

Math. H110

Gauss-Jordan Inversion

 October 16, 1998

Prof. W. Kahan Page 1

Gauss-Jordan Inversion of a Matrix

To invert a square matrix, the simplest program, though not likely the fastest nor the most
accurate on some machines, is based upon Gauss-Jordan Elimination, a process that resembles
Gaussian elimination but goes beyond it to perform the elimination process upon the rows
above as well as below the pivotal row. An example of such a program, written in BASIC for
an IBM PC, is appended to this note. Its purpose is twofold; first to explain how Gauss-
Jordan Elimination works when pivotal exchanges are included; second, to exhibit two
features that belong in any elimination-based scheme that solves linear equations or inverts
matrices. The two features pertain to nearly singular matrices and to the possibility of extremely
large growth of intermediate results (the

Schur Complements

) during elimination.

To benefit from this note, the reader should translate the BASIC program
into whatever programming language she favors.

Gauss-Jordan Elimination without frills is performed by lines 680 to 720 and 790 to 950 of
the program, which is explained thus: Given an n-by-n matrix A , attach the identity matrix to
it to produce a n-by-2n matrix B = [I, A] . We shall operate upon B to convert it into

H = [A

–1

, I] by n successive elementary row operations whose product is tantamount to

premultiplication by A

–1

 ; that is, H = A

–1

B . After performing only k of those operations,
where 1

≤

 k

≤

 n , the array stored in memory could be KB = [K, KA] where K is the
product of the first k row operations. However, two technicalities complicate the picture.
First, the first k columns of KA turn out to be the same as the first k columns of the identity
matrix, not worth storing explicitly. Second, only the first k columns of K are worth storing
explicitly since the rest are a permutation, reflecting pivotal exchanges, of the last n-k rows of
the identity. Hence the arrays in storage will be X and P , where P records the pivotal
exchanges and X contains only the interesting columns of KB , namely the first k columns of

KP

–1

 and the last n–k of KA . At the end, X = KP

–1

 is unswapped to obtain A

–1

 = XP .

Dealing with the permutations P is the part of the program that novices most often get wrong.

Lines 690 to 720 search for the largest element on or below the diagonal in the k

th

 column to
serve as a pivot; its reciprocal will be needed later. But what if this pivot vanishes? Then A

must lie no farther than about 2n

3

/3 rounding errors from a singular matrix. These are the
same rounding errors as would be committed during the triangular factorization of PA = LU by
Gaussian elimination. In fact, the triangular factors L and U actually computed will satisfy

LU = P(A+

∆

A) for a perturbation

∆

A about which we can know only that ||

∆

A|| <

g

 n

2

ε

||A||
where

ε

 denotes the roundoff level of floating-point arithmetic (computed in statement 590),
||...|| denotes some simple matrix norm, and growth factor

g

 := max

j

(max

i

|u

ij

|

/

 max

i

|a

ij

|)
is underestimated in statement 740. This

g

 tells by how much a column of some Schur
complement has grown bigger than the same column of A . Pivotal exchanges (P) keep

g

from getting too big except in very rare instances, which will be caught in statements 750 to

This document was created with FrameMaker 4 0 4

Math. H110

Gauss-Jordan Inversion

 October 16, 1998

Prof. W. Kahan Page 2

780 . Statements like these ought to appear (but hardly ever do) in every conscientiously
written program that uses Gaussian elimination without both row- and column- pivoting or
some other scheme that keeps

g

 < 8n (say).

When a pivot vanishes, statement 730 replaces it by something tiny, comparable with
roundoff in the biggest element of A in the same column, but not so tiny that its reciprocal
overflows. This replacement is tantamount to adding another rounding error to the perturbation

∆

A = P

–1

LU – A ; but it prevents a (nearly) singular matrix A from being exposed by a
vanishing pivot. Is this bad? No. Although a relatively tiny pivot does imply that A is singular
or nearly so, the converse is untrue unless n is small. The larger is n , the larger is the
probability that a nearly singular A will not be betrayed by any noticeably small pivot.
Therefore, the smallness of pivots (or determinants) is generally an unreliable way to detect

nearness to singularity. The size of the condition number ||A|| ||A

–1

|| is much better because its
logarithm (base 10) indicates roughly how many sig. dec. can be lost to roundoff during the

computation by elimination etc. of some approximation X to A

–1

 . Even if ||A|| ||X|| is so
huge that none of the figures in X can be trusted, yet ||I – AX|| and/or ||I – XA|| will always
be far tinier than that, justifying the use of X for preconditioning and similar purposes.

The Program

 ...
500 ' Gauss-Jordan Matrix Inversion X = A^(-1) in IBM PC BASIC
510 ' including checks for excessive growth despite row-pivoting,
520 ' and adjustments for zero pivots to avoid .../0 .
530 ' DIM A(N,N), X(N,N), P(N) ... are assumed.

540 DEFINT I-N ' ... integer variables; the rest are REAL.
550 '
560 ' First determine levels of roundoff and over/underflow.
570 UFL = 5.9E-39 ' ... = max{ under, 1/over}flow thresholds.
580 G=4 : G=G/3 : G=G-1 ' ... = 1/3 + roundoff in 4/3
590 EPS = ABS(((G+G) - 1) + G) ' ... = roundoff level.
600 G = 1 ' ... will record pivot-growth factor
610 '
620 ' Copy A to X and record each column's biggest element.
630 FOR J=1 TO N : P(J)=0
640 FOR I=1 TO N : T = A(I,J) : X(I,J) = T : T = ABS(T)
650 IF T > P(J) THEN P(J) = T
660 NEXT I : NEXT J
670 '
680 FOR K=1 TO N :' ... perform elimination upon column K .
690 Q=0 : J=K : ' ... search for Kth pivot ...
700 FOR I=K TO N
710 T=ABS(X(I,K)) : IF T>Q THEN Q=T : J=I
720 NEXT I
730 IF Q=0 THEN Q = EPS*P(K) + UFL : X(K,K)=Q
740 IF P(K)>0 THEN Q=Q/P(K) : IF Q>G THEN G=Q
750 IF G<=8*K THEN GOTO 790

Math. H110

Gauss-Jordan Inversion

 October 16, 1998

Prof. W. Kahan Page 3

760 PRINT "Growth factor g = ";G;" exceeds ";8*K;" ; try"
770 PRINT "moving A's column ";K;" to col. 1 to reduce g ."
780 STOP ' ... or go back to re-order A's columns.

790 P(K)=J ' ... record pivotal row exchange, if any.
800 IF J=K THEN GOTO 830 ' ... Don't bother to swap.
810 FOR L=1 TO N : Q=X(J,L) : X(J,L)=X(K,L)
820 X(K,L)=Q : NEXT L

830 Q = X(K,K) : X(K,K) = 1
840 FOR J=1 TO N : X(K,J) = X(K,J)/Q : NEXT J
850 FOR I=1 TO N : IF I=K THEN GOTO 890
860 Q = X(I,K) : X(I,K) = 0
870 FOR J=1 TO N
880 X(I,J) = X(I,J) - X(K,J)*Q : NEXT J
890 NEXT I : NEXT K
900 '
910 FOR K=N-1 TO 1 STEP -1 ' ... unswap columns of X
920 J=P(K) : IF J=K THEN GOTO 950
930 FOR I=1 TO N : Q=X(I,K) : X(I,K)=X(I,J)
940 X(I,J)=Q : NEXT I
950 NEXT K
960 RETURN

Math. H110

Gauss-Jordan Inversion

 October 16, 1998

Prof. W. Kahan Page 4

