Geometry of Elementary Operations and Subspaces

A continuation of notes titled "Geometry of Elementary Operations"

Matrices Represent Linear Operators:

Let \mathbf{L} be a linear operator that maps a space of vectors $\mathbf{x}=\mathbf{B x}$ to a space of vectors $\mathbf{y}=\mathbf{E y}$ with their respective bases \mathbf{B} and \mathbf{E}. Here x is a column vector that represents \mathbf{x} in the basis \mathbf{B} as y represents \mathbf{y} in \mathbf{E}. Now, what represents \mathbf{L} ? Matrix $L:=\mathbf{E}^{-1} \mathbf{L B}$ represents \mathbf{L} with bases \mathbf{B} and \mathbf{E} because $\mathbf{y}=\mathbf{L x}$ just when $\mathrm{y}=\mathbf{E}^{-1} \mathbf{y}=\mathbf{E}^{-1} \mathbf{L B x}=\mathrm{Lx}$.

When bases change, say from \mathbf{B} to $\overline{\mathbf{B}}:=\mathbf{B C}$ and \mathbf{E} to $\overline{\mathbf{E}}:=\mathbf{E G}$ (where the matrices \mathbf{C} and G must be square and invertible, as we have seen), their matrices figure in changes of coordinates (representatives) thus:

$$
\begin{array}{lll}
\mathrm{x}:=\mathbf{B}^{-1} \mathbf{x} & \text { and } \overline{\mathrm{x}}:=\overline{\mathbf{B}}^{-1} \mathbf{x}=\overline{\mathbf{B}}^{-1} \mathbf{B} \mathrm{x}=\mathrm{C}^{-1} \mathrm{x} & \text { represent } \mathbf{x} ; \\
\mathrm{y}:=\mathbf{E}^{-1} \mathbf{y} & \text { and } \overline{\mathrm{y}}:=\overline{\mathbf{E}}^{-1} \mathbf{y}=\overline{\mathbf{E}}^{-1} \mathbf{E y}=\mathrm{G}^{-1} \mathrm{y} & \text { represent } \mathbf{y} ; \\
\mathrm{L}:=\mathbf{E}^{-1} \mathbf{L B} & \text { and } \overline{\mathrm{L}}:=\overline{\mathbf{E}}^{-1} \mathbf{L} \overline{\mathbf{B}}=\overline{\mathbf{E}}^{-1} \mathbf{E L B} \mathbf{B}^{-1} \overline{\mathbf{B}}=\mathrm{G}^{-1} \mathrm{LC} & \text { represent } \mathbf{L} .
\end{array}
$$

Evidently $\mathbf{y}=\mathbf{L x}$ just when $\mathrm{y}=\mathrm{Lx}$ and $\overline{\mathrm{y}}=\overline{\mathrm{L}} \overline{\mathrm{x}}$.
What works for vectors works also for linear functionals; these are just linear maps to a 1dimensional space whose basis need not change:

$$
\begin{array}{lll}
\mathrm{u}^{\mathrm{T}}:=\mathbf{u}^{\mathrm{T}} \mathbf{B} & \text { and } \overline{\mathrm{u}}^{\mathrm{T}}:=\mathbf{u}^{\mathrm{T}} \overline{\mathbf{B}}=\mathrm{u}^{\mathrm{T}} \mathbf{B}^{-1} \overline{\mathbf{B}}=\mathrm{u}^{\mathrm{T}} \mathrm{C} & \text { represent } \mathbf{u}^{\mathrm{T}} ; \\
\mathrm{v}^{\mathrm{T}}:=\mathbf{v}^{\mathrm{T}} \mathbf{E} & \text { and } \overline{\mathrm{v}}^{\mathrm{T}}:=\mathbf{v}^{\mathrm{T}} \overline{\mathbf{E}}=\mathrm{v}^{\mathrm{T}} \mathbf{E}^{-1} \overline{\mathbf{E}}=\mathrm{v}^{\mathrm{T}} \mathrm{G} & \text { represent } \mathbf{v}^{\mathrm{T}} ;
\end{array}
$$ so $\mathbf{u}^{\mathrm{T}} \mathbf{x}=u^{\mathrm{T}} \mathrm{x}=\bar{u}^{-\mathrm{T}} \overline{\mathrm{x}}$ and $\mathbf{v}^{\mathrm{T}} \mathbf{y}=\mathrm{v}^{\mathrm{T}} \mathrm{y}=\overline{\mathrm{v}}^{\mathrm{T}} \overline{\mathrm{y}}$. Now $\mathbf{u}^{\mathrm{T}}=\mathbf{v}^{\mathrm{T}} \mathbf{L}$ just when $u^{\mathrm{T}}=\mathrm{v}^{\mathrm{T}} \mathrm{L}$ and $\overline{\mathrm{u}}^{\mathrm{T}}=\overline{\mathrm{v}}^{\mathrm{T}} \overline{\mathrm{L}}$. (Confirm the last seven equations.) In all cases the misnamed coordinate-free (it should be called "coordinate-independent") algebra is the same; only the arithmetic changes when bases change. To simplify arithmetic is the principal motivation to change bases.

Do not try to memorize where to put C or G . Or is it C^{-1} or G^{-1} ? Left or right of L ? You can work out these question's answers more reliably by remembering that a basis is an invertible linear map from a space of column vectors to another vector space, and a change of basis post-multiplies the basis by an invertible matrix.

Here is an example to show how changes of bases can simplify arithmetic. A given arbitrary possibly rectangular matrix L represents some linear map \mathbf{L} from one vector space to another if apt bases are used in those spaces. Let G^{-1} be any product of elementary row operations that puts L into Reduced Row-Echelon Form $\mathrm{G}^{-1} \mathrm{~L}$, and let C be any product of elementary column operations that puts $G^{-1} L$ into its Reduced Column-Echelon Form $\bar{L}=G^{-1} L C$. As we have seen in notes "The Reduced Row-Echelon Form is Unique", this last Reduced Echelon Form $\overline{\mathrm{L}}$ is determined uniquely by the starting matrix L, regardless of how the elementary operations get to $\overline{\mathrm{L}}$. But $\overline{\mathrm{L}}$ must now consist of an identity matrix in its upper left corner, and zeros in all later rows and columns if there are any. Since elementary row operations leave row-rank unchanged, and similarly for column-rank, we see that these ranks are the same, namely the dimension ρ of that identity matrix. Now re-interpret G and C as matrices of two changes of basis, one basis in each of the vector spaces connected by whatever linear operator \mathbf{L} is represented by L; since $\bar{L}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], \mathbf{L}$ maps the first ρ changed basis vectors in one Affine vector space to the first ρ changed basis vectors in the other.

Thus we conclude that every matrix $\mathrm{L}=\mathrm{G} \overline{\mathrm{L}}^{-1}$ can be factored into a product whose two outer factors are invertible and whose third inner factor $\overline{\mathrm{L}}$ is an identity matrix with perhaps some rows and/or columns of zeros appended to make $\overline{\mathrm{L}}$ have the same dimensions as L , whose rank ρ is the dimension of the identity matrix. For any such fixed $\bar{L}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, the family of matrices $\mathrm{L}=\mathrm{G} \overline{\mathrm{L}}{ }^{-1}$ generated as G and C sweep through all invertible matrices of appropriate dimensions is a family called Equivalent matrices; they all represent the same abstract linear operator \mathbf{L} but in different coordinate systems. They all have the same rank ρ, which we might as well define to be $\operatorname{Rank}(\mathbf{L})$. What else have they in common?

Dimensions that are Invariants of Equivalent Matrices:

All that Equivalent matrices have in common are their dimensions and their rank ρ. These numbers are the dimensions of three important vector spaces associated with that abstract linear operator \mathbf{L}. Let us name them. One space is the $\operatorname{Domain}(\mathbf{L})$, the space of vectors upon which \mathbf{L} operates. Another is the Range-space (an ambiguous phrase best not used) or Target-space (\mathbf{L}) into or onto which \mathbf{L} throws its results. If $\mathbf{y}=\mathbf{L x}$ then \mathbf{x} must come from Domain (\mathbf{L}) and \mathbf{y} from Target-space (\mathbf{L}). As \mathbf{x} runs through all of $\operatorname{Domain}(\mathbf{L}), \mathbf{y}=\mathbf{L x}$ sweeps out a third vector space Range (\mathbf{L}). (Why is it a vector space?) Range(\mathbf{L}) need not fill Target-space (\mathbf{L}) but may be a proper subspace. (This is why "Target-space" is a better phrase than "Range-space" when they must be distinguished from "Range".)

Let L be any of the Equivalent matrices that represent \mathbf{L}; then

$$
\begin{array}{ll}
\operatorname{Dimension}(\operatorname{Domain}(\mathbf{L})) & =\operatorname{Count}(\operatorname{Columns}(\mathrm{L})), \\
\operatorname{Dimension}(\operatorname{Target}-\operatorname{space}(\mathbf{L})) & =\operatorname{Count}(\operatorname{Rows}(\mathrm{L})), \text { and } \\
\operatorname{Dimension}(\operatorname{Range}(\mathbf{L})) & =\operatorname{Rank}(\mathbf{L})=\operatorname{Rank}(\mathrm{L})=\rho .
\end{array}
$$

The last equation comes from the Equivalent matrix $\overline{\mathrm{L}}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, which tells us that $\operatorname{Range}(\mathbf{L})$ has a basis with ρ vectors. This basis cannot be chosen uniquely even though Range (\mathbf{L}) is fully determined by \mathbf{L}. This basis of Range (\mathbf{L}) is the image of the first ρ basis vectors in some basis of Domain (\mathbf{L}); those first ρ basis vectors span a subspace of Domain (\mathbf{L}) that need not be determined uniquely by \mathbf{L} if its rank ρ is less than the dimension of its domain.

To think otherwise is a mistake made by many students; but adding to each of the first ρ basis vectors any linear combinations of subsequent basis vectors (from Nullspace (\mathbf{L})) yields a new basis whose first ρ vectors, now spanning another subspace of $\operatorname{Domain}(\mathbf{L})$, are mapped by \mathbf{L} upon the same basis of Range (\mathbf{L}).

The subspace of Domain (\mathbf{L}) determined uniquely by \mathbf{L} is its Kernel or Nullspace, consisting of all vectors \mathbf{z} that satisfy $\mathbf{L z}=\mathbf{0}$. (Why is it a vector space?) Looking at $\overline{\mathrm{L}}$ tells us $\operatorname{Nullity}(\mathbf{L}):=\operatorname{Dimension}(\operatorname{Nullspace}(\mathbf{L}))=\operatorname{Count}(\operatorname{Columns}(\overline{\mathrm{L}}))-\operatorname{Rank}(\mathbf{L})$ for any matrix L that represents \mathbf{L}. In other words (and this is IMPORTANT),

$$
\operatorname{Rank}(\mathbf{L})+\operatorname{Nullity}(\mathbf{L})=\operatorname{Dimension}(\operatorname{Domain}(\mathbf{L})) .
$$

Every linear operator \mathbf{L} operates in two directions. We have just looked at one; operator \mathbf{L} maps vectors in its domain to vectors in its range. Now look at \mathbf{L} another way; it maps linear functionals \mathbf{v}^{T} that act upon Target-space (\mathbf{L}) linearly to linear functionals $\mathbf{u}^{\mathrm{T}}=\mathbf{v}^{\mathrm{T}} \mathbf{L}$ acting upon Domain (\mathbf{L}). This space of linear functionals \mathbf{v}^{T}, dual to Target-space (\mathbf{L}), is called
$\operatorname{Codomain}(\mathbf{L})$; as \mathbf{v}^{T} runs through all of it, $\mathbf{v}^{\mathrm{T}} \mathbf{L}$ sweeps out a subspace of the space dual to Domain (\mathbf{L}). This subspace can be called Corange (\mathbf{L}). The subspace of Codomain (\mathbf{L}) swept out by solutions \mathbf{w}^{T} of $\mathbf{w}^{\mathrm{T}} \mathbf{L}=\mathbf{o}^{\mathrm{T}}$ is Cokernel (\mathbf{L}). You may have seen some of these spaces before in texts where $\mathbf{L}=\mathrm{L}$ is a matrix that maps one space of column vectors to another, and then Range (\mathbf{L}) is the column-space of L and its row-space is Corange (\mathbf{L}).

Exercise 0: The foregoing plethora of (sub)spaces and names for them sound more complicated than they are; describe all eight of them when $\mathbf{L}=\overline{\mathrm{L}}=\left[\begin{array}{ll}\mathrm{I} & \mathrm{O} \\ \mathrm{O} & \mathrm{O}\end{array}\right]$. These eight (sub) spaces are ... Target-space, Range, Nullspace, Domain, Codomain, Cokernel, Corange, Dual of Domain.

Exercise 1: Explain why the rank of a matrix product cannot exceed the rank of any factor.
Exercise 2: Every linear operator \mathbf{L} can be written as a sum $\mathbf{L}=\mathbf{c}_{1} \mathbf{r}^{T}{ }_{1}+\mathbf{c}_{2} \mathbf{r}^{\mathrm{T}}{ }_{2}+\ldots+\mathbf{c}_{\mathrm{k}} \mathbf{r}^{\mathrm{T}}{ }_{k}$ of dyads $\mathbf{c r}^{\mathrm{T}}$ (linear operators of rank 1) in infinitely many ways; here each \mathbf{c}_{j} is drawn from Target-space (\mathbf{L}) and each \mathbf{r}^{T} from the dual of $\operatorname{Domain}(\mathbf{L})$. Show that $\operatorname{Rank}(\mathbf{L})$ is the minimum possible number k of terms in the sum, and exhibit a way to achieve this minimum. This minimum, called Tensor Rank, is an alternative way to define $\operatorname{Rank}(\mathbf{L})$; it can be generalized from linear operators to multi-linear operators, but nobody knows how to compute Tensor Rank for multi-linear operators.

Exercise 3: The linear operator whose matrix is $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ maps a plane to a line in the plane; why? The linear operator whose matrix is $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 0\end{array}\right]$ maps a 3 -space to a line in the plane; why? Similarly describe the effects of operators whose matrices are ...

$$
\mathrm{A}:=\left[\begin{array}{lll}
0 & 1 & 5 \\
2 & 0 & 4 \\
0 & 7 & 0
\end{array}\right], \quad \mathrm{B}:=\left[\begin{array}{ll}
4 & 5 \\
0 & 1 \\
2 & 3
\end{array}\right], \quad \mathrm{C}:=\left[\begin{array}{ll}
2 & 3 \\
0 & 0 \\
4 & 6
\end{array}\right], \quad \mathrm{D}:=\left[\begin{array}{lll}
4 & 5 & 6 \\
1 & 2 & 3 \\
6 & 7 & 8
\end{array}\right], \quad \mathrm{E}:=\left[\begin{array}{llll}
4 & 5 & 6 & 0 \\
1 & 2 & 3 & 1 \\
6 & 7 & 8 & 9
\end{array}\right] .
$$

(The next four exercises were supplied by Prof. B. N. Parlett and A. Hernandez.)
Exercise 4: An operator \mathbf{L} is represented by a 3-by-3 matrix. The set of all solutions \mathbf{p} of $\mathbf{L} \mathbf{p}=\mathbf{o}$ sweeps out a plane \boldsymbol{P} through the origin \mathbf{o}. Vectors $\mathbf{b}:=\mathbf{L u}$ and $\mathbf{c}:=\mathbf{L v}$ are nonzero. Describe the set \boldsymbol{X} of all solutions \mathbf{x} of $\mathbf{L x}=\mathbf{b}$, and the set \boldsymbol{Y} of all solutions \mathbf{y} of $\mathbf{L y}=\mathbf{b}+\mathbf{c}$. What is Dimension(Range (\mathbf{L})) ?

In the next three exercises, V is some vector space of high dimension, and $\mathrm{b}, \mathrm{c}, \mathrm{d}, \ldots, \mathrm{x}, \mathrm{y}, \mathrm{z}$ are nonzero vectors in it.

Exercise 5: W is a subset of V containing b, c, and $3 \mathrm{c}+5 \mathrm{~d}$, but not d nor e-2d; determine whether W can possibly be a subspace of V. Give your reasoning. Do likewise for U, a subset of V containing 5 c and $3 \mathrm{~d}-2 \mathrm{~b}$ but not b nor d .

Exercise 6: Q is spanned by $\{\mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}\}$; here x and y are linearly independent and span a subspace U that also contains $\mathrm{y}+3 \mathrm{z}$ but not $\mathrm{y}+2 \mathrm{c}$. What is $\operatorname{Dimension}(Q)$, and why?

Exercise 7: E and F are subspaces of $V . F$ is spanned by $\{\mathrm{b}, \mathrm{e}, \mathrm{f}\}$; and $[\mathrm{c}, \mathrm{d}, \mathrm{f}]$ is a basis for E, which also contains b. However, the spans of $\{c, d\}$ and of $\{b, f\}$ intersect only in the zero vector. Explain whether $[\mathrm{b}, \mathrm{e}, \mathrm{f}]$ is a basis for F.

Intersections, Sums and Annihilators of Subspaces:
Let \boldsymbol{E} and \boldsymbol{F} be proper subspaces of a vector space \boldsymbol{B}. ("Proper" means neither o nor \boldsymbol{B}.) Bases \mathbf{E} for \boldsymbol{E} and \mathbf{F} for \boldsymbol{F} consist of spanning "rows" of linearly independent vectors drawn from \boldsymbol{B} but not necessarily from a given basis \mathbf{B} of \boldsymbol{B}. Still, some bases must be related; $\mathbf{E}=\mathbf{B E}$ and $\mathbf{F}=\mathbf{B F}$ for rectangular matrices E and F with as many columns as the dimensions of subspaces \boldsymbol{E} and \boldsymbol{F} respectively, and as many rows as the dimension of \boldsymbol{B}.

Why must the columns of E be linearly independent, and likewise those of F , but maybe not those of $[\mathrm{E}, \mathrm{F}]$?
Let the sum of subspaces \boldsymbol{E} and \boldsymbol{F} be denoted by $\boldsymbol{E}+\boldsymbol{F}$; it consists of all sums $\mathbf{e}+\mathbf{f}$ of vectors \mathbf{e} drawn from \boldsymbol{E} and \mathbf{f} drawn from \boldsymbol{F}. Note that $\boldsymbol{E}+\boldsymbol{F}$ is a vector space. (Why?)
Don't confuse the sum with the union $\boldsymbol{E} \cup \boldsymbol{F}$ of two subspaces, which consists of all vectors that belong to at least one of \boldsymbol{E} and \boldsymbol{F}; it need not be a vector space at all; can you see why by providing a suitable example?

Let the intersection of subspaces \boldsymbol{E} and \boldsymbol{F} be denoted by $\boldsymbol{E} \cap \boldsymbol{F}$; it consists of all vectors that belong both to \boldsymbol{E} and to \boldsymbol{F}, and is a subspace of \boldsymbol{B} too. (Why?) It may be just $\{\mathbf{o}\}$.

Given E and F, can we compute a basis for $\boldsymbol{E} \cap \boldsymbol{F}$? It's a bit tricky. First assemble matrix $[\mathrm{E}, \mathrm{F}]$ and reduce it to its echelon form $\mathrm{G}^{-1}[\mathrm{E}, \mathrm{F}] \mathrm{C}=\left[\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right]$ by pre- and post-multiplication by invertible square matrices G^{-1} and C . Next partition $\mathrm{C}=:\left[\begin{array}{ll}\mathrm{H} \\ \mathrm{K}\end{array}\right]$ conformably to obtain $\mathrm{G}^{-1}(\mathrm{EH}+\mathrm{FK})=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathrm{G}^{-1}(\mathrm{EJ}+\mathrm{FL})=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. Then $\mathbf{E H}+\mathbf{F K}$ is a basis for $\boldsymbol{E}+\boldsymbol{F}$; and $\mathbf{E J}=-\mathbf{F L}$ is a basis for $\boldsymbol{E} \cap \boldsymbol{F}$ unless it is $\{\mathbf{o}\}$, in which case \mathbf{J} and L are empty matrices. But the assertions in the last sentence are unobvious; can you prove them?

Here are proofs of those assertions. First $\mathbf{E J}+\mathbf{F L}=\mathbf{B}(E J+F L)=\mathbf{B O}$ if it is not empty, so $\mathbf{E J}=-\mathbf{F L}$. If z satisfies $\mathrm{Jz}=\mathrm{o}$ then it also satisfies $\mathrm{o}=(\mathrm{EJ}+\mathrm{FL}) \mathrm{z}=\mathrm{FLz}$, and then $\mathrm{Lz}=\mathrm{o}$ too because the columns of F are linearly independent; since the last columns of matrix C are independent (else it wouldn't be invertible), $\mathrm{z}=\mathrm{o}$ too. Therefore the columns of J (and similarly L) must be linearly independent if not empty, so $\mathbf{E J}=-\mathbf{F L}$ is a basis for a nonzero subspace of $\boldsymbol{E} \cap \boldsymbol{F}$ if not all of it. To show that none of it is left out we must solve equation $\mathbf{E J x}=\mathbf{E u}$ for x whenever $\mathbf{E u}=-\mathbf{F v}$ lies in $\boldsymbol{E} \cap \boldsymbol{F}$. The solution can be expressed in terms of a conformable partition of $\mathrm{C}^{-1}=:\left[\begin{array}{cc}\mathrm{M} \mathrm{N} \\ \mathrm{PQ}\end{array}\right]$; here $\mathrm{C}^{-1} \mathrm{C}=\mathrm{I}=\mathrm{CC}^{-1}$ implies that $\mathrm{MH}+\mathrm{NK}$, $\mathrm{PJ}+\mathrm{QL}, \mathrm{HM}+\mathrm{JP}$ and $\mathrm{KN}+\mathrm{LQ}$ are identity matrices, and $\mathrm{MJ}+\mathrm{NL}, \mathrm{PH}+\mathrm{QK}, \mathrm{HN}+\mathrm{JQ}$ and $\mathrm{KM}+\mathrm{LP}$ are zero matrices of perhaps diverse sizes. Now a little algebra (Do it!') suffices to confirm that $\mathrm{x}:=\mathrm{Pu}+\mathrm{Qv}$ is the desired solution, so $\mathbf{E J}=-\mathbf{F L}$ does span all of $\boldsymbol{E} \cap \boldsymbol{F}$.
$\boldsymbol{E}+\boldsymbol{F}$ is next. If $(\mathbf{E H}+\mathbf{F K}) \mathrm{z}=\mathbf{o}$ then z satisfies $\mathrm{o}=[\mathrm{I}, \mathrm{O}] \mathrm{G}^{-1}(\mathrm{EH}+\mathrm{FK}) \mathrm{z}=\mathrm{z}$ too, so that $\mathbf{E H}+\mathbf{F K}$ must be a basis for a subspace of $\boldsymbol{E}+\boldsymbol{F}$ if not all of it. To show none of it is left out we need only solve equation $(\mathbf{E H}+\mathbf{F K}) \mathrm{y}=(\mathbf{E s}+\mathbf{F t})$ for y . The solution is $\mathrm{y}:=\mathrm{Ms}+\mathrm{Nt}$. Do the algebra to confirm this formula for y . The formulas for x and y above are fragile numerically, easily broken by rounding errors. Robust formulas are more subtle.

A by-product of the proof, obtained by counting columns of the echelon form, is the formula
$\operatorname{Dimension}(\boldsymbol{E} \cap \boldsymbol{F})+\operatorname{Dimension}(\boldsymbol{E}+\boldsymbol{F})=\operatorname{Dimension}(\boldsymbol{E})+\operatorname{Dimension}(\boldsymbol{F})$.
This IMPORTANT formula deserves a proof simpler than the computation above; can you find a simpler proof?

Here it is. Let \mathbf{D} be any basis for $\boldsymbol{E} \cap \boldsymbol{F}$. If not already a basis for $\boldsymbol{E}, \mathbf{D}$ can be augmented to form a basis $[\mathbf{D}, \overline{\mathbf{E}}]$ for \boldsymbol{E}. Likewise $[\mathbf{D}, \overline{\mathbf{F}}]$ forms a basis for \boldsymbol{F}. Certainly $\boldsymbol{E}+\boldsymbol{F}$ is spanned by the elements of $[\mathbf{D}, \overline{\mathbf{E}}, \overline{\mathbf{F}}]$. It is a basis too if its elements are linearly independent. Suppose $\mathbf{D d}-\overline{\mathbf{E}} \mathbf{e}-\overline{\mathbf{F}} f=\mathbf{o}$. This says that $\overline{\mathbf{F}} f=\mathbf{D d}-\overline{\mathbf{E}} \mathbf{e}$ lies in \boldsymbol{F} and in \boldsymbol{E}, so it lies in $\boldsymbol{E} \cap \boldsymbol{F}$. Therefore $\overline{\mathbf{F}}=\mathbf{D} \overline{\mathrm{d}}=\mathbf{D} d-\overline{\mathbf{E}}$ e for some $\overline{\mathrm{d}}$. Then $\mathbf{D} \overline{\mathrm{d}}-\overline{\mathbf{F}} \mathrm{f}=\mathbf{o}$ is the zero vector in \boldsymbol{F}, so $\overline{\mathrm{d}}=0$ and $\mathrm{f}=\mathrm{o}$ (perhaps of different dimensions). $\mathbf{D}(\mathrm{d}-\overline{\mathrm{d}})-\overline{\mathbf{E}}=\mathbf{o}$ implies $\mathrm{d}-\overline{\mathrm{d}}=\mathrm{o}$ and $\mathrm{e}=\mathrm{o}$ similarly. Therefore the elements of $[\mathbf{D}, \overline{\mathbf{E}}, \mathbf{F}]$ really are linearly independent; they do form a basis of $\boldsymbol{E}+\boldsymbol{F}$. Counting elements confirms the IMPORTANT formula above.

Exercise 8: If the dimension of a vector space is less than the sum of the dimensions of two of its subspaces, can their intersection be just $\{\mathbf{0}\}$? Justify your answer.

Exercise 9: Two proper subspaces of a vector space are Complementary just when their sum is the whole space and their intersection $\{\mathbf{0}\}$. Can either determine the other uniquely? Why?

The Annihilator of a subspace \boldsymbol{E} is the set of all linear functionals \mathbf{w}^{T} that satisfy $\mathbf{w}^{\mathrm{T}} \mathbf{e}=0$ for every \mathbf{e} in \boldsymbol{E}, and is denoted by \boldsymbol{E}^{\perp}. This annihilator is a subspace of the dual space determined uniquely by \boldsymbol{E}.
The notation " \boldsymbol{E}^{\perp} " is a relic from Euclidean spaces, which are their own duals; that is why \boldsymbol{E}^{\perp} is often called the "orthogonal complement" of \boldsymbol{E} even if it is a subspace of a non-Euclidean space. This terminology can mislead; only in Euclidean spaces are \boldsymbol{E} and \boldsymbol{E}^{\perp} complementary. "Annihilator" is unmistakable.

A good way to think about subspaces is in terms of their bases. Given a basis \mathbf{B} for a vector space, think of $\mathbf{E}:=\mathbf{B E}$ for some rectangular matrix E with linearly independent columns as the basis for a proper subspace $\boldsymbol{E}:=\operatorname{Range}(\mathbf{E})$ whose annihilator is $\boldsymbol{E}^{\perp}=\operatorname{Cokernel}(\mathbf{E})$. This latter subspace has a basis too consisting of linear combinations of the "rows" of $\mathbf{B}^{-1}: \ldots$

Exercise 10: Confirm important relations $\operatorname{Dimension}(\boldsymbol{E})+\operatorname{Dimension}\left(\boldsymbol{E}^{\perp}\right)=\operatorname{Dimension}(\mathbf{B})$ and $\left(\boldsymbol{E}^{\perp}\right)^{\perp}=\boldsymbol{E} \quad$ by augmenting \mathbf{E} to get a basis $[\mathbf{E}, \overline{\mathbf{E}}]=\mathbf{B}[\mathrm{E}, \overline{\mathrm{E}}]$ and partitioning its inverse conformably to get a basis for \boldsymbol{E}^{\perp}.

Exercise 11: Cite " $\left(\boldsymbol{E}^{\perp}\right)^{\perp}=\boldsymbol{E}$ " for a quick proof of Fredholm's alternative (1) in the notes "The Reduced Row-Echelon Form is Unique". (It works for some infinite-dimensional spaces.)

Exercise 12: Prove that $(\boldsymbol{E}+\boldsymbol{F})^{\perp}=\boldsymbol{E}^{\perp} \cap \boldsymbol{F}^{\perp}$. If $\boldsymbol{E} \cap \boldsymbol{F} \neq\{\mathbf{o}\}$ must $\boldsymbol{E}^{\perp} \cap \boldsymbol{F}^{\perp} \neq\left\{\mathbf{o}^{\mathrm{T}}\right\}$ too? Prove the answer is surely "Yes" if Dimension $(\boldsymbol{E})+\operatorname{Dimension}(\boldsymbol{F})-\operatorname{Dimension}(\boldsymbol{E} \cap \boldsymbol{F})$ is less than the dimension of the whole space, but otherwise surely "No".

Warning about Duals of Duals of Infinite-Dimensional Spaces:

The proof techniques used above are based upon finite-dimensional matrix multiplication; but most of the definitions and inferences make sense for infinite dimensional spaces too. There is one important exception that would go unnoticed because our notation takes it for granted: "A vector space is the dual of its dual." This assertion, obviously true for all finite-dimensional spaces, is false for many infinite-dimensional spaces. It is false for the space of continuous functions on a closed domain, and for the space of all absolutely convergent series, and for the space of all infinite sequences with at most finitely many nonzero terms; these three spaces are each properly contained in the dual of its dual. For infinite-dimensional spaces, Linear Algebra has to be rebuilt from the ground up in a graduate course that takes convergence into account; it lies beyond the syllabus of this course except for occasional warnings like this one.

