and its derivative  τ·exp(λτ)  at  λ = α  is  Φ(λ) := ( 1 + τ(λ–α) )exp(ατ) ,  and then  
exp(Bτ) = Φ(B)  again.  Many texts provide this and the former formula for  Φ(…) .

Although  exp(Bτ)  is a continuous function of  B ,  the formula for  Φ(B)  jumps from one form 

to another as  α2 + γ  passes through zero.  This jump,  reflecting the discontinuity of  Jordan’s 
Normal Form  of  B  rather than any aspect of the differential equation,  is an artifact of algebra  
removable by using the pennants form of  B  instead of  Jordan’s,  and  Newton’s  interpolating 

polynomial  ( twice )  instead of  Lagrange’s.  Set  δ := (ß1–ß2)/2 = √(α2 + γ)  and find

Φ(λ) =  exp(ατ)( cosh(δτ) + (λ–α)sinh(δτ)/δ )  =  exp(ατ)( cos(ıδτ) – (λ–α)sin(ıδτ)ı/δ ) 
wherein it is understood that  sinh(δτ)/δ —› τ  and  –sin(ıδτ)ı/δ —› τ  as  δ —› 0 .  Despite 
appearances the two forms of  Φ(λ)  are really the same because of identities  cos(ıµ) = cosh(µ)  

and  sin(ıµ) = sinh(µ)ı ;  use whichever is more convenient in the light of the sign of  α2 + γ .
… … …

Example:  Nonexistent and Nonunique  √(…)
Nothing like  Sylvester’s Polynomial Interpolation Formula  can cope with extensions of some 
functions  ƒ(…)  to some square matrices  B .  The difficulties will be illustrated by using  √(…)  

as an example.  We may say that  Y  is a square root of  B  when  Y2 = B ,  but not every such 
square root  Y ,  if any exist,  is a polynomial in  B  as  Sylvester’s  formula requires of  √B .  
Existence is problematical when  0  is an eigenvalue of  B  because  0  is also a singularity of

√(…) ;  its derivative is infinite there.  Therefore it is not surprising that    has no square

roots;  but it is surprising that  B =     has infinitely many square roots  Y =  ,  

as  η  and  ξ  run through all scalar values except  η = 0 ,  yet  √B  does not exist.  A derogatory  
B ,  with more than one independent eigenvector for some eigenvalue,  may have infinitely 
many square roots;  for instance,  ±√I = ±I  but the  2-by-2  square roots  Y  of  I  include also 

all  2-by-2  matrices with eigenvalues  +1  and  –1 ,  namely  Y = ±  .

η'

η
2α γ
1 0

0 1

0 0
0 1 0

0 0 0

0 0 0

0 ξ η
0 0 0

0 1 η⁄ 0

1 ξη– η

ξ 1 ξη––
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Jordan’s Normal Form  of  Nilpotent Matrices
These notes began by displaying  Jordan’s Normal Form  of  B ,

C–1BC =   ,

and now its existence will be proved.  This form,  the canonical form under  Similarity,  is 
important because all matrices  Similar  to  B  have the same  Jordan Normal Form  except that 
its  Jordan  blocks  ßI + J  may appear ordered differently along the diagonal.  The proof is 
complicated because the number of blocks and their dimensions depend discontinuously upon  
B  whenever any block is  2-by-2  or bigger,  or whenever any two blocks share an eigenvalue  
ß ;  in short,  the  Jordan Normal Form  is discontinuous whenever it is interesting.

These interesting cases are rare because they require that some eigenvalue be repeated,  which 
occurs just when the characteristic polynomial  det(λI–B)  and its derivative  Trace(Adj(λI–B))  
have at least one zero in common,  and therefore have a nontrivial  Greatest Common Divisor,  
which occurs just when these polynomials’ coefficients satisfy a polynomial equation illustrated 
by the following example:

λ4 + ωλ3 + ξλ2 + ηλ  + ζ    and its derivative   4λ3 + 3ωλ2 + 2ξλ  + η   vanish together for some  λ  just when

det( ) = 0 .

Thus the elements of interesting matrices  B ,  the ones with repeated eigenvalues,  satisfy one 
complicated polynomial equation which places  B  on a convoluted hypersurface in the space of 
all matrices of  B ’s  dimensions.  This hypersurface intersects itself in many ways.  For example,

in the  4-dimensional space of  2-by-2  matrices    the interesting ones,  with a double eigenvalue,  lie on a  3-

dimensional circular-conical cylinder whose equation is   ;  its self-intersections form two  2-

dimensional planes whereon    and either    or   ,  and these two intersect along a line whereon  

  and both    and   .  Only on that line do matrices have two eigenvectors for one eigenvalue.

The self-intersections fall into many families of shapes some of which correspond to different 
special cases in the proof of the  Jordan Normal Form’s  existence,  complicating it.

Our proof will be computational to minimize abstractness and to indicate how  Jordan’s Normal 
Form  can be obtained,  at least in principle,  from arithmetic performed exactly.  ( Rounded 
arithmetic operations are problematical for reasons discussed after the pennants form above.)  
The first step reduces  B  by  Similarity  to a pennants form,  a diagonal sum of blocks each like  
ßI + N  where  ß  is an eigenvalue of  B  and  N  is strictly upper-triangular and therefore 

nilpotent ;  Nm = O  for some  m .  Recall the pennants form  (QK)–1B(QK)  displayed above.

β1I1 J1+ O O … O

O β2I2 J2+ O … O

O O β3I3 J3+ … O

… … … … …
O O O … βLIL JL+

1 ω ξ η ζ 0 0

0 1 ω ξ η ζ 0

0 0 1 ω ξ η ζ
0 0 0 4 3ω 2ξ η
0 0 4 3ω 2ξ η 0

0 4 3ω 2ξ η 0 0

4 3ω 2ξ η 0 0 0

α β
γ δ

α δ–( )
2

4βγ+ 0=

α δ= β 0= γ 0=

α δ= β 0= γ 0=
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The next step seeks for each pennant  ßI + N  an invertible matrix  A  such that  A–1(ßI + N)A  is 
a  Similarity  exhibiting  Jordan’s Normal Form  of the chosen  ßI + N .  If all searches succeed,  

the diagonal sum  Â  of the  A ’s  will provide a  Similarity  Â–1(QK)–1B(QK)Â  that exhibits  
Jordan’s Normal Form  of  B ’s  pennants form and hence of  B  ( with  C = QKÂ  above ).

Two more steps will simplify each search.  First observe that  A–1(ßI + N)A = ßI + A–1NA  is  

Jordan’s Normal Form  of  ßI + N  just when  A–1NA  is  Jordan’s Normal Form  of  N ,  so no 
generality is lost by seeking  Jordan’s Normal Form  of only nilpotent matrices.  Second,  the 
search will exploit a proof by induction starting with the hypothesis that,  for each nilpotent 
matrix  Ñ  of dimensions smaller than  N ’s ,  a  Similarity  can be found that transforms  Ñ  into 
its  Jordan Normal Form.  This hypothesis is valid for all  1-by-1  nilpotent matrices since there 
is only one of them,  namely  [0] ,  and the  1-by-1  identity  [1]  effects the desired  Similarity.

Exercise:  Although nilpotent  Ñ  need not be in its pennants form,  this form is strictly upper-triangular;  why?

Since  N  is nilpotent,  Nm–1 ≠ O = Nm  for some positive integer  m .  It is important to our 
search.  If  m = 1  then  N = O  is already in  Jordan’s Normal Form  and our search is over.  Let 

us suppose  m ≥ 2  and continue searching.  Since  Nm–1 ≠ O  we can find a column vector  v  

such that  Nm–1v ≠ o  and then construct matrix  V := [Nm–1v, Nm–2v, … Nv, v] .  Its columns 

must be linearly independent for the following reason:  If  ∑k≤j<m µjN
jv = o  for some  k ≥ 0  

then  Nm–k–1∑k≤j<m µjN
jv =  µkN

kv = o  and so  µk = 0 ;  setting  k = 0, 1, 2, …, m–1  in turn 
implies every  µj = 0 .  Therefore  V  can be embedded in a square matrix  [V, V]  all of whose 

columns are linearly independent;  V  is empty if  m = dimension(N) .  Anyway  [V, V]–1  exists.

V  was designed to satisfy  NV = VJ  where  J  is the  m-by-m  nilpotent  Jordan block;  if  m = 4

J  =   ,  for example.  Therefore  [V, V]–1N[V, V] =   in which  Ñ  is empty if  

m = dimension(N) .  If  Ñ  is empty we have found  Jordan’s Normal Form  of  N  so our search 
is over.  Let us suppose  2 ≤ m < dimension(N)  and continue searching.

Now  Ñ  is not empty but still   =  =  [V, V]–1Nm[V, V] = O .  This tells us  Jm = O

( which we knew already )  and  Ñm = O .  Our induction hypothesis says that this nilpotent  Ñ  

can be transformed by a  Similarity  to its  Jordan Normal Form  A–1ÑA ,  say.  Substituting  
V A  for  V  and renaming it  V  replaces  Ñ  by its  Jordan Normal Form  in a  Similarity

[V, V]–1N[V, V]  =  

that defines  R  and exhibits  Ñ  already as a diagonal sum of  Jordan  blocks  J1, J2, J3, …  each 
like  J  but of perhaps diverse dimensions.  Later we shall see how very special  R  is.

To complete our search we must find one more  Similarity,  one that gets rid of  R .

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

J ?

O Ñ

J ?

O Ñ

m
J
m

?

O Ñ
m

J R

O Ñ
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The desired  Similarity  takes the form    =  .   Since   =  ,  

this  Similarity gets rid of  R  if and only if  ZÑ – JZ = R .  We have to compute a solution  Z  of 
this linear equation in order to compute the desired  Similarity.  The equation cannot be solved 
with the aid of  Lemma £  above because the spectra of  Ñ  and  J  are not disjoint;  they are the 
same.  Consequently the linear operator that maps  Z  to  ZÑ – JZ  is singular;  ZÑ – JZ = R  can 
be solved for  Z  ( nonuniquely )  if and only if this equation is consistent.  To demonstrate its 
consistency we shall apply one of  Fredholm’s Alternatives :

The equation  Fz = r  has at least one solution  z  if and only if

wTr = 0  whenever  wTF = oT .
( See class notes titled  “ The Reduced Row-Echelon Form is Unique”.)

Instead of  wTr  we must use  Trace(WR)  because this runs through all linear combinations of 

the elements of  R  as  W  runs through all matrices of the same shape as  RT .  ( Do you agree?)  

Instead of  wTFz  we must use  Trace(W(ZÑ – JZ)) = Trace((ÑW – WJ)Z) ;  the last equation 

follows from  Trace((WZ)Ñ) = Trace(Ñ(WZ)) .  As  wTFz = 0  for all  z  just when  wTF = oT ,  
so does  Trace(W(ZÑ – JZ)) = 0  for all  Z  just when  ÑW – WJ = O .  Therefore,  instead of  

wTF = oT  we must use  ÑW – WJ = O .  In short,  …

To find a  Similarity  that gets rid of  R  and exhibits  Jordan’s Normal Form  of  N ,
we must solve  ZÑ – JZ = R  for  Z ,  which can be done if and only if

Trace(WR) = 0  whenever  ÑW = WJ .

This last line is all that remains for us to prove;  we must deduce that  Trace(WR) = 0  for  all  
solutions  W  of  ÑW = WJ   from a property of  R .  What property of  R  do we need?   Set

S :=  Jm–1R + Jm–2RÑ + Jm–3RÑ2 + … + J2RÑm–3 + JRÑm–2 + RÑm–1 .
S = O  is the property we need.  To prove  S = O  confirm first  ( by induction for  m = 1, 2, 3, 

…  in turn )  that     =  ,  and then recall that     =  [V, V]–1Nm[V, V] = O .  

From  S = O  we shall deduce that  Trace(WR) = 0  whenever  ÑW = WJ  via a sequence of 
steps that simplify the problem ultimately to a nilpotent  N  with only two  Jordan  blocks.

Ñ  is a diagonal sum of nilpotent  Jordan  blocks  J1, J2, J3, …  that induce partitions of  R, S  
and  W  into blocks of corresponding sizes as follows:  split  R = [R1, R2, R3, …]  so that

 =   and then  S = [S1, S2, S3, …]  and  W =   compatibly.  Every

Sk :=  Jm–1Rk + Jm–2RkJk + Jm–3RkJk
2 + … + J2RkJk

m–3 + JRkJk
m–2 + RkJk

m–1  = O ,   and every
Wk  satisfies  JkWk = WkJ  just when  ÑW = WJ ,  so that  Trace(WR) = ∑k Trace(WkRk) = 0  
for  all  such  W  just when every  Trace(WkRk) = 0  for every  k = 1, 2, 3, … .  ( You agree?)

I Z

O I

1–
J R

O Ñ

I Z

O I

J O

O Ñ

I Z

O I

1–
I Z–

O I

J R

O Ñ

m
J
m

S

O Ñ
m

J R

O Ñ

m

J R

O Ñ

J R1 R2 R3 …

O J1 O O …

O O J2 O …

O O O J3 …

… … … … …

W1

W2

W3

…
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Whatever is done to cope with each  Jordan  block  Jk  and its associated  Rk,  Sk  and  Wk  can 
be done independently of the others;  nothing is lost by pretending that  Ñ  is just one  Jordan  
block thereby dropping the subscripts  k  to simplify the process.  In short,  …

There is a  Similarity  that exhibits  Jordan’s Normal Form  of  N  if and only if
Trace(WR) = 0  whenever  ÑW = WJ 

where  J  and  Ñ  are  Jordan  blocks,  Jm = O ≠ Jm–1 ,   Ñm = O ,  and

S :=  ∑1≤j≤m J
m–jRÑj–1  =  O .

Next let  n  be the dimension of  Ñ ;  from   Ñm = O  follows  n ≤ m .  ( Recall that  m  is  J ’s  
dimension.)  Let  n-by-m  matrix  Wo := [O, I]  have  m–n  columns of zeros followed by the  n-
by-n  identity matrix.  Observe that  ÑWo = [O, Ñ] = WoJ .  Moreover,  …

As  π(…)  runs through all polynomials of degree less than  n ,
W := π(Ñ)Wo = Woπ(J)  runs through all solutions of  ÑW = WJ .

To see why this is so,  define function  urc(X)  to be the element in the  Upper-Right Corner  of 
its matrix argument  X .  Thus  urc(W) = ω1m .  More generally the element of  W  in row  i  and 

column  j  is  ωij  = urc(Ñi–1WJm–j)  because pre-multiplication by  Ñi–1  shifts row  i  up to row  

1 ,  and post-multiplication by  Jm–j  shifts column  j  right to column  m .  If  ÑW = WJ  then  

ωij  = urc(Ñi–1WJm–j) = urc(Ñm–1+i–jW) =: πj–i–m+n ,  say.  Here  πk = 0  if  k < 0  ( since then  

Ñm–1+i–j = Ñn–1–k = O ),  and  k = j–i–m+n < m–0–m+n = n .  Set  π(λ) := ∑0≤k<n πkλk  and 

observe that the element in row  i  and column  j  of  π(Ñ)Wo = ∑0≤k<n πkÑ
kWo  is

urc(Ñi–1∑0≤k<n πkÑ
kWoJ

m–j) = urc(∑0≤k<n πkÑ
k+i–1+m–jWo) …  since  WoJ = ÑWo

= urc(∑0≤k<n πkÑ
k+i–1+m–j) …  since  Wo := [O, I]

= urc(πj–i–m+nÑ
n-1)  =  πj–i–m+n  =  ωij   ;

therefore every solution  W  of  ÑW = WJ  has the form  W = π(Ñ)Wo  as asserted above.

Next we shall demonstrate how every such  W  satisfies  Trace(WR) = 0 ,  completing the proof 
that there is a  Similarity  that exhibits the  Jordan Normal Form.  Trace(WR) = Trace(RW) ,  

and  W = ∑0≤k<n πkÑ
kWo ,  so we need only demonstrate  Trace(RÑkWo) = O  for all  k ≥ 0 :

         Trace(RÑkWo) =  ∑1≤j≤m urc(Jj–1 RÑkWo J
m–j) …  since  RÑkWo  is  m-by-m

=  ∑1≤j≤m urc(Jj–1 RÑm–j+kWo) …  since  WoJ = ÑWo 

=  urc( ∑1≤j≤m J
j–1 RÑm–j+kWo)  =  urc(SÑkWo)  =  O .     End of proof.

The foregoing proof was devoted mostly to proving that the linear system  ZÑ – JZ = R  has at least one solution  
Z ,  not to computing it.  Elements of  Z  can be computed in order starting at the lower left and working up to the 
right by diagonals.  Computation is tricky because the system  ZÑ – JZ = R  is both over- and under-determined.  It 
is over-determined because no solution  Z  exists unless  R  is constrained by  S = O ,  which means each diagonal 
of  R  that ends in its last row must sum to zero.  The system is under-determined because it does not determine its 
solution  Z  uniquely;  another solution is  Z + Zoπ(Ñ)  where  Zo  is obtained from the  n-by-n  unit matrix by 
appending  m–n  rows of zeros,  and  π(…)  is any polynomial of degree less than  n .  Jordan’s Normal Form of  B  

can vary discontinuously,  and the  Similarity  C–1…C  that exhibits it violently discontinuously,  as  B  varies.
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Nested Irreducible Invariant Subspaces
We know every linear operator  B  that maps a vector space to itself is represented by a matrix

C–1BC =   

in  Jordan’s Normal Form  if an appropriate basis  C  is chosen.  Among the basis vectors must 
be eigenvectors  cj ≠ o  that satisfy  Bcj = ßjcj ,  but if the  Jordan Normal Form  is not purely 
diagonal these eigenvectors are too few to span the space;  then extra vectors have to be found to 
fill out the basis.  These extra vectors needed for  “ an appropriate basis ”  are called  “ principal 
vectors ”  or  “ generalized eigenvectors.”  For every  Jj  of dimension greater than  1  there is a 
principal vector  dj  that satisfies  Bdj = ßjdj + cj .  For every  Jj  of dimension greater than  2  
there is a principal vector  ej  that satisfies  Bej = ßjej + dj .  And so on.  For example,  if

B = ßI + J  =   ,  then  c =  ,  d =  ,  e =  ,  f =  ,  and  Bf = ßf + e ,  

Be = ße + d ,  Bd = ßd + c ,  and finally  Bc = ßc .

Unlike eigenvectors,  whose directions are determined uniquely except when different  Jordan  
blocks have the same eigenvalue,  principal vectors are intrinsically nonunique;  for example,  
d+c  is a principal vector as well as  d .  In fact,  for any polynomial  π(…)  with  π(0) = 1 ,  the 
columns of  P := π(J)  after the first provide another set of principal vectors for  ßI + J ;  do you 
see why?  Their intrinsic nonuniqueness makes principal vectors sometimes more difficult to 
handle theoretically than the subspaces they span.

Partition the basis  C  into blocks of basis vectors corresponding to the  Jordan  blocks of  

C–1BC  thus:  C = [C1, C2, C3, …, CL] ,  so that  BCj = Cj(ßjI + Jj) .  This shows that the range 
of  Cj  is a subspace mapped to itself by  B ;  it is called an  Invariant Subspace  of  B  although 
strictly speaking it is a subspace of the vector space.  B  decomposes this vector space into an  
Irreducible  sum of Invariant  Subspaces :  Each such subspace,  spanned by those columns  Cj  
of  C  that correspond to a  Jordan  block  (ßjIj + Jj) ,  is mapped to itself by  B ,  has zero 
intersection with all those other invariant subspaces,  and is irreducible  ( cannot itself be 
decomposed into a  sum  of two invariant subspaces ).  B ’s  effect upon each invariant subspace 
is revealed completely by its corresponding  Jordan  block,  which reveals how this invariant 
subspace may contain a nested sequence of invariant sub-subspaces as follows:

For simplicity,  suppose  ß  appears in just one  Jordan  block  ßI + J  and its dimension is  m ,  

so  Jm = O ≠ Jm–1 .  Then the invariant subspace corresponding to this block is determined 

uniquely as the  m-dimensional  null-space of  (B – ßI )m .  Within this invariant subspace,  if  

m > 1 ,  is another invariant sub-subspace,  the  (m–1)-dimensional nullspace of  (B – ßI )m–1 .  
And so on;  the innermost nonzero invariant subspace in the nest is the nullspace of  B – ßI  .

β1I1 J1+ O O … O

O β2I2 J2+ O … O

O O β3I3 J3+ … O

… … … … …
O O O … βLIL JL+

β 1 0 0

0 β 1 0

0 0 β 1

0 0 0 β

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1
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Thus,  when no eigenvalue of  B  appears in more than one  Jordan  block,  all of  B ’s  invariant 
subspaces,  including the nested ones,  are determined uniquely;  and this proves that  Jordan’s 
Normal Form  is unique except for the ordering of  Jordan  blocks along the diagonal.  Agreed?

But the  Derogatory  case,  when some eigenvalue  ß  of  B  appears in more than one  Jordan  
block,  is not so simple.  In this case  B  determines uniquely the invariant subspace associated 

with  ß ;  it is the nullspace of  (B – ßI )k  for all sufficiently large  k .  Its further decomposition 
into a sum of  irreducible  invariant subspaces is an accident of a computational process not 
determined uniquely by  B .  However,  B  does determine the dimensions of its  Jordan  blocks 
uniquely as follows:  ( Check this by working with the  Jordan Normal Form  instead of  B .)

For  m = 1, 2, 3, …  let  nm(ß)  be the number of  Jordan  blocks of dimension  m  with  ß  on 
their diagonals.  Finitely many  nm(ß) ≠ 0 .  And  n1(ß) + n2(ß) + n3(ß) + … = Nullity(B – ßI ) .  

Also  n1(ß) + 2n2(ß) + 2n3(ß) + … = Nullity((B – ßI )2) ,  from which follows that  

n1(ß) = 2 Nullity(B – ßI ) – Nullity((B – ßI )2) .  In a similar fashion for  k = 1, 2, 3, …,

     n1(ß) + 2n2(ß) + 3n3(ß) + … + (k–1)nk–1(ß) + knk(ß) + knk+1(ß) + … =  Nullity((B – ßI )k) ,

which implies  nm(ß) =  –Nullity((B – ßI )m–1) + 2·Nullity((B – ßI )m) – Nullity((B – ßI )m+1)  for 
all  m > 0 .  Thus  B  determines the numbers of its  Jordan  blocks of all dimensions.

Exercise:  For any nontrivial projector  P ,  satisfying  O ≠ P = P2 ≠ I ,  show that its  Jordan  blocks are all  1-by-1 .

Exercise:  First show that every complex square matrix  B  is  Similar  to its transpose by showing that they have 
the same  Jordan Normal Form.  Then show that  B  must be a product of two complex symmetric matrices;  i.e.,  

B = QR–1  where complex  Q = QT  and  R = RT .  Hint:  Reverse the order of invariant subspaces’ basis vectors.

The  Real  Jordan Normal Form
For any given real  n-by-n  matrix  B  there exists at least one real invertible matrix  C  that 
transforms  B  by Similarity   into a diagonal sum

C–1BC =   

of  Real Jordan Blocks  each of the form  E + K  where either

E + K = ßI + J  with a real eigenvalue  ß  of  B ,  like this  6-by-6  example:    ,

or

E + K = (ßI + µS) + J2  for a pair of complex conjugate eigenvalues  ß ± ıµ  of  B ,  µ ≠ 0 ,  

and  S = –ST  is a diagonal sum of  2-by-2  skew-symmetric matrices that satisfies  S2 = –I .

Here is a  6-by-6  example:

E1 K1+ O O … O

O E2 K2+ O … O

O O E3 K3+ … O

… … … … …
O O O … EL KL+

β 1 0 0 0 0

0 β 1 0 0 0

0 0 β 1 0 0

0 0 0 β 1 0

0 0 0 0 β 1

0 0 0 0 0 0
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E + K  =  (ßI + µS) + J2 =    .

Such a block has two equally repeated complex conjugate eigenvalues  ß ± ıµ  and only two 
complex conjugate eigenvectors regardless of its dimension,  which is always even.

Every eigenvalue of  B  appears in at least one  Jordan Block,  and these blocks can appear in 
any order,  and their various dimensions add up to the dimension of  B ,  which determines its  
Jordan  blocks completely except for the order in which they appear and the signs of their 
imaginary parts  µ .  The proof that such a real  Jordan Normal Form  exists is more complicated 
than the proof for the complex case but no more illuminating,  so it is not presented here.

Exercise:  First show that every real square matrix  B  is  Similar  to its transpose by showing that they have the 
same  Real Jordan Normal Form.  Then show that  B  must be a product of two real symmetric matrices of which at 

least one is invertible;  i.e.,  B = HY–1  where real  H = HT  and  Y = YT .  Hint:  See the complex case.

A  Rational Canonical Form
Any monic polynomial  Ψ(λ) = λn – µ1λn–1 – µ2λn–2 – … – µn–1λ – µn  is the  Characteristic 

Polynomial  of its  Companion Matrix   Y =   .   In fact,  

Ψ(…)  is the  Minimum  polynomial of  Y  because  Nullity(λI – Y) ≤ 1 .  ( Do you see why?)

Conversely,  for any given square matrix  B  there exists at least one invertible matrix  C  that 

transforms  B  by Similarity   into a diagonal sum   C–1BC =    of companion 

matrices;  Y1  is the companion of the minimum polynomial  of  B ,  and every  Yj+1  is the 
companion of a divisor of the minimum polynomial of  Yj .  Although  C  may be computed 
from the elements of  B  in finitely many rational arithmetic operations,  the diagonal sum and  
C  are discontinuous functions of the elements of  B ;  worse,  C  is violently discontinuous.

In the  1940s  an algorithm called  Danilewski’s Method  used to be recommended as a fast way to compute  C  and 

the diagonal sum  C–1BC ,  but the method is unreliable for any but a small-dimensioned matrix  B  whenever it is 
nearly derogatory;  even when  Y1  is not bad,  subsequent companion matrices  Yj+1  need not be companions of 

β µ 1 0 0 0

µ– β 0 1 0 0

0 0 β µ 1 0

0 0 µ– β 0 1

0 0 0 0 β µ
0 0 0 0 µ– β

0 1 0 0 … 0 0

0 0 1 0 … 0 0

0 0 0 1 … 0 0

0 0 0 0 … 0 0

… … … … … … …
0 0 0 0 … 0 1

µn µn 1– µn 2– µn 3– … µ2 µ1

Y1 O O … O

O Y2 O … O

O O Y3 … O

… … … … …
O O O … YL
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divisors of minimum polynomials of previous  Yj s .  Hardly any current texts describe the method,  so a succinct 
description is presented here.  The method consists of a finite sequence of elementary rational  Similarities;  each is 
an elementary column operation followed by its inverse operation applied to rows.  For  j = 1, 2, 3, …  in turn,  …

In row  j  find the after-diagonal element of largest magnitude,  and swap that element’s column with
column  j+1 ;  then swap the correspondingly numbered rows.

Divide column  j+1  by its element in row  j  and then multiply row  j+1  by that number,  unless it is zero
in which case stop before the division.  Otherwise the element in column  j+1  of row  j  is now  1 .

Subtract multiples of column  j+1  from all  other  columns to annihilate their elements in row  j ;  then add
the same multiples of all other rows to row  j+1 .

The process stops either because the  Similarities  have reduced  B  to the form of a companion matrix  Y ,  or 

because they have reduced  B  to the form    in which  Y  is a companion matrix but  B  is probably not,  and  

R  is probably nonzero.  Skipping the last row of  [Y, O]  and resuming the process from the first row of  [R, B]  
may  ( or may not )  reduce  B  to companion form,  but will probably not annihilate R .  Lemma £  et seq.  offers a 
way in principle to get rid of  R  when  Y  and  B  turn out to have disjoint spectra;  otherwise deem  Danilewski’s  
method to have failed because of an unlucky initial ordering of the rows and columns of  B .  The method may 
succeed if restarted after a shuffle of  B ’s  rows and corresponding columns has put a different diagonal element 
into the upper left-hand corner of  B .  Even if the method would succeed in exact rational arithmetic,  it may give 
poor results in rounded arithmetic if the multiples of column  j+1  subtracted from  previous  columns have to be 
huge multiples that amplify the effect of roundoff.  Nobody knows a good way to compute the rational canonical 
form in rounded arithmetic without computing  Jordan’s Canonical Form  first.

The  Souriau/Frame/Faddeev  Method
For a square matrix  B  of integers,  can its characteristic polynomial

ƒ(λ) := det(λI–B) =  ∑0≤j≤n ƒjλj 
be computed from the elements of  B  by exclusively integer arithmetic?  If by  “ exclusively 
integer arithmetic ”  is meant only adds,  subtracts and multiplies,  no divides,  then all known 
methods require work that grows exponentially with the dimension of  B .  But if  “ exclusively 
integer arithmetic ”  lets divisions by small integers produce integer quotients,  there is a faster 
method traceable to  U.J.J. Leverrier  in the mid-nineteenth century and subsequently improved 
independently by  J.M. Souriau,  J.S. Frame  and  D.K. Faddeev  a century later.  This method 

requires a number of arithmetic operations of order  dimension(B)4.  Approximate methods that 
compute eigenvalues first go faster for strictly numerical matrices of large dimensions,  taking a 

number of arithmetic operations of order  dimension(B)3.  Therefore this method serves mainly 
for computations  ( perhaps symbolic )  that cannot tolerate roundoff.  Here is how it goes:

Set  B1 := B  and for  j = 1, 2, 3, …, n := dimension(B)  in turn compute

ƒj := Trace(Bj)/j ; …  the division goes evenly.
Bj+1 := B·(Bj – ƒjI) . ( Don’t bother to compute  Bn+1 .)

As a check on the computation,  expect  Bn = ƒnI .  This vanishes when  B  is singular,  and then  

its  Adjugate  Adj(B) = (–1)n–1 (Bn–1 – ƒn–1I) .

Exercise:  Validate the foregoing claims by observing the form  Bj  takes if  B  is the companion matrix of  ƒ(…) .

I doubt the existence of an analogous method to compute  B ’s  minimum polynomial.

Y O

R B


