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Gauss-Jordan Inversion of a Matrix

 

To invert a square matrix,  the simplest program,  though not likely the fastest nor the most 
accurate on some machines,  is based upon  Gauss-Jordan Elimination,  a process that resembles 
Gaussian  elimination but goes beyond it to perform the elimination process upon the rows 
above as well as below the pivotal row.  An example of such a program,  written in  BASIC  for 
an  IBM PC,  is appended to this note.  Its purpose is twofold;  first to explain how  Gauss-
Jordan Elimination  works when pivotal exchanges are included;  second,  to exhibit two 
features that belong in any elimination-based scheme that solves linear equations or inverts 
matrices.  The two features pertain to nearly singular matrices and to the possibility of extremely 
large growth of intermediate results  (the  

 

Schur Complements

 

)  during elimination.

To benefit from this note,  the reader should translate the  BASIC  program
into whatever programming language she favors.

Gauss-Jordan Elimination without frills is performed by lines  680 to 720  and  790 to 950  of 
the program,  which is explained thus: Given an  n-by-n  matrix  A ,  attach the identity matrix to 
it to produce a  n-by-2n  matrix  B = [ I, A ] .  We shall operate upon B  to convert it into  

H = [ A

 

–1

 

, I ]  by  n  successive elementary row operations whose product is tantamount to 

premultiplication by A

 

–1

 

 ;  that is,  H = A

 

–1

 

B .  After performing only  k  of those operations,  
where  1 

 

≤

 

 k 

 

≤

 

 n ,  the array stored in memory could be  KB = [ K, KA ]  where  K  is the 
product of the first  k  row operations.  However,  two technicalities complicate the picture. 
First,  the first  k  columns of  KA  turn out to be the same as the first  k  columns of the identity 
matrix,  not worth storing explicitly.  Second,  only the first  k  columns of  K  are worth storing 
explicitly since the rest are a permutation,  reflecting pivotal exchanges,  of the last  n-k  rows of 
the identity.  Hence the arrays in storage will be  X  and  P ,  where  P  records the pivotal 
exchanges and  X  contains only the interesting columns of KB ,  namely the first  k  columns of  

KP

 

–1

 

  and the last  n–k  of KA .  At the end,  X = KP

 

–1

 

  is unswapped to obtain  A

 

–1

 

 = XP .

Dealing with the permutations  P  is the part of the program that novices most often get wrong.

Lines  690 to 720  search for the largest element on or below the diagonal in the  k

 

th

 

  column to 
serve as a pivot;  its reciprocal will be needed later.  But what if this pivot vanishes?  Then  A 

must lie no farther than about  2n

 

3

 

/3  rounding errors from a singular matrix.  These are the 
same rounding errors as would be committed during the triangular factorization of  PA = LU  by 
Gaussian elimination.  In fact,  the triangular factors  L  and  U  actually computed will satisfy  

LU = P(A+

 

∆

 

A)  for a perturbation 

 

∆

 

A  about which we can know only that  ||

 

∆

 

A|| < 

 

g

 

 n

 

2

 

ε

 

 

 

||A||  
where  

 

ε

 

 denotes the roundoff level of floating-point arithmetic  (computed in statement  590),  
||...||  denotes some simple matrix norm,  and growth factor   

 

g

 

  :=  max

 

j 

 

( max

 

i 

 

|u

 

ij

 

| 

 

/

 

 max

 

i 

 

|a

 

ij

 

| )   
is underestimated in statement 740.  This  

 

g

 

  tells by how much a column of some  Schur 
complement  has grown bigger than the same column of  A .  Pivotal exchanges  ( P )  keep  

 

g

 

  
from getting too big except in very rare instances,  which will be caught in statements  750  to 
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780 .  Statements like these ought to appear  (but hardly ever do)  in every conscientiously 
written program that uses  Gaussian elimination  without both row- and column- pivoting or 
some other scheme that keeps  

 

g

 

 < 8n  (say).

When a pivot vanishes,  statement  730  replaces it by something tiny,  comparable with 
roundoff in the biggest element of  A  in the same column,  but not so tiny that its reciprocal 
overflows. This replacement is tantamount to adding another rounding error to the perturbation  

 

∆

 

A = P

 

–1

 

LU – A ;  but it prevents a (nearly) singular matrix  A  from being exposed by a 
vanishing pivot.  Is this bad?  No.  Although a relatively tiny pivot does imply that A  is singular 
or nearly so,  the converse is untrue unless  n  is small.  The larger is  n ,  the larger is the 
probability that a nearly singular  A  will not be betrayed by any noticeably small pivot.  
Therefore,  the smallness of pivots  (or determinants)  is generally an unreliable way to detect 

nearness to singularity. The size of the condition number  ||A|| ||A

 

–1

 

||  is much better because its 
logarithm  (base 10)  indicates roughly how many sig. dec. can be lost to roundoff during the 

computation by elimination etc. of some approximation  X  to  A

 

–1

 

 .  Even if  ||A|| ||X||  is so 
huge that none of the figures in  X  can be trusted,  yet  ||I – AX||  and/or  ||I – XA||  will always 
be far tinier than that,  justifying the use of  X  for preconditioning and similar purposes.

 

The Program

 

 ...
500 ' Gauss-Jordan Matrix Inversion  X = A^(-1)  in  IBM PC BASIC
510 ' including checks for excessive growth despite row-pivoting,
520 '      and  adjustments for zero pivots to avoid  .../0 .
530 ' DIM A(N,N), X(N,N), P(N)  ...  are assumed.

540  DEFINT  I-N  '  ...  integer variables;  the rest are REAL.
550 '
560 ' First determine levels of roundoff and over/underflow.
570  UFL = 5.9E-39 ' ... = max{ under, 1/over}flow thresholds.
580     G=4 :  G=G/3 :  G=G-1    ' ... = 1/3 + roundoff in 4/3
590  EPS = ABS( ((G+G) - 1) + G ) ' ... = roundoff level.
600  G = 1  ' ...  will record pivot-growth factor
610 '
620 ' Copy  A  to  X  and record each column's biggest element.
630  FOR  J=1 TO N :  P(J)=0
640       FOR  I=1 TO N :  T = A(I,J) :  X(I,J) = T :  T = ABS(T)
650            IF  T > P(J)  THEN  P(J) = T
660            NEXT I :  NEXT J
670 '
680  FOR  K=1 TO N  :' ...  perform elimination upon column  K .
690       Q=0 :  J=K :  ' ...  search for  Kth pivot  ...
700       FOR  I=K TO N
710            T=ABS(X(I,K)) :  IF  T>Q  THEN  Q=T :  J=I
720            NEXT I
730       IF  Q=0  THEN  Q = EPS*P(K) + UFL :  X(K,K)=Q
740       IF  P(K)>0  THEN  Q=Q/P(K) :  IF  Q>G  THEN  G=Q
750       IF  G<=8*K  THEN  GOTO  790
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760    PRINT "Growth factor  g = ";G;"  exceeds ";8*K;" ;  try"
770    PRINT "moving  A's  column ";K;" to col. 1  to reduce  g ."
780          STOP  '  ...  or go back to re-order  A's  columns.

790       P(K)=J  '  ...  record pivotal row exchange,  if any.
800       IF  J=K  THEN  GOTO  830  '  ...  Don't bother to swap.
810           FOR  L=1 TO N :  Q=X(J,L) :  X(J,L)=X(K,L)
820                            X(K,L)=Q :  NEXT L

830       Q = X(K,K) :  X(K,K) = 1
840       FOR  J=1 TO N :  X(K,J) = X(K,J)/Q :  NEXT J
850       FOR  I=1 TO N :  IF  I=K  THEN  GOTO  890
860            Q = X(I,K) :  X(I,K) = 0
870            FOR  J=1 TO N
880                 X(I,J) = X(I,J) - X(K,J)*Q :  NEXT J
890            NEXT I :  NEXT K
900 '
910  FOR  K=N-1 TO 1  STEP -1  ' ...  unswap columns of  X
920       J=P(K) :  IF  J=K  THEN  GOTO  950
930       FOR  I=1 TO N :  Q=X(I,K) :  X(I,K)=X(I,J)
940                        X(I,J)=Q :  NEXT I
950       NEXT K
960  RETURN
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