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Geometry of Elementary Operations and Subspaces
A continuation of notestitled “Geometry of Elementary Operations’

Matrices Represent Linear Operators:

Let L bealinear operator that maps a space of vectors x = Bx to a space of vectors y = Ey
with their respective bases B and E . Here x isacolumn vector that represents x inthe basis
B asy represents y in E. Now, what represents L ? Matrix L := E™'LB represents L
with bases B and E because y =Lx justwhen y=Ely = ELBx =Lx.

When bases change, say from B to B:=BC and E to E :=EG (wherethe matrices C and
G must be square and invertible, aswe have seen), their matricesfigurein changes of
coordinates ( representatives) thus:
x:=Bx  and Xx:=Bx=B!Bx=Cx represent X ;
y=Ely ad y=FEly=FEley=Gly represent y ;
L:=ELB and L:=EB=E'ELB'B=GLC represent L .

Evidently y=Lx justwhen y=Lx and y=LX.

What works for vectors works also for linear functionals; these arejust linear mapsto a 1-
dimensional space whose basis need not change:
u':=u™B and u':=u"B=u'BB=u'C represent u' ;
vi:=vIE and VI :=VE=VIEE=V'G represent v' ;
so uTx=u'x=u'x and vly=vTy=v'y. Now u' =v'L justwhen u'=v'L and
u' =V'L . ( Confirm the last seven equations.) In all casesthe misnamed coordinate-free (it
should be called “coordinate-independent ”) algebraisthe same; only the arithmetic changes
when bases change. To simplify arithmetic is the principal motivation to change bases.

Do not try to memorize wheretoput C or G. Orisit C* or G ? Leftor right of L ? You can work out these
guestion’s answers more reliably by remembering that abasisis an invertible linear map from a space of column
vectors to another vector space, and a change of basis post-multiplies the basis by an invertible matrix.

Hereis an example to show how changes of bases can ssimplify arithmetic. A given arbitrary
possibly rectangular matrix L represents some linear map L from one vector space to another

if apt bases are used in those spaces. Let G be any product of elementary row operations that
puts L into Reduced Row-Echelon Form G™IL , andlet C be any product of elementary

column operations that puts G™IL into its Reduced Column-Echelon Form L =G™LC. As
we have seen in notes “The Reduced Row-Echelon Formis Unique”, thislast Reduced
Echelon Form L isdetermined uniquely by the starting matrix L , regardless of how the
elementary operationsgetto L . But L must now consist of an identity matrix in its upper left
corner, and zerosin all later rows and columnsif there are any. Since elementary row
operations leave row-rank unchanged, and similarly for column-rank, we see that these ranks
arethe same, namely the dimension p of that identity matrix. Now re-interpret G and C as
matrices of two changes of basis, one basisin each of the vector spaces connected by whatever
linear operator L isrepresentedby L ; since L = L‘)j , L mapsthefirst p changed basis

vectorsinone Affine vector spaceto thefirst p changed basis vectorsin the other.
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Thus we conclude that every matrix L = GLC™ can be factored into a product whose two outer
factors are invertible and whose third inner factor_f Is an identity matrix with perhaps some
rows and/or columns of zeros appended to make L have the same dimensionsas L , whose

rank p isthe dimension of the identity matrix. For any such fixed L = M , the family of

matrices L = GLC ™ generatedas G and C sweep through all invertible matrices of
appropriate dimensionsisafamily called Equivalent matrices; they all represent the same
abstract linear operator L but in different coordinate systems. They all have the samerank p,
which we might as well defineto be Rank(L) . What else have they in common?

Dimensions that are Invariants of Equivalent Matrices:

All that Equivalent matrices have in common are their dimensions and their rank p. These
numbers are the dimensions of three important vector spaces associated with that abstract linear
operator L . Let usnamethem. One spaceisthe Domain(L) , the space of vectors upon
which L operates. Another isthe Range-space ( an ambiguous phrase best not used ) or
Target-space(L) into or ontowhich L throwsitsresults. If y=Lx then x must come from
Domain(L) and y from Target-space(L) . As x runsthrough all of Domain(L), y=Lx
sweeps out athird vector space Range(L) . (Why isit avector space?) Range(L) need not
fill Target-space(L) but may be a proper subspace. ( Thisiswhy “Target-space” isabetter
phrase than “Range-space” when they must be distinguished from “Range’.)

Let L beany of the Equivalent matricesthat represent L ; then

Dimension(Domain(L )) = Count(Columns(L)) ,
Dimension(Target-space(L)) = Count(Rows(L)) , and
Dimension(Range(L )) =Rank(L) = Rank(L) = p.

The last equation comes from the Equivalent matrix L = L‘)ﬂ , which tellsusthat Range(L)

hasabasiswith p vectors. This basis cannot be chosen uniquely even though Range(L) is
fully determined by L . Thisbasisof Range(L) istheimage of thefirst p basisvectorsin
some basisof Domain(L) ; thosefirst p basis vectors span a subspace of Domain(L) that
need not be determined uniquely by L if itsrank p islessthan the dimension of its domain.

To think otherwise is a mistake made by many students; but adding to each of thefirst p basisvectorsany linear
combinations of subsequent basis vectors ( from Nullspace(L)) yields anew basiswhosefirst p vectors, now
spanning another subspace of Domain(L) , are mapped by L upon the same basis of Range(L) .

The subspace of Domain(L) determined uniquely by L isits Kernel or Nullspace, consisting

of all vectors z that satisfy Lz=0. (Why isit avector space?) Lookingat L tellsus
Nullity(L) := Dimension(Nullspace(L)) = Count(Columns(L)) — Rank(L)

for any matrix L that represents L . Inother words ( and thisis IMPORTANT ),

Rank(L) + Nullity(L) = Dimension( Domain(L) ) .

Every linear operator L operatesin two directions. We have just looked at one; operator L
maps vectorsin its domain to vectorsin itsrange. Now look at L another way; it maps linear

functionals v that act upon Target-space(L) linearly to linear functionals u’ =v'L acting
upon Domain(L) . This space of linear functionals v' , dual to Target-space(L), iscalled
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Codomain(L) ; as v' runsthrough all of it, vIL sweeps out a subspace of the space dual to

Domain(L) . Thissubspace can be called Corange(L) . The subspace of Codomain(L) swept

out by solutions w' of w'L =o' is Cokernel(L) . You may have seen some of these spaces
beforein textswhere L =L isamatrix that maps one space of column vectors to another, and
then Range(L) isthe column-spaceof L and itsrow-spaceis Corange(L) .

Exercise 0: The foregoing plethora of (sub)spaces and names for them sound more complicated
than they are; describe all eight of themwhen L =L = L‘) ﬂ . These eight (sub)spaces are ...

Target-space, Range, Nullspace, Domain, Codomain, Cokernel, Corange, Dual of Domain.

Exercise 1: Explain why the rank of amatrix product cannot exceed the rank of any factor.

Exercise2: Every linear operator L canbewrittenasasum L =cir'y+Cof 1o+ ... + Gl '
of dyads cr' (linear operatorsof rank 1) ininfinitely many ways, here each ¢j isdrawn

from Target-space(L) and each rTj from the dual of Domain(L) . Show that Rank(L) isthe

minimum possible number k of termsin the sum, and exhibit away to achieve this minimum.
Thisminimum, called Tensor Rank, isan alternative way to define Rank(L) ; it can be generalized from linear
operators to multi-linear operators, but nobody knows how to compute Tensor Rank for multi-linear operators.

Exercise 3: Thelinear operator whose matrix is & j maps a planeto aline in the plane;

why? The linear operator whose matrix is Ll) é j maps a 3-spaceto alinein the plane; why?

Similarly describe the effects of operators whose matrices are ...

015 45 23 456 4560
A=1204, B=l01, C=loo|, D:=|123, E=|1231 .
070 23 46 678 6789

( The next four exercises were supplied by Prof. B. N. Parlett and A. Hernandez.)

Exercise4: Anoperator L isrepresented by a 3-by-3 matrix. The set of all solutions p of
Lp =0 sweepsout aplane P throughtheorigin o. Vectors b:=Lu and c:=Lv are
nonzero. Describetheset X of all solutions x of Lx=b, andtheset Y of all solutions y
of Ly =b+c. Whatis Dimension( Range(L) ) ?

In the next three exercises, V issome vector space of high dimension, and b, ¢, d, ..., X, Y, Z
are nonzero vectorsin it.

Exercise5: W isasubset of V containing b, ¢, and 3c+5d, butnot d nor e—2d;
determine whether W can possibly be a subspace of V. Give your reasoning. Do likewise for
U, asubset of V containing 5¢ and 3d—2b butnot b nor d.

Exercise6: Q isspanned by {c, x,y, z} ; here x and y arelinearly independent and span a
subspace U that also contains y + 3z but not y +2c. What is Dimension(Q ), and why ?
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Exercise7: E and F aresubspacesof V. F isspanned by {b, e f} ; and [c, d, f] isabasis
for E, whichaso contains b. However, the spansof {c,d} andof {b, f} intersect onlyin
the zero vector. Explain whether [b, e, f] isabasisfor F .

Intersections, Sums and Annihilators of Subspaces:

Let E and F be proper subspaces of avector space B . (“Proper” means neither o nor B .)
Bases E for E and F for F consist of spanning “rows’ of linearly independent vectors
drawn from B but not necessarily from agiven basis B of B . Still, some bases must be
related; E =BE and F = BF for rectangular matrices E and F with as many columns as the
dimensions of subspaces E and F respectively, and as many rows asthe dimension of B .

Why must the columns of E belinearly independent, and likewisethose of F, but maybe not those of [E, F] ?

Let the sum of subspaces E and F bedenoted by E + F ; it consistsof all sums e+ f of
vectors e drawnfrom E and f drawnfrom F . Notethat E + F isavector space. ( Why?)

Don't confuse the sum with the union E O F of two subspaces, which consists of all vectorsthat belong to at
least oneof E and F ; it need not be avector space at all; can you see why by providing a suitable example?

Let the intersection of subspaces E and F bedenoted by E n F ; it consists of all vectors
that belong bothto E andto F, andisasubspaceof B too. (Why?) It may bejust { 0} .

Given E and F, canwecomputeabasisfor E n F ? It'sabit tricky. First assemble matrix
[E, F] and reduceit to its echelon form G™YE, F]C = {' 0} by pre- and post-multiplication by

[oX6)
invertible square matrices Gt and C. Next partition C =: {E j conformably to obtain

GHEH+FK)=[] and G™(EJ+FL)=[J . Then EH +FK isabasisfor E+F; and

EJ=-FL isabasisfor En F unlessitis { 0}, inwhichcase J and L are empty matrices.
But the assertions in the last sentence are unobvious; can you prove them?

Here are proofs of those assertions. First EJ+ FL = B(EJ+ FL) = BO if it isnot empty, so
EJ=-FL . If z satisfies Jz=0 thenit also satisfies 0=(EJ+ FL)z=FLz, andthen Lz=0
too because the columns of F arelinearly independent; since thelast columns of matrix C are
independent ( elseit wouldn’t beinvertible), z=o0 too. Therefore the columnsof J (.and
similarly L) must be linearly independent if not empty, so EJ=—-FL isabasisfor anonzero
subspaceof E n F if not al of it. To show that none of it isleft out we must solve equation
EJx = Eu for x whenever Eu=-Fv liesin E n F. The solution can be expressed in terms
of aconformable partition of C1 =: {g(‘ﬂ . here CIC=1=CC™? impliesthat MH+NK ,

PHQL , HM+JP and KN+LQ areidentity matrices, and MJHNL , PH+QK , HN+JQ and
KM+LP are zero matrices of perhaps diverse sizes. Now alittle algebra (Do it!) sufficesto
confirmthat x :=Pu+ Qv isthedesired solution, so EJ=—FL doesspanalof En F.

E+F isnext. If (EH+FK)z=o0 then z satisfies 0=[I, O)JG™(EH + FK)z =z too, so that
EH + FK must be abasisfor asubspace of E + F if not al of it. To show none of it isleft out
we need only solve equation (EH + FK)y = (Es+ Ft) for y. Thesolutionis y := Ms+ Nt.

Do the algebrato confirm thisformulafor y. Theformulasfor x and y above are fragile numerically, easily
broken by rounding errors. Robust formulas are more subtle.
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A by-product of the proof, obtained by counting columns of the echelon form, isthe formula
Dimension(E n F ) + Dimension(E + F ) = Dimension(E ) + Dimension(F ) .
This IMPORTANT formula deserves a proof simpler than the computation above; can you
find asimpler proof?
Hereitis. Let D beany basisfor E n F . If not already abasisfor E, D can be augmented to form abasis
[D, E] for E. Likewise [D, F] formsabasisfor F. Certainly E + F isspanned by the elementsof [D, E, F] .
Itisabasistoo if its elements are linearly independent. Suppose Dd—Ee—Ff = 0. Thissaysthat Ff = Dd—Ee
liesin F andin E, soitliesin E n F. Therefore Ff = Dd = Dd—Ee for some d. Then Dd—Ff = o isthe
zerovector in F, so d=0 and f=o0 ( perhaps of different dimensions). D(d-d) —Ee=0 implies d—d=0
and e=o0 similarly. Thereforethe elementsof [D, E, F] redly are linearly independent; they do form abasis of
E + F . Counting elements confirmsthe IMPORTANT formula above.

Exercise 8: If the dimension of avector space is less than the sum of the dimensions of two of
its subspaces, can their intersection bejust { o} ? Justify your answer.

Exercise 9: Two proper subspaces of avector space are Complementary just when their sum
is the whole space and their intersection { o} . Can either determine the other uniquely? Why?

The Annihilator of asubspace E isthe set of all linear functionals w' that satisfy w'e=0

forevery e in E, and isdenoted by EY. Thisannihilator is a subspace of the dual space
determined uniquely by E .

The notation “ EP” isarelicfrom Euclidean spaces, which aretheir own duals; that iswhy E" isoften called
the “orthogonal complement” of E evenif itisasubspace of a non-Euclidean space. Thisterminology can

mislead; only in Euclidean spacesare E and E” complementary. “Annihilator” isunmistakable.

A good way to think about subspacesisin terms of their bases. Given abasis B for avector
space, think of E :=BE for some rectangular matrix E with linearly independent columns as

the basis for a proper subspace E := Range(E) whose annihilator is EJ= Cokernd(E) . This
|atter subspace has a basis too consisting of linear combinations of the “rows’ of B~ : ...

Exercise 10: Confirm important relations Dimension(E) + Dimension(E™) = Dimension(B)
and (E)"=E by augmenting E to get abasis [E, E] = B[E, E] and partitioning itsinverse
conformably to get abasisfor E".

Exercise 11: Cite “(EX)”=E " for aquick proof of Fredholm’s aternative (1) in the notes
“The Reduced Row-Echelon Formis Unique”. ( It works for some infinite-dimensional spaces.)

Exercise 12: Provethat (E+F ) =EUnF". If EnF#{0o} must E°nF"#{o0'} too?

Provethe answer issurely “Yes’ if Dimension(E) + Dimension(F) —Dimension(E n F) is
less than the dimension of the whole space, but otherwise surely “No”.
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Warning about Duals of Duals of Infinite-Dimensional Spaces:

The proof techniques used above are based upon finite-dimensional matrix multiplication; but
most of the definitions and inferences make sense for infinite dimensional spacestoo. Thereis
one important exception that would go unnoticed because our notation takes it for granted: “A
vector space isthe dual of itsdual.” Thisassertion, obvioudly true for al finite-dimensional
spaces, isfalse for many infinite-dimensional spaces. It isfalse for the space of continuous
functions on a closed domain, and for the space of all absolutely convergent series, and for the
gpace of all infinite sequences with at most finitely many nonzero terms; these three spaces are
each properly contained in the dual of itsdual. For infinite-dimensional spaces, Linear
Algebra hasto be rebuilt from the ground up in a graduate course that takes convergence into
account; it lies beyond the syllabus of this course except for occasional warnings like this one.
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