
 

Math. H110                                      

 

Jacobi’s Formula for  d det(B)

 

                        October 26, 1998 3:53 am

Prof. W. Kahan                                                                                                                                         Page 1/4

 

Jacobi's Formula for  the  Derivative of a Determinant

 

Jacobi’s formula is   d det(B) = Trace( Adj(B) dB )   in which  Adj(B)  is the  

 

Adjugate

 

  of the 
square matrix  B  and  dB  is its differential.  This formula will be derived and then applied to …

•  the rôle of the  Wronskian  in the solution of linear differential equations,
•  the derivative of a simple eigenvalue,  and
•  inverses of nearly singular matrices.

Certain definitions and formulas will be taken for granted.  Given an  n-by-n  matrix  B = {ß

 

ij

 

} ,  
its  

 

Classical Adjoint 

 

  or  ( better )  

 

Adjugate

 

   Adj(B) = A = {

 

α

 

ij

 

}   is defined thus:

    

 

α

 

ij

 

  =  (-1)

 

i–j 

 

det( B  without its  j

 

th

 

  row  and  i

 

th

 

 column )
so that  AB = BA = det(B)I .  In other words,  

 

α

 

ij

 

  is the  

 

cofactor

 

  of  ß

 

ji

 

  in  det(B) ,  so  

 

α

 

ij

 

  is a 
polynomial function of the elements of  B  but independent of  ß

 

jk

 

  and  ß

 

ki

 

  for all  k ;  and   

 

∑

 

k 

 

α

 

ik 

 

ß

 

kj

 

 = 

 

∑

 

k 

 

ß

 

ik 

 

α

 

kj

 

 = det(B)  if  i = j  but  0  otherwise.  Rank(B)  is the biggest dimension of 
a submatrix of  B  whose determinant is nonzero;  Rank(B) = n  just when  det(B) 

 

≠

 

 0 ,  in which 

case  Adj(B) = det(B)B

 

–1

 

 ;  and  Adj(B) 

 

≠

 

 O  just when  Rank(B) 

 

≥

 

 n–1 .  If  B  is differentiable 

and  Rank(B) = n  then  d(B

 

–1

 

) = –B

 

–1

 

(dB)B

 

–1

 

 .  Also needed is the function  Trace(B) = 

 

∑

 

j 

 

ß

 

jj

 

 ,  
and the fact that  Trace(PQ) = Trace(QP) .  For proofs of these formulas see any text on matrices 
or linear algebra.  

 

Proof of  Jacobi’s Formula:

 

In  det(B) = 

 

∑

 

k 

 

ß

 

ik 

 

α

 

ki

 

 ,  each element  ß

 

ij

 

  of  B  appears linearly multiplied by its cofactor  

 

α

 

ji

 

 ,  
so  

 

∂

 

det(B)/

 

∂

 

ß

 

ij

 

 = 

 

α

 

ji

 

 ;  this leads quickly to  Jacobi’s Formula
d det(B) =  

 

∑

 

j 

 

∑

 

i 

 

(

 

∂

 

det(B)/

 

∂

 

ß

 

ij

 

)

 

dß

 

ij

 

  =  

 

∑

 

j 

 

∑

 

i 

 

α

 

ji

 

dß

 

ij

 

  =  Trace( Adj(B) dB ) .

 

The  Wronskian:

 

Consider square matrix solutions  X(

 

τ

 

)  of a linear differential equation   dX/d

 

τ

 

 = L(

 

τ

 

) X   with a 
piecewise continuous coefficient matrix  L(

 

τ

 

) .  Because  L(

 

τ

 

)  is  

 

not

 

  assumed to  

 

commute

 

   

with  L(

 

θ

 

)  when  

 

θ

 

 

 

≠

 

 

 

τ

 

  

 

(

 

 i.e.,  L(

 

τ

 

)L(

 

θ

 

) 

 

≠

 

 L(

 

θ

 

)L(

 

τ

 

) 

 

)

 

,  exp

 

(

 

∫

 

o

 

τ 

 

L(

 

θ

 

)

 

 

 

d

 

θ

 

)

 

  need  

 

not

 

  be a solution  
X(

 

τ

 

)  of the differential equation.  None the less a linear differential equation for the  

 

Wronskian

 

  
det(X(

 

τ

 

))  can be found and solved to prove assertions about  

 

Fundamental Solutions

 

  found in 
many texts about differential equations.  Begin with the observation that solutions  X(

 

τ

 

)  satisfy
   d det(X)/d

 

τ

 

=  Trace( Adj(X) dX/d

 

τ 

 

)  =  Trace( Adj(X) L X )  =  Trace( X Adj(X) L ) 
=  det(X) Trace(L) ,

which can be solved for

      det(X(

 

τ

 

)) =  exp

 

(

 

 

 

∫

 

o

 

τ

 

 

 

Trace(L(

 

θ

 

)) d

 

θ

 

 

 

)

 

 det(X(0)) .
This implies that  det(X(

 

τ

 

))  is nonzero for  all  τ  if nonzero for  any  τ .  Consequently  X(τ)  is 
invertible for all  τ  if invertible for any  τ ,  in which case  X(τ)  is called a  Fundamental 
Solution  since every vector solution  x  of  dx/dτ = Lx  has the form  x = Xc  for some constant 

vector  c .  To verify this claim,  observe that  X–1x  must be constant because

Xd(X–1x)/dt =  X(dX–1/dt)x + dx/dt  =  –(dX/dt)X–1x + Lx  =  –LXX–1x + Lx  =  o .

( Strictly speaking,  det(X(τ))  is the  Wronskian  of the columns of  X(τ) .)
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Fundamental solutions  X(τ)  of  dX/dτ = LX  with their nonvanishing  Wronskians  figure in the 
solution of the non-homogeneous linear differential equation  dx/dτ = Lx + f  by the  Method of 
Variation of Parameters.  The idea is to substitute  x = Xp  into the last differential equation and 

solve it for the parameter vector  p .  This substitution yields  dp(τ)/dτ = X(τ)–1f(τ) ,  whence 

follows  x(τ) = X(τ)( c + ∫τ X(θ)–1f(θ) dθ )  for any constant vector  c .

Exercise:  Given smooth scalar functions  h(τ)  and  g(τ) ,  the homogeneous second-order 
differential equation  y"  – hy'  – gy = 0  can,  in principle,  be solved for scalar solutions  y(τ) .  
The  Wronskian  of any two solutions  y1  and  y2  is

W(y1(τ), y2(τ)) :=  y1(τ)y2'(τ) – y1'(τ)y2(τ) .
Show that  W = exp( ∫ h(τ) dτ + constant ) .  Provided it is nonzero,  it appears as a divisor in 
expressions for solutions  z(τ)  of   z"  – hz'  – gz = e(τ)   obtained in textbooks by variation of 
parameters.  Find those expressions,  and rederive them after first converting the scalar second-
order differential equations to  2-vector  first-order differential equations.

Adjugates of Singular Matrices:
Almost all  n-by-n  matrices are nonsingular because the singular matrices  B ,  satisfying the 

equation  det(B) = 0 ,  lie in a hypersurface of dimension  n2 – 1  in the  n2-dimensional space 
of  n-by-n  matrices.  Among the singular matrices,  almost all have rank  n–1 ;  the matrices of 

rank less than  n–1  lie in a hypersurface of dimension  n2 – 4  embedded in the hypersurface of 
singular matrices.

To see why the foregoing assertions are true,  consider a matrix  C  of rank  n – 2 ,  and suppose for the sake of 
simplicity that its first  n – 2  columns are linearly independent.  These columns can be embedded in a basis of  n  
columns for the  n-dimensional space of  n-columns,  and then the last two columns of  C  can be any two columns 
whose expressions in that basis have zeros for their last two elements.  If any one of those four zero elements were 
replaced by a nonzero then  Rank(C)  would increase to  n - 1 .  Thus,  the matrices  C  of rank  n – 2  ( or less )  

must satisfy four equations in  n2  unknowns,  whereas the matrices of rank  n – 1  ( or less )  need satisfy just one 

equation  det(…) = 0 .  It turns out that the  (n2 – 1)-dimensional hypersurface of singular matrices intersects itself 

in the  (n2 – 4)-dimensional hypersurface of matrices of rank  n–2  or less,  but we shall not prove nor need this,

Let  Rank(B) = n–1 ,  so  A = Adj(B) ≠ O .  But since  BA = O ,  all the columns of  A must lie 

in the one-dimensional null-space of  B ,  and similarly for the rows of  A ,  so  A = vuT ≠ O  

where  Bv = o  and  uTB = oT .  In other words,

almost all singular matrices  B  have adjugates of rank one;   Adj(B) = vuT ≠ O

for suitable eigenvectors  v  and  uT  belonging to  B ’s  eigenvalue  0 .

The exceptional  n-by-n  singular matrices  B  have  rank(B) < n–1  and  Adj(B) = O .
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The  Derivative  of a  Simple Eigenvalue:
Suppose  ß  is a simple eigenvalue of a matrix  B .  Replacing  B  by  B – ßI  allows us to assume 
that  ß = 0   for the sake of simplicity;  in other words we assume that  0  is a simple eigenvalue 
of  B .  This means that det(αI – B)  vanishes when  α = 0 ,  but because  0  is a simple 
eigenvalue the derivative  d det(αI – B)/dα ≠ 0  when  α = 0 .  By Jacobi's formula,

d det(αI – B)/dα = Trace(Adj(αI – B)I) ,

so we infer that  Trace(Adj(B)) ≠ 0 .  This implies that  Adj(B) = vuT  is of rank one,  not zero,  

with eigenvectors  v and  uT  belonging to  B ’s  eigenvalue  0 ;  and  uTv = Trace(Adj(B)) ≠ 0 .

In general,  if  uT  is a row eigenvector and  v  a column eigenvector belonging to the same  

simple  eigenvalue  ß  of a matrix,  then  uTv ≠ 0 .  This is important because it allows us to 
compute the differential of this simple eigenvalue using its eigenvectors as follows:

       0 =  det(ßI - B) ,   so differentiate this equation to get …
       0 =  d det(ßI - B)  =  Trace( Adj(ßI – B)(dß – dB) )

 =  Trace( (vuT)(dß – dB) ) ,   where  Bv = ßv  and  uTB = ßuT  and  uTv ≠ 0 ,

=  uTv dß – uT(dB)v .

Therefore   dß = uT(dB)v/uTv    provides the derivative of a simple eigenvalue  ß  of  B .

The  Derivative  of the  Adjugate:
We need the differential of  A = Adj(B) .  This is obtained easily when  B  is nonsingular,  in 

which case  A = B–1det(B)  and,  since  d(B–1) = –B–1(dB)B–1 ,  it soon follows that 
d Adj(B) = S(B, dB)  where,  for  n-by-n  matrices  Z ,

S(B, Z) :=  ( Trace(Adj(B) Z) Adj(B) – Adj(B) Z Adj(B) )/det(B)
provided  det(B) ≠ 0 .   This formula is a little misleading because it involves division by  
det(B)  and degenerates into  0/0  when  B  is singular.  In fact  Adj(B)  is a polynomial function 
of the elements of  B ,  so its differential   d Adj(B) = S(B, dB)  is also a polynomial function of 
the elements of  B  and linear in  dB  regardless of whether  B  is singular.

This polynomial derivative of the adjugate figures in the determinant’s second differential

       d2det(B) =  d Trace(Adj(B)dB)  =  Trace( d(Adj(B)dB) )

=  Trace( S(B, dB) dB + Adj(B)d2B ) ,
and therefore figures also in the third term of the  Taylor Series  ( for any  n-by-n  Z )

det(B + Zτ) =  det(B) + Trace( Adj(B)Z )τ + Trace(S(B,Z)Z)τ2/2  + ... .

Inverses  of  Nearly Singular Matrices:
Our final application of  Jacobi's  formula is a description of the behavior of inverses of matrices 

close to almost any singular matrix  B .  In particular,  assume  Adj(B) = vuT ≠ O ,  as is so for 
almost all singular matrices  B ,  and let  Z  be a matrix with  B ’s  dimensions.  Now,  

Trace(Adj(B)Z) = uTZv   is nonzero for almost all  Z ,  and for those  Z

det(B + Zτ) =  uTZvτ + Trace(S(B,Z)Z)τ2/2 + ...
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is nonzero for all sufficiently small nonzero  τ .  For those  τ  and  Z  and  B  we find that

     (B + Zτ)–1 =  Adj(B + Zτ)/det(B + Zτ)

= ( vuT + Sτ + ... )/(uTZvτ + Trace(SZ)τ2/2 + ...)

=  vuT/(τ uTZv)  +  (uTZvS – Trace(SZ) vuT/2)/(uTZv)2  +  ...
where  S = S(B, Z) .  Thus,  as  τ  approaches zero and  B + Zτ approaches almost any singular 

matrix  B  along almost any fixed direction  Z  in matrix space,  (B + Zτ)–1  approaches infinity 

along a fixed direction parallel to  vuT = Adj(B)  in matrix space;  in fact  (B + Zτ)–1  is 

approximated by its leading term   vuT/(τ uTZv)   with ever smaller relative error,  as  τ  

approaches  0 ,  and with absolute error  (B + Zτ)–1 – vuT/(τ uTZv)  that approaches a constant

S(B,Z)/(uTZv) – Trace(S(B,Z)Z/2) vuT/(uTZv)2 .
This last expression looks worse than it is,  but its reduction to a manageable form must be 
deferred to another time.  The important fact is that inversion maps almost all matrices in a 
sufficiently tiny ball,  centered about almost any singular matrix  B ,  to two narrow fingers 
reaching in from infinity in directions nearly parallel to known matrices  ±Adj(B)  of rank  1 .

Why should we care?  One reason is that attempts to invert matrices  B  numerically usually 

yield approximations to  B–1  that are instead very much like  (B + Zτ)–1  for some tiny  Zτ  
comparable to roundoff in the elements of  B .  If  B  is very nearly  ( or exactly )  singular,  the 
computed inverse is recognizable as a matrix nearly proportional to  Adj(B)  of rank  1 ;  the 
factor of proportionality is unpredictable except that it is huge,  bigger than  1/( roundoff in  B ) .

Another reason to care is that we often compute eigenvectors by solving a singular set of linear 
equations  (ßI - B)v ≈ o  for a nonzero vector  v  given a good approximation to the eigenvalue  
ß .  In effect,  we solve  (ßI - B)v = e  for  v  with some tiny uncontrolled  e  comparable to 
roundoff.  The foregoing analysis tells us that the computed solution  v  is likely to point in the 
direction of the desired eigenvector unless  B  nearly has a non-simple eigenvalue near  ß .

“Likely”,  “usually”,  “most”,  “almost all”,  “nearly”  …  are weasel words that offend many a pure mathematician 
who prefers  “always”,  “every”,  “all” …  and takes  “exactly”  for granted.  Applied mathematicians encounter 
situations often where the weasel words are the best that can be expected.  In fact,  the weasel words above are 
provably the best that can be expected in their contexts,  but that is a story for another day.


