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Geometry of Elementary Operations and Subspaces

 

A continuation of notes titled  “Geometry of Elementary Operations”

 

Matrices Represent Linear Operators:

 

Let  

 

L

 

  be a linear operator that maps a space of vectors  

 

x

 

 = 

 

B

 

x  to a  space of vectors  

 

y

 

 = 

 

E

 

y  
with their respective bases  

 

B

 

  and  

 

E

 

 .  Here  x  is a column vector that represents  

 

x

 

  in the basis 

 

B

 

  as  y  represents  

 

y

 

  in  

 

E

 

 .  Now,  what represents  

 

L

 

 ?  Matrix  L := 

 

E

 

–1

 

LB

 

  represents  

 

L

 

  

with bases  

 

B

 

  and  

 

E

 

  because  

 

y

 

 = 

 

Lx

 

  just when  y = 

 

E

 

–1

 

y

 

 = 

 

E

 

–1

 

LB

 

x = Lx .

When bases change,  say from  

 

B

 

  to  

 

B

 

 := 

 

B

 

C  and  

 

E

 

  to  

 

E

 

 := 

 

E

 

G  ( where the matrices  C and 
G  must be square and invertible,  as we have seen ),  their matrices figure in  

 

changes of 
coordinates

 

  ( representatives )  thus:

x := 

 

B

 

–1

 

x

 

and   x := 

 

B

 

–1

 

x

 

 = 

 

B

 

–1

 

B

 

x = C

 

–1

 

x represent  

 

x

 

 ;
y := 

 

E

 

–1

 

y

 

and   y := 

 

E

 

–1

 

y

 

 = 

 

E

 

–1

 

E

 

y = G

 

–1

 

y represent  

 

y

 

 ;
L := 

 

E

 

–1

 

LB

 

and   L := 

 

E

 

–1

 

LB

 

 = 

 

E

 

–1

 

E

 

L

 

B

 

–1

 

B

 

 = G

 

–1

 

LC represent  

 

L

 

 .

Evidently  

 

y

 

 = 

 

Lx

 

  just when  y = Lx  and  y = L

 

 

 

x .

What works for vectors works also for linear functionals;  these are just linear maps to a  1-
dimensional space whose basis need not change:

u

 

T

 

 := 

 

u

 

T

 

B

 

and   u

 

T

 

 := 

 

u

 

T

 

B

 

 = u

 

T

 

B

 

–1

 

B

 

 = u

 

T

 

C represent  

 

u

 

T

 

 ;
v

 

T

 

 := 

 

v

 

T

 

E

 

and   v

 

T

 

 := 

 

v

 

T

 

E

 

 = v

 

T

 

E

 

–1

 

E

 

 = v

 

T

 

G represent  

 

v

 

T

 

 ;
so  

 

u

 

T

 

x

 

 = u

 

T

 

x = u

 

T

 

x  and  

 

v

 

T

 

y

 

 = v

 

T

 

y = v

 

T

 

y .  Now  

 

u

 

T

 

 = 

 

v

 

T

 

L

 

  just when  u

 

T

 

 = v

 

T

 

L  and  

u

 

T

 

 = v

 

T

 

L .  ( Confirm the last seven equations.)  In all cases the misnamed  

 

coordinate-free

 

  ( it 
should be called  “

 

coordinate-independent ”)  algebra is the same;  only the arithmetic changes 
when bases change.  To simplify arithmetic is the principal motivation to change bases.

Do not try to memorize where to put  C  or  G .  Or is it  C–1  or  G–1 ?  Left or right of  L ?  You can work out these 
question’s answers more reliably by remembering that a basis is an invertible linear map from a space of column 
vectors to another vector space,  and a change of basis post-multiplies the basis by an invertible matrix.

Here is an example to show how changes of bases can simplify arithmetic.  A given arbitrary 
possibly rectangular matrix  L  represents some linear map  L  from one vector space to another 

if apt bases are used in those spaces.  Let  G–1  be any product of elementary row operations that 

puts  L   into  Reduced Row-Echelon Form  G–1L ,  and let  C  be any product of elementary 

column operations that puts  G–1L  into its  Reduced Column-Echelon Form  L = G–1LC .  As 
we have seen in notes  “The Reduced Row-Echelon Form is Unique”,  this last  Reduced 
Echelon Form  L  is determined uniquely by the starting matrix  L ,  regardless of how the 
elementary operations get to  L .  But  L  must now consist of an identity matrix in its upper left 
corner,  and zeros in all later rows and columns if there are any.  Since elementary row 
operations leave  row-rank  unchanged,  and similarly for  column-rank,  we see that these ranks 
are the same,  namely the dimension  ρ  of that identity matrix.  Now re-interpret  G  and  C  as
matrices of two changes of basis,  one basis in each of the vector spaces connected by whatever 
linear operator  L  is represented by  L ;  since   L =  ,  L  maps the first  ρ  changed basis 

vectors in one  Affine  vector space to the first  ρ  changed basis vectors in the other.

I O

O O
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Thus we conclude that every matrix  L = GLC–1  can be factored into a product whose two outer 
factors are invertible and whose third inner factor  L  is an identity matrix with perhaps some 
rows and/or columns of zeros appended to make  L  have the same dimensions as  L ,  whose  

rank  ρ  is the dimension of the identity matrix.  For any such fixed   L =  ,  the family of 

matrices  L = GLC–1  generated as  G  and  C  sweep through all invertible matrices of 
appropriate dimensions is a family called  Equivalent  matrices;  they all represent the same 
abstract linear operator  L  but in different coordinate systems.  They all have the same rank  ρ ,  
which we might as well define to be  Rank(L) .  What else have they in common?

Dimensions  that are  Invariants  of  Equivalent Matrices:
All that  Equivalent  matrices have in common are their dimensions and their  rank  ρ .  These 
numbers are the dimensions of three important vector spaces associated with that abstract linear 
operator  L .  Let us name them.  One space is the  Domain(L) ,  the space of vectors upon 
which  L  operates.  Another is the  Range-space  ( an ambiguous phrase best not used )  or  
Target-space(L)  into or onto which  L  throws its results.  If  y = Lx  then  x  must come from  
Domain(L)  and  y  from  Target-space(L) .  As  x runs through  all  of  Domain(L) ,  y = Lx  
sweeps out a third vector space  Range(L) .  ( Why is it a vector space? )  Range(L)  need not 
fill  Target-space(L)  but may be a proper subspace.  ( This is why  “Target-space”  is a better 
phrase than  “Range-space”  when they must be distinguished from  “Range”.)

Let  L  be any of the  Equivalent  matrices that represent  L ;  then
Dimension(Domain(L)) = Count(Columns(L)) ,
Dimension(Target-space(L)) = Count(Rows(L)) ,  and
Dimension(Range(L)) = Rank(L)  =  Rank(L)  =  ρ .

The last equation comes from the Equivalent matrix   L =  ,  which tells us that  Range(L)  

has a basis with  ρ  vectors.  This basis cannot be chosen uniquely even though  Range(L)  is 
fully determined by  L .  This basis of  Range(L)  is the image of the first  ρ  basis vectors in 
some basis of  Domain(L) ;  those first ρ  basis vectors span a subspace of  Domain(L)  that 
need  not  be determined uniquely  by  L  if its rank  ρ  is less than the dimension of its domain.

To think otherwise is a mistake made by many students;  but adding to each of the first  ρ  basis vectors any linear 
combinations of subsequent basis vectors  ( from  Nullspace(L) )  yields a new basis whose first  ρ  vectors,  now 
spanning another subspace of Domain(L) ,  are mapped by  L  upon the same basis of  Range(L) .

The subspace of  Domain(L)  determined uniquely by  L  is its  Kernel  or  Nullspace,  consisting
of all vectors  z  that satisfy Lz = o .  ( Why is it a vector space?)  Looking at  L  tells us

Nullity(L) :=  Dimension(Nullspace(L))  =  Count(Columns(L)) – Rank(L)
for any matrix  L  that represents  L .  In other words  ( and this is  IMPORTANT ),

Rank(L) + Nullity(L)  =  Dimension( Domain(L) ) .

Every linear operator  L  operates in two directions.  We have just looked at one;  operator  L  
maps vectors in its domain to vectors in its range.  Now look at  L  another way;  it maps linear 

functionals  vT  that act upon  Target-space(L)  linearly to linear functionals  uT = vTL  acting 

upon  Domain(L) .  This space of linear functionals  vT ,  dual to  Target-space(L) ,  is called  

I O

O O

I O

O O
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Codomain(L) ;  as  vT  runs through all of it,  vTL  sweeps out a subspace of the space dual to  
Domain(L) .  This subspace can be called  Corange(L) .  The subspace of  Codomain(L)  swept 

out by solutions  wT  of  wTL = oT  is  Cokernel(L) .  You may have seen some of these spaces 
before in texts where  L = L  is a matrix that maps one space of column vectors to another,  and 
then  Range(L)  is the column-space of  L  and its row-space is Corange(L) .

Exercise 0:  The foregoing plethora of (sub)spaces and names for them sound more complicated 

than they are;  describe all eight of them when  L = L =  .  These eight (sub)spaces are …

Target-space,  Range,  Nullspace,  Domain,     Codomain,  Cokernel,  Corange,  Dual of Domain.

Exercise 1:  Explain why the rank of a matrix product cannot exceed the rank of any factor.

Exercise 2:  Every linear operator  L  can be written as a sum   L = c1rT
1 + c2rT

2 + … + ckrT
k  

of  dyads  crT  ( linear operators of rank  1 )  in infinitely many ways;  here each  cj  is drawn 

from  Target-space(L)  and each  rT
j  from the dual of  Domain(L) .  Show that  Rank(L)  is the  

minimum possible number  k  of terms in the sum,  and exhibit a way to achieve this minimum.
This minimum,  called  Tensor Rank,  is an alternative way to define  Rank(L) ;  it can be generalized from linear 
operators to multi-linear operators,  but nobody knows how to compute  Tensor Rank  for multi-linear operators.

Exercise 3:  The linear operator whose matrix is    maps a plane to a line in the plane;

why?  The linear operator whose matrix is    maps a  3-space to a line in the plane;  why?  

Similarly describe the effects of operators whose matrices are ...

A :=  ,    B :=  ,    C :=  ,    D :=  ,    E :=  .

( The next four exercises were supplied by  Prof. B. N. Parlett  and  A. Hernandez.)

Exercise 4:  An operator  L  is represented by a  3-by-3  matrix. The set of  all  solutions  p  of  
Lp = o  sweeps out a plane  P   through the origin  o .  Vectors  b := Lu  and  c := Lv  are 
nonzero.  Describe the set  X  of all solutions  x  of  Lx = b ,  and the set  Y   of all solutions  y  
of  Ly = b+c .  What is  Dimension( Range(L) ) ?

In the next three exercises,  V   is some vector space of high dimension,  and  b, c, d, ..., x, y, z  
are nonzero vectors in it.

Exercise 5:  W  is a subset of  V  containing  b,  c,  and  3c + 5d ,  but not  d  nor  e – 2d ;  
determine whether  W  can possibly be a subspace of  V .  Give your reasoning.  Do likewise for  
U ,  a subset of  V  containing  5c  and  3d – 2b  but not  b  nor  d .

Exercise 6:  Q  is spanned by  {c, x, y, z} ;  here  x  and  y  are linearly independent and span a 
subspace  U   that also contains  y + 3z  but not  y + 2c .  What is  Dimension(Q ) ,  and why ?

I O

O O

1 2

2 4

1 2 3

0 0 0

0 1 5

2 0 4

0 7 0

4 5

0 1

2 3

2 3

0 0

4 6

4 5 6

1 2 3

6 7 8

4 5 6 0

1 2 3 1

6 7 8 9



Math. H110             Geometry of Elementary Operations and Subspaces       December 14, 2000 11:43 

Prof. W. Kahan                                                                                                                                         Page 4 /6

Exercise 7:  E  and  F  are subspaces of  V .  F  is spanned by  {b, e, f} ;  and  [c, d, f]  is a basis 
for  E ,  which also contains  b .  However,  the spans of  {c, d}  and of  {b, f}  intersect only in 
the zero vector.  Explain whether  [b, e, f]  is a basis for  F .

Intersections,  Sums  and  Annihilators  of  Subspaces:
Let  E  and  F  be proper subspaces of a vector space  B .  (“Proper”  means neither  o  nor  B .)  
Bases  E  for  E  and  F  for  F  consist of spanning  “rows”  of linearly independent vectors 
drawn from  B   but not necessarily from a given basis  B  of  B .  Still,  some bases must be 
related;  E = BE  and  F = BF  for rectangular matrices  E  and  F  with as many columns as the 
dimensions of subspaces  E  and  F  respectively,  and as many rows as the dimension of  B .

Why must the columns of  E  be linearly independent,  and likewise those of  F ,  but maybe not those of  [E, F] ?

Let the  sum  of  subspaces  E  and  F  be denoted by  E + F ;  it consists of all sums  e + f  of 
vectors  e  drawn from  E  and  f  drawn from  F .  Note that  E + F  is a vector space.  ( Why?)
Don’t confuse the sum with the  union  E ∪  F  of two subspaces,  which consists of all vectors that belong to at 
least one of  E  and  F ;  it need not be a vector space at all;  can you see why by providing a suitable example?

Let the  intersection  of  subspaces  E  and  F  be denoted by  E ∩ F ;  it consists of all vectors 
that belong both to  E  and to  F ,  and is a subspace of  B  too.  ( Why?)  It may be just  { o } .

Given  E  and  F ,  can we compute a basis for  E ∩ F  ?  It’s a bit tricky.  First assemble matrix  
[E, F]  and reduce it to its echelon form  G–1[E, F]C =   by pre- and post-multiplication by  

invertible  square matrices  G–1  and  C .  Next partition  C =:   conformably to obtain  

G–1(EH + FK) =    and   G–1(EJ + FL) =  .  Then  EH + FK  is a basis for  E + F ;  and

EJ = –FL  is a basis for  E ∩ F   unless it is  { o } ,  in which case  J  and  L  are empty matrices.
But the assertions in the last sentence are unobvious;  can you prove them?

• • • • • • • • • • • • • 
Here are proofs of those assertions.  First  EJ + FL = B(EJ + FL) = BO  if it is not empty,  so  
EJ = –FL .  If  z  satisfies  Jz = o  then it also satisfies  o = (EJ + FL)z = FLz ,  and then  Lz = o  
too because the columns of  F  are linearly independent;  since the last columns of matrix  C  are 
independent  ( else it wouldn’t be invertible ),  z = o  too.  Therefore the columns of  J  ( and 
similarly  L )  must be linearly independent if not empty,  so  EJ = –FL  is a basis for a nonzero 
subspace of  E ∩ F   if not all of it.  To show that none of it is left out we must solve equation
EJx = Eu  for  x  whenever  Eu = –Fv  lies in  E ∩ F .  The solution can be expressed in terms 
of a conformable partition of  C–1 =:  ;  here  C–1C = I = CC–1  implies that  MH+NK ,

PJ+QL ,  HM+JP  and  KN+LQ  are identity matrices,  and  MJ+NL ,  PH+QK ,  HN+JQ  and  
KM+LP  are zero matrices of perhaps diverse sizes.  Now a little algebra  (Do it!)  suffices to 
confirm that  x := Pu + Qv  is the desired solution,  so  EJ = –FL  does span all of  E ∩ F .

E + F   is next.  If  (EH + FK)z = o  then  z  satisfies  o = [I, O]G–1(EH + FK)z = z  too,  so that 
EH + FK  must be a basis for a subspace of  E + F   if not all of it.  To show none of it is left out 
we need only solve equation  (EH + FK)y = (Es + Ft)  for  y .  The solution is  y := Ms + Nt .
Do the algebra to confirm this formula for  y .  The formulas for  x  and  y  above are fragile numerically,  easily 
broken by rounding errors.  Robust formulas are more subtle.

• • • • • • • • • • • • • 
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A by-product of the proof,  obtained by counting columns of the echelon form,  is the formula
Dimension(E ∩ F ) + Dimension(E + F )  =  Dimension(E ) + Dimension(F ) .

This  IMPORTANT  formula deserves a proof simpler than the computation above;  can you 
find a simpler proof?

Here it is.  Let  D  be any basis for  E ∩ F .  If not already a basis for  E ,   D  can be augmented to form a basis  
[D, E]  for  E .  Likewise  [D, F]  forms a basis for  F .  Certainly  E + F   is spanned by the elements of  [D, E, F] .  
It is a basis too if its elements are linearly independent.  Suppose  Dd – Ee – Ff = o .  This says that  Ff = Dd – Ee  
lies in  F  and in  E ,  so it lies in  E ∩ F .  Therefore  Ff = Dd = Dd – Ee  for some  d .  Then  Dd – Ff = o  is the 
zero vector in  F ,  so  d = o  and  f = o  ( perhaps of different dimensions ).  D(d–d) – Ee = o  implies  d –d = o  
and  e = o  similarly.  Therefore the elements of  [D, E, F]  really are linearly independent;  they do form a basis of  
E + F .  Counting elements confirms the  IMPORTANT  formula above.

Exercise 8:  If the dimension of a vector space is less than the sum of the dimensions of two of 
its subspaces,  can their intersection be just  { o } ?  Justify your answer.

Exercise 9:  Two proper subspaces of a vector space are  Complementary  just when their sum 
is the whole space and their intersection  { o } .  Can either determine the other uniquely?  Why?

The  Annihilator  of a subspace  E  is the set of all linear functionals  wT  that satisfy  wTe = 0  

for every  e  in  E ,  and is denoted by  E⊥  .  This annihilator is a subspace of the dual space 
determined uniquely by  E .
The notation  “ E⊥  ”  is a relic from  Euclidean  spaces,  which are their own duals;  that is why  E⊥   is often called 
the  “orthogonal complement”  of  E  even if it is a subspace of a  non-Euclidean  space.  This terminology can 

mislead;  only in  Euclidean  spaces are  E  and  E⊥   complementary.  “Annihilator”  is unmistakable.

A good way to think about subspaces is in terms of their bases.  Given a basis  B  for a vector 
space,  think of  E := BE  for some rectangular matrix  E  with linearly independent columns as 

the basis for a proper subspace  E := Range(E)  whose annihilator is  E⊥  = Cokernel(E) .  This 

latter subspace has a basis too consisting of linear combinations of the  “rows”  of  B–1 : …

Exercise 10:  Confirm important relations   Dimension(E) + Dimension(E⊥ ) = Dimension(B)  

and   (E⊥ )⊥  = E    by augmenting  E  to get a basis  [E, E] = B[E, E]  and partitioning its inverse 

conformably to get a basis for  E⊥  .

Exercise 11:  Cite  “ (E⊥ )⊥  = E  ”  for a quick proof of  Fredholm’s  alternative (1)  in the notes  
“The Reduced Row-Echelon Form is Unique”.  ( It works for some infinite-dimensional spaces.)

Exercise 12:  Prove that  (E + F )⊥  = E⊥ ∩F⊥  .   If  E ∩F ≠ { o }  must    E⊥ ∩F⊥  ≠ { oT }  too?  
Prove the answer is surely  “Yes”  if   Dimension(E) + Dimension(F) – Dimension(E ∩ F)   is 
less than the dimension of the whole space,  but otherwise surely  “No”.
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Warning  about  Duals  of  Duals  of  Infinite-Dimensional Spaces:
The proof techniques used above are based upon finite-dimensional matrix multiplication;  but 
most of the definitions and inferences make sense for infinite dimensional spaces too.  There is 
one important exception that would go unnoticed because our notation takes it for granted:  “A 
vector space is the dual of its dual.”  This assertion,  obviously true for all finite-dimensional 
spaces,  is false for many infinite-dimensional spaces.  It is false for the space of continuous 
functions on a closed domain,  and for the space of all absolutely convergent series,  and for the 
space of all infinite sequences with at most finitely many nonzero terms;  these three spaces are 
each properly contained in the dual of its dual.  For infinite-dimensional spaces,  Linear 
Algebra  has to be rebuilt from the ground up in a graduate course that takes convergence into 
account;  it lies beyond the syllabus of this course except for occasional warnings like this one.


