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Gauss-Jordan Inversion of a Matrix

To invert asgquare matrix, the simplest program, though not likely the fastest nor the most
accurate on some machines, isbased upon Gauss-Jordan Elimination, a process that resembles
Gaussian elimination but goes beyond it to perform the elimination process upon the rows
above aswell as below the pivotal row. An example of such aprogram, writtenin BASIC for
an IBM PC, isappended to thisnote. Its purposeistwofold; first to explain how Gauss-
Jordan Elimination works when pivotal exchanges are included; second, to exhibit two
features that belong in any elimination-based scheme that solves linear equations or inverts
matrices. The two features pertain to nearly singular matrices and to the possibility of extremely
large growth of intermediate results (the Schur Complements) during elimination.

To benefit from this note, the reader should translate the BASIC program
into whatever programming language she favors.

Gauss-Jordan Elimination without frillsis performed by lines 680to 720 and 790 to 950 of
the program, which isexplained thus: Given an n-by-n matrix A , attach the identity matrix to
it to produce a n-by-2n matrix B=[1, A]. We shall operate upon B to convert it into

H=] AL ] by n successive elementary row operations whose product is tantamount to
premultiplication by A™; thatis, H=A"'B . After performingonly k of those operations,
where 1<k <n, thearray stored in memory could be KB =[ K, KA ] where K isthe
product of thefirst k row operations. However, two technicalities complicate the picture.
First, thefirst k columnsof KA turn out to bethe same asthefirst k columns of the identity
matrix, not worth storing explicitly. Second, only thefirst k columnsof K areworth storing
explicitly since the rest are a permutation, reflecting pivotal exchanges, of thelast n-k rows of
the identity. Hence the arraysin storagewill be X and P, where P records the pivotal
exchangesand X containsonly the interesting columns of KB, namely thefirst k columns of

KP! andthelast nk of KA. Attheend, X = KP isunswapped to obtain A2 =XP.

Dealing with the permutations P isthe part of the program that novices most often get wrong.

Lines 690to 720 search for the largest element on or below the diagonal in the k" column to
serve as apivot; itsreciprocal will be needed later. But what if this pivot vanishes? Then A

must lie no farther than about 2n%/3 roundi ng errors from asingular matrix. These are the
same rounding errors as would be committed during the triangular factorization of PA =LU by
Gaussian elimination. Infact, thetriangular factors L and U actually computed will satisfy

LU = P(A+AA) for aperturbation AA about which we can know only that [|AA|| < g ne [|A]]
where ¢ denotes the roundoff level of floating-point arithmetic (computed in statement 590),
||...|I denotes some simple matrix norm, and growth factor g := max; ( max; u;| / max; la;1 )
is underestimated in statement 740. This g tells by how much a column of some Schur

complement has grown bigger than the same column of A . Pivotal exchanges (P) keep g
from getting too big except in very rare instances, which will be caught in statements 750 to
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780 . Statements like these ought to appear (but hardly ever do) in every conscientiously
written program that uses Gaussian elimination without both row- and column- pivoting or
some other scheme that keeps g < 8n (say).

When a pivot vanishes, statement 730 replacesit by something tiny, comparable with
roundoff in the biggest element of A in the same column, but not so tiny that its reciprocal
overflows. This replacement is tantamount to adding another rounding error to the perturbation
AA =P ILU—A; butit preventsa(nearly) singular matrix A from being exposed by a
vanishing pivot. Isthisbad? No. Although arelatively tiny pivot doesimply that A issingular
or nearly so, the converseisuntrueunless n issmall. Thelarger is n, thelarger isthe
probability that anearly singular A will not be betrayed by any noticeably small pivot.
Therefore, the smallness of pivots (or determinants) is generally an unreliable way to detect

nearness to singularity. The size of the condition number |[A[| ||A‘1|| is much better because its
logarithm (base 10) indicates roughly how many sig. dec. can be lost to roundoff during the

computation by elimination etc. of some approximation X to A™L. Evenif [|A[|[IX]| isso
huge that none of the figuresin X can betrusted, yet ||| —AX]| and/or ||| — XA| will aways
be far tinier than that, justifying the use of X for preconditioning and similar purposes.

The Program

500 ' CGauss-Jordan Matrix Inversion X = A*-1) in IBMPC BASIC
510 ' including checks for excessive growh despite row pivoting,
520 and adjustments for zero pivots to avoid .../0 .
530 ' DDMA(N,N, X(N,N), P(N) ... are assuned.

540 DEFINT I-N " ... integer variables; the rest are REAL.
550 '

560 ' First determine |evels of roundoff and over/underfl ow.

570 UFL = 5.9E-39 ' ... = max{ under, 1/over}flow threshol ds.
580 G4: GGGE3: G&GG1 ' ... =1/3 + roundoff in 4/3
590 EPS = ABS( ((GtG - 1) + G) ' ... = roundoff |evel.

600 G=1 "' ... wll record pivot-growh factor

610 '

620 ' Copy A to X and record each colum's biggest el ement.
630 FOR J=1 TON: P(J)=0

640 FOR =1 TON: T=A~,J) : X(,J) =T: T=ABS(T)
650 IF T>P(J) THEN P(J) =T

660 NEXT | : NEXT J

670 '

680 FOR K=1 TON :' ... performelimnation upon colum K.
690 Q0: J=K: ' ... search for Kth pivot

700 FOR 1=K TON

710 T=ABS(X(l,K)) : IF T>Q THEN QT : J=I

720 NEXT |

730 IF &0 THEN Q = EPS*P(K) + UFL : X(K, K)=Q

740 IF P(KY>0 THEN Q=QP(K) : IF Q&G THEN G=Q

750 IF G<=8*K THEN GOTO 790
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760 PRINT "Gomh factor g = ";G" exceeds ";8*K," ; try"
770 PRINT "noving A's colum ";K/ " tocol. 1 to reduce g ."
780 STOP ' ... or go back to re-order A s colunms.
790 P(KY=J ' ... record pivotal row exchange, if any.
800 IF J=K THEN GOTO 830 ' ... Don't bother to swap.
810 FOR L=1 TON: @X(J,L) : X(J,L)=X(K, L)

820 X(K,L)=Q : NEXT L

830 Q= XKK : XKK =1

840 FOR J=1 TON: X(KJ) = X(K J)/Q: NEXTJ

850 FOR 1=1 TON: |IF 1=K THEN GOTO 890

860 Q=X(I,K) : X(I,K =0

870 FOR J=1 TO N

880 X(1,3d) = X(1,3) - X(K,J)*Q: NEXT J

890 NEXT | : NEXT K

900 '

910 FOR K=N-1 TO1 STEP -1 ' ... unswap columms of X

920 J=P(K) : IF J=K THEN GOTO 950

930 FOR 1=1 TON: @&X(I,K : X(I,K=X(I,J)

940 X(1,J3)=Q : NEXT I

950 NEXT K

960 RETURN
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